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Abstract: Additive manufacturing (AM) (=3D printing) has emerged during the last few years as
a powerful technological platform for fabrication of functional parts with unique complex geometries
and superior functionalities that are next to impossible to achieve using conventional manufacturing
techniques. Due to their importance in industrial applications and the maturity of the applicable
AM techniques, metallic materials are at the forefront of the developments in AM. In this editorial,
which has been written as a preamble to the special issue “Perspectives on Additively Manufactured
Metallic Materials”, I will highlight some of the frontiers of research on AM of metallic materials
to help readers better understand the cutting edge of research in this area. Some of these topics are
addressed in the articles appearing in this special issue, while others constitute worthy avenues for
future research.
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1. Introduction

Additive manufacturing (AM) (=3D printing) is one of the most important developments in
manufacturing since the turn of the century. Although the underlying technology has been under
development for several decades, it is only during the last decade that the technology has matured to
the level that is required for reliable fabrication of functional parts. The layer-by-layer manufacturing
not only means that complex geometries could be achieved with no additional costs but also enables
the realisation of geometries for which no feasible fabrication technique existed before. Moreover,
the lead time is much shorter in AM as compared to many conventional techniques, while batch size
makes little to no difference in terms of the production costs. A combination of all these advantages
makes AM an extraordinarily promising manufacturing platform for a host of industrial applications.
Metals and metallic alloys are the most commonly used types of materials in a wide range of industries.
Moreover, research into AM of metallic materials started in the 90’s and has been continuing for more
than two decades. As a result, the technology required for AM of metallic materials has matured
and reached the level that enables direct fabrication of functional parts. That is one of the reasons
why metal AM is currently receiving so much attention from both researchers in academia and actual
industrial users.

Given the relatively high manufacturing costs, the first applications of AM have been in high
added value industries such as biomedical (see e.g., [1]) and aerospace (see e.g., [2–4]) industries.
Continuous research and development are, however, ongoing to decrease the costs associated with
AM, thereby expanding the range of possible applications. Moreover, the mechanical properties of AM
parts are not always as good as those achieved by conventional manufacturing techniques. In order to
tackle both above-mentioned challenges, researchers are developing and improving the AM processes,
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the materials used in AM, and the post-AM processes that could be used for the improvement
of the microstructure and mechanical properties of AM materials as well as for inducing new
functionalities. In addition to experimental approaches, computational models could play an important
role in designing and optimizing all these approaches. Furthermore, the complexity-for-free and
batch-size-indifference features of AM have paved the way for the emergence of a whole new range of
possible functionalities. Advanced design-for-AM techniques are required to take full advantage of
such possibilities, and are currently being intensively researched. In what follows, I will briefly review
the frontiers of research in the above-mentioned areas to highlight the most important topics of current
interest and to set the stage for the papers appearing in this special issue.

2. AM Processes

The most commonly used metal AM processes, namely selective laser melting and electron
beam melting being, are classified under the general category of powder bed fusion technologies.
These techniques work based on layer-by-layer melting of selected areas within a powder bed.
Direct energy deposition techniques are also used for processing of metals and metallic alloys,
particularly when near net shape parts are desired, when the part being fabricated does not fit
the build volume of the powder bed fusion machines, or when AM is used for the repair of already
existing parts. Finally, some studies try to interface metal printing with other AM technologies such as
those based on material extrusion to create hybrid materials [5].

Metal AM is successful only if the laser processing parameters are properly selected so as to
simultaneously optimize three objective functions: fidelity of the built parts (parts conforming to
CAD design), density of the parent material (≈100%), and the mechanical properties of the built
material. The usual approach for selecting the processing parameters is trial and error. This approach
is time-consuming, expensive, and inaccurate, particularly for geometrically complex parts. Moreover,
the obtained parameters are often not transferable from one machine or lab to another. This presents
a major challenge for every new geometrically complex part that needs to be manufactured using AM,
and is a barrier to widespread application of cost-effective AM. First-time-right AM is an ideal approach
to metal AM where the built part is fabricated without any need for trial and error. There is currently
no first-time-right AM technology available that guarantees direct success of the AM process regardless
of the geometrical complexity or material type. The success of any such technological platform is
likely to be dependent on developments in three core underlying technologies including process
monitoring techniques that provide a rich set of data for controlling and predicting the AM process,
process simulation models that are capable of using the data provided by the process monitoring
systems and predict the best processing parameters, and control systems enabling on-the-fly adjustment
of processing parameters. Although all three types of technologies have received increasing attention
during the recent years, the level of maturity, integration, and precision required for first-time-right
AM has not yet been realised. Enhancing the capabilities of these core underlying technologies as
well as integrating them into a functional and reliable first-time-right AM platform constitutes one
of the most impactful directions of future research and one that is being pursued by several research
labs worldwide.

Two main limitations set the AM of metallic materials apart from that of polymeric materials.
First, there are few methods currently available for multi-material AM of metals. Second, the minimum
feature sizes that could be achieved with metallic material is usually much larger for metals as
compared to polymers. Development of processes and machines that allow for multi-material AM
of metals with resolutions <50 µm should be a priority for future research. In particular, support
materials that could be easily removed would enable fabrication of parts with clearances (e.g., joints)
and small-angle geometrical features that are not possible to realise with the vast majority of currently
available machines. Increasing the production rate of metal AM techniques through addition of more
energy sources (e.g., laser beams) or re-design of build platforms are important areas that could benefit
from further research too.
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Finally, hybrid manufacturing equipment that combines AM techniques with subtractive
manufacturing techniques in one single apparatus could increase the production speed, (surface)
quality of the fabricated parts, and geometrical fidelity. The design of hybrid manufacturing systems
including not only the equipment but also optimized control/planning algorithms are the other topics
of current interest that could facilitate the adoption of AM and hybrid manufacturing techniques by
various industrial sectors.

3. Materials for AM

AM techniques have been successful in fabrication of (functional) parts from a wide range of
metallic materials including (but not limited to) titanium [6–9] and its light-weight high-strength
alloys (e.g., Ti-6Al-4V [10–13]), Ti-Nb alloys [14], (stainless) steel [15–18], CoCr/CoCrMo alloys [19–22],
shape memory alloys based on NiTi [23–27], high performance superalloys (e.g., Inconel [28–31]),
Mg and its alloys [32,33], Zn [34], and Al alloys [35–38]. Obtaining parts that possess properties similar
to those achieved by conventional manufacturing processes is one of the challenges of metal AM.
What is perhaps less obvious at the first glance is that the best materials for metal AM are not necessarily
the ones originally developed for conventional manufacturing processes. The characteristics of metal
AM processes call for the development of new alloys that work the best with AM. Indeed, development
of new materials tailored to the specific requirements of AM may be a more fruitful avenue of research
than applying AM to the materials developed for other manufacturing process and trying to adjust the
manufacturing parameters and apply post-AM processes to achieve the types of microstructure and
mechanical properties that are comparable with those realised by the processes for which the materials
had been developed in the first place.

A number of high profile studies into development of materials with exceptionally favourable
properties have taken the pure materials science approach suggested here. For example, nanoparticle
nucleants have been used in one study [39] to control the solidification process and enable AM of Al
alloys that cannot be easily processed with AM techniques. Addition of other agents that influence the
solidification process, in situ alloying [40], or pre-alloyed powders with novel chemical compositions
could be all used for introducing new metallic materials for AM and to control their microstructure and
mechanical properties. These areas of research have not so far received attention and require further
research to clarify what the limits of achievable microstructures, mechanical properties, and physical
properties are. The effects of the characteristics of the powder material [41] and build direction [42,43]
on the AM process and the properties of the resulting materials need to be thoroughly investigated
as well.

4. Post-AM Treatments

Even if the desired microstructure and mechanical properties are not achieved by adjusting the
AM process itself (e.g., modifying the processing parameters [44]), there are possibilities to improve
them after the AM process using post-AM treatments. The other application of post-AM treatments is
to reduce manufacturing irregularities or to induce surface-related functionalities that could enhance
the performance of AM metallic materials. As far as the first aim is concerned, heat treatments
at elevated temperatures have been used for relieving the residual stresses and improving the
microstructural features of AM materials [11,45,46]. The exact (local) heat treatments to achieve
both goals simultaneously are not currently known for all processes, parameters, and geometries, and,
thus, require further research. Moreover, computational models (see Section 5) may be needed to
understand the spatial distribution of residual stresses and to design the (local) heat treatments such
that the undesired stresses could be optimally relieved without having overly severe consequences
for the mechanical properties of the AM material. Combining heat treatments with high pressures
in processes such as hot isostatic pressing (HIP) [47–49] is another promising approach to not only
achieve the above-mentioned goals in terms but also close the pores that may exist in the AM part.
Once more, the best design of these post-AM processes and their applicability to different materials
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are not yet well understood. As a consequence, HIP treatments are not always successful in improving
the mechanical behaviour of AM metals [50,51]. Further research is therefore needed to clarify what
the best post-treatments are for every type of material and geometrical design.

Another approach for improving the mechanical properties of AM metals particularly their
fatigue performance is the application of surface treatment techniques. Unmolten powders and the
irregularities caused by the AM process could lead to the formation of a large number of potential crack
initiation sites. For parts with simple geometries, the manufacturing irregularities could be decreased
using such techniques as machining and polishing. For more complex parts, it is either expensive or
infeasible to perform machining or polishing in which case (electro) chemical surface treatments could
be helpful in smoothening the surface of AM parts. It has been shown that a treatment improving
the surface of AM metals may significantly improve their fatigue performance [50]. However, further
investigation is called for to determine what the most effective types of treatments are and to integrate
those post-AM processes into the production line of AM metals.

In addition to improving the microstructure and mechanical properties of AM metals, post-AM
surface treatments could be used to induce new functionalities. Although such additional functionalities
could potentially be applied in various industries, the biomedical applications have received the most
attention to date. For example, post-AM surface treatments and coatings have been used to induce
antibacterial properties [52–54] and to improve tissue regeneration performance [55,56] of AM porous
metallic biomaterials. Such post-AM treatments are, however, at their infancy. Their potential in other
industries is under-explored as well. As for the biomedical industry, post-AM treatments and coatings
could potentially be used to induce multiple functionalities at the same time. However, not so many
reports of such multi-functional biomaterials currently exist.

5. Computational Modelling

Computational models are primarily used for two purposes, as far as the AM of metallic
materials is concerned. The first purpose is modelling the AM process itself (see e.g., [57]) to simulate
the interaction between the energy source and the material, to understand the evolution of the
microstructure, to predict the resulting residual stresses, and to estimate the ultimate mechanical
properties. The second application of computational models is in design-for-AM and is discussed in
the next section (Section 6).

The utility of computational models originates from their predictive power. This predictive
power allows for better understanding of the relationship between the parameters of the AM
process and the properties of the resulting material. In addition to helping us establish this generic
understanding of process-property relationships, computational models could be used for on the fly
optimization of the process parameters as well as for geometry- and process-specific optimization of
the post-AM treatments.

The main challenges in building computational models of the AM process are caused by the
multi-physics, multi-scale nature of the involved problem. Modelling the interactions between the
energy source (laser, electron beam) and the powder, capturing the physics and mechanics of the
flow of the powder as a granular matter, simulating the heat transfer between the various types
of involved materials, determining the shape and temperature profiles of the melt pool, relating
the local thermal history of the melt pool to the solidification process and thermophysical changes
in the microstructure of the powder material, predicting the spatial distribution of the residual
stresses, describing the stochastic processes driving the formation of manufacturing irregularities,
and modelling the relationship between the microstructure and the mechanical properties are all
aspects that need to be taken into account when developing computational models of the AM process.
Most currently available computational models capture only some of the above-mentioned effects. It is
therefore essential to develop integrated models that take all of the physical phenomena determining
the quality of the final AM metallic parts into account at different scales. This line of research is very
challenging and has so far made only limited progress. More contributions from the groups possessing
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experience in computational material science, computational mechanics, physics of granular matter,
and multi-scale computational modelling are needed to develop the type of computational models
that could adequately address the complexity of the problem at hand.

6. Design-for-AM

The batch-size-indifference and complexity-for-free features of AM materials respectively enable
realisation of custom-made parts and designer materials [58]. Custom-made parts are particularly
interesting in the areas where one size does not fit all applications such as biomedical implants where
the geometry and size of the implant should match the anatomy of the patient [59–61]. Since most
orthopaedic implants are metallic, the design of custom-made orthopaedic implants is particularly
relevant for AM metallic materials. Given the high level of individual variations in the shape of the
bones [62], the patient-specific design process usually starts from medical images that need to be
segmented first and be used for building 3D models of bones that will then be utilized to design the
implants. There is also often a need for iterations on the design in consultation with the surgeon.
This time-consuming and laborious process tremendously increases the cost of patient-specific implants.
Therefore, one of the major areas that requires urgent attention is automating the design process of
patient-specific implants. The same type of methodology is likely to be useful for all kinds of other
applications where custom-made parts need to be designed.

AM could also be used for development of the so-called designer materials with novel
properties and, thus, functionalities that originate from their complex topological design at the
nano-/micro-scale [63,64]. This kind of materials are often referred to as metamaterials and may strive
to achieve novel mechanical [65–69], acoustic [70–73], or biomedical [74,75] properties. The topological
design of such metamaterials is in many cases based on various types of lattice structures. The central
research question when designing metamaterials is establishing topology-property relationships that
could be used to predict the type of the topological design required for achieving a specific range of
physical or mechanical properties. Computational models including those based on finite element
models [76–78] and topology optimization algorithms [79–82] as well as analytical models [83–85]
could be very useful for establishing such topology-property relationships. However, this kind of
computational models often only exist for the simplest geometries and simplest types of (mechanical)
properties. For example, there are only a few computational models [86,87] available that could be
used to predict the fatigue behaviour of AM metamaterials such as meta-biomaterials and mechanical
metamaterials. Development of predictive models that could relate the topological design of AM
metamaterials to their properties particularly the properties that are less straightforward to predict
(e.g., fatigue behaviour and mass transport properties) should receive more attention in future
research projects.

7. Conclusions

Some of the frontiers of research in AM metallic materials were briefly reviewed in this editorial to
identify the most important research questions that are worthy of further investigation by researchers.
The relevant literature was also cited to enable the readers to more easily find the required background
information and more extensive explanation of the research questions. I hope this editorial encourages
further research in this exciting area of scientific inquiry and that the time and energy of the researchers
are spent answering the questions that require the most attention.

Funding: This research received no external funding.
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