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Abstract

Cytolytic CD4 T cells (CD4 CTL) have been identified in vivo in response to viral infections; however, the factors necessary for
driving the cytolytic phenotype have not been fully elucidated. Our previously published work suggests IL-2 may be the
master regulator of perforin-mediated cytotoxicity in CD4 effectors. To further dissect the role of IL-2 in CD4 CTL generation,
T cell receptor transgenic mice deficient in the ability to produce IL-2 or the high affinity IL-2 receptor (IL-2Ra, CD25) were
used. Increasing concentrations of IL-2 were necessary to drive perforin (Prf) expression and maximal cytotoxicity. Granzyme
B (GrB) expression and killing correlated with STAT5 activation and CD25 expression in vitro, suggesting that signaling
through the high affinity IL-2R is critical for full cytotoxicity. IL-2 signaling was also necessary in vivo for inducing the Th1
phenotype and IFN-c expression in CD4 T cells during influenza A (IAV) infection. In addition, GrB expression, as measured
by mean fluorescent intensity, was decreased in CD25 deficient cells; however, the frequency of CD4 cells expressing GrB
was unchanged. Similarly, analysis of cytolytic markers such as CD107a/b and Eomesodermin indicate high IL-2Ra
expression is not necessary to drive the CD4 CTL phenotype during IAV infection. Thus, inflammatory signals induced by
viral infection may overcome the need for strong IL-2 signals in driving cytotoxicity in CD4 cells.
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Introduction

CD4 T cells play a central role in immune responses to infection

as well as acting in a regulatory role for maintaining homeostasis.

During activation, CD4 T cells are instructed by the cytokine

environment to differentiate into one of several distinct subsets of

T helper (Th) cells [1]. Viral infections typically induce the Th1

polarized subset that secretes predominantly IFN-c, induces

macrophage activation, helps B cells make IgG2a antibodies and

promotes CD8 T cell function and memory [2]. CD4 T cells can

play an additional role in viral clearance by supplementing their

helper function with cytotoxicity. MHC class II restricted CD4

effectors with cytolytic potential have been described since the late

1970s [3] and while early reports confined this activity to in vitro

stimulated CD4 effectors [4–6], recent data underscores this cell

type as an important mediator of viral clearance (reviewed in [7–

9]). Cytolytic CD4 T cells (CD4 CTL) have been identified in

humans with chronic infections such as Epstein-Barr Virus [10],

cytomegalovirus [11] and Human Immunodeficiency Virus [12],

suggesting prolonged exposure to antigen induces a terminally

differentiated effector capable of cytotoxic activity. CD4 CTL

have also been described during acute viral infections such as

influenza [13,14], LCMV [15], and ectromelia virus [16].

Demonstration of CD4 cytolytic activity in these infections

suggests CD4 cells have a more direct role in viral clearance than

was previously appreciated [13,14,16].

Early mechanistic studies revealed that CD4 CTL killed in a

manner that was dependent on the expression level of Fas on the

target cell, where increased cytotoxicity correlated with increased

Fas expression [17]. However, in many of the early studies, CD4

CTL were generated using potent T cell mitogens such as anti-

CD3 or concanavalin A (ConA) for activation [17–19]. In more

recent studies, CD4 CTL generated in vivo in response to infection

or vaccination and characterized ex vivo demonstrated that perforin

mediated cytotoxicity was the dominant mechanism utilized by

CD4 CTL [11–13,20,21]. Indeed, recent studies utilizing in vivo

cytotoxicity assays indicate that CD4 CTL are potent, expeditious

killers approaching CD8 T cell efficiency when analyzed on a per

cell basis [22]. Our lab has demonstrated previously that in vitro

generated CD4 effectors could lyse targets via FasL and perforin

mediated mechanisms and this was dependent on peptide

concentration and exogenous IL-2 [23]. In contrast, in vivo

generated effectors used perforin exclusively to mediate cytotox-

icity after activation by influenza viral infection [13], ectromelia

virus [16] and in anti-tumor vaccination models [24].

Until recently, little was known about the signals that drive the

differentiation of CD4 CTL, especially from naive CD4 T cell

populations. Recent data using anti-tumor models has demon-

strated that strong stimulation via OX40 and OX40-L [24], 4-1BB

activation [25] or OX40 stimulation and lymphopenia [26] could

enhance CD4 CTL activity in a manner dependent on

Eomesodermin. In addition, recent reports suggest inflammatory
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signals such as type I interferons cooperate with IL-2 receptor

signaling in vivo to promote CD4 CTL activity [27]. Our lab has

made use of T cell receptor (TCR) transgenic (tg) CD4 T cells

specific for a single peptide to allow for the delineation of the

factors responsible for the generation of the cytolytic phenotype

in vitro and in vivo. Our previous work has demonstrated that Th1

(IL-2, IL-12 and aIL-4) but not Th2 (IL-2, IL-4, and aIFN-c)

polarizing conditions lead to the generation of cytolytic CD4 cells

that express granzyme B (GrB) and can kill peptide pulsed targets

[23,28]. We further demonstrated that exogenous IL-2 was

necessary and sufficient to induce a cytolytic phenotype in CD4

T cells stimulated in vitro with peptide pulsed antigen presenting

cells (APC) [23]. These studies did not address the contribution of

endogenous IL-2 produced by CD4 effectors, or the role of IL-2

signaling in driving CD4 CTL differentiation in vivo. Therefore, in

this study, we used ovalbumin (Ova) specific TCR transgenic mice

in which either IL-2 or the high affinity receptor for IL-2 (IL-2Ra,

CD25) was deleted to determine the relative contribution of IL-2

signaling to the development of CD4 T cells with cytolytic activity.

In this report, we found that IL-2 regulates GrB and perforin

(Prf) expression in a dose dependent manner in vitro. IL-2, but not

other common c chain cytokines induced sustained STAT5

activation that was necessary for GrB expression and killing

activity. In addition, the level of IL-2Ra correlated with maximal

CTL activity in vitro and maximal GrB expression in vivo. Similarly,

we found that IL-2 signaling was required in vivo for maximal GrB

expression in response to influenza virus infection. However,

expression of cytolytic markers and degranulation was indepen-

dent of high IL-2Ra levels during IAV infection. These data

highlight the importance of IL-2 in driving the differentiation of

CD4 cells with cytolytic potential when inflammation is limiting.

However, inflammatory cytokines induced during infection may

enhance cytotoxicity independent of IL-2R signaling. This

information will be important when designing vaccine strategies

against emerging viral infections and for influenza viruses with

pandemic potential.

Results

IL-2 Regulates Perforin Expression and Cytotoxicity in a
Dose Dependent Manner in vitro

Our earlier work demonstrated that exogenous IL-2 and

peptide pulsed antigen presenting cells (APCs) were the minimal

requirements necessary to induce perforin (Prf)-mediated cytotox-

icity in CD4 T cells [23]. However, given that IL-2 is one of the

first cytokines produced by CD4 T cells upon TCR stimulation

and is used in an autocrine fashion to initiate cell cycle progression

and proliferation [29], it was difficult to determine the strength

and duration of signal necessary to induce cytotoxicity in CD4

cells. To overcome this problem, the present study used Ova

peptide specific TCR tg mice deficient in the ability to produce IL-

2 (DO11.10/IL-22/2; [30]), allowing us to control the amount of

IL-2 in each experiment.

To elucidate the contribution of IL-2 in inducing cytotoxicity,

naive DO11.10/IL-22/2 CD4 T cells were cultured for 4 days in

the presence of Ova peptide pulsed APCs and increasing

concentrations of IL-2. Figure 1A demonstrates that exogenous

IL-2 induces granzyme B (GrB) and CD25 expression in a dose

dependent manner, however, maximal GrB expression is apparent

at 5–10 ng/ml IL-2 while 100 ng/ml IL-2 does not further

enhance GrB protein expression (Fig. 1B). To determine whether

IL-2 also induced perforin (Prf) expression in CD4 T cells, we

measured Prf protein by western blot analysis in the presence of

increasing concentrations of IL-2. Figure 1C demonstrates that Prf

expression increases with increasing doses of IL-2. Unlike the

regulation of GrB, Prf is increased in CD4 effectors cultured with

100 ng/ml IL-2 compared to CD4 cells cultured with 10 ng/ml

IL-2. Furthermore, cytotoxicity was found to increase with

increasing concentrations of IL-2 (Figure 1D). Shown are

representative histograms of Annexin V staining of peptide pulsed

target cells incubated with CD4 effectors generated with increasing

concentrations of IL-2. Also shown is the average percentage of

Annexin V+ target cells (Fig. 1E). These results indicate that IL-2

enhances the expression of cytolytic proteins including GrB and

Prf and peptide specific cytotoxicity in CD4 effectors. However, it

appears that lower doses of IL-2 induce maximal GrB while high

dose IL-2 is necessary for maximal Prf expression, suggesting that

Prf requires stronger IL-2 signals than GrB.

Sustained STAT5 Phosphorylation Correlates with GrB
Expression and Cytotoxicity

The IL-2 receptor is a heterotrimeric complex consisting of a

high affinity cytokine binding subunit (IL-2Ra, CD25) as well as

two signaling components, IL-2Rb and a common c chain. After

IL-2 binds to the receptor complex, JAK3 is activated, leading to

the phosphorylation and dimerization of STAT5a and STAT5b

[31]. The active STAT5 dimer is then translocated to the nucleus

to initiate gene transcription. It has been demonstrated that IL-2

can lead to a direct induction of Prf and GrB gene expression in

CD8 CTL through STAT5 activation [32]. To determine if

activation of the STAT5 pathway correlated with killing activity in

CD4 effectors, we first measured phosphorylation of STAT5 over

time. IL-7 (which shares the common c chain receptor) and IL-15

(which shares the IL-2b and common c chain receptor) lead to

peak STAT5 phosphorylation at 2 hours after culture initiation

and these levels diminish over time (Fig. 2A and B). In contrast,

IL-2 leads to high levels of STAT5 phosphorylation only after 18

hours (Figure 2B) and these high levels are maintained through 96

hours (data not shown). Although STAT5 is phosphorylated for 2–

4 h after IL-7 or IL-15 treatment, this level and/or timing of

STAT5 phosphorylation does not induce high levels of GrB

(Fig. 2C and 2D). We also tested the ability of these common c
chain cytokines to drive cytotoxicity in CD4 effectors by the JAM

assay [23,28] (Fig. 2C). Percent lysis of peptide pulsed target cells

was first converted to lytic units (LU) and averaged, and is shown

relative to GrB MFI (Fig. 2D). Cytotoxicity by CD4 effectors

incubated with IL-7 or IL-15 is very low and correlates with GrB

MFI indicating that other common c chain cytokines do not

promote cytotoxicity.

Inhibitors of the JAK3/STAT5 Signaling Pathway Inhibit
GrB Expression and Killing Activity

Because STAT5 phosphorylation was enhanced and sustained

up to 96 h in culture in the presence of IL-2 and correlated with

cytotoxicity, we wanted to determine if blocking the Jak3/STAT5

pathway would inhibit cytotoxicity. We used pharmacologic

inhibitors that selectively block Jak3 (PF-956980) [33] or the

SH2 domain of STAT5, preventing DNA binding activity [34].

Figure 3A (top) shows that the Jak3 inhibitor at 40 and 400 nM

block IL-2 induced GrB expression in CD4 effectors. Similarly, the

STAT5 inhibitor blocks GrB expression in CD4 effectors at 10

and 50 mM. However, STAT5 inhibitor at 10 and 50 mM does

not diminish CD25 expression, indicating there is not a global

downregulation of protein expression (Fig. S1A). Figure 3B shows

percent of maximal GrB expression over a number of experiments

in CD4 effectors treated with Jak3 or STAT5 inhibitors compared

to treatment with DMSO, the solvent used for the inhibitors.

IL-2 Is Necessary for CD4 CTL Development
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Inhibiting either Jak3 or STAT5 significantly reduces GrB

expression in CD4 effectors incubated with IL-2. To confirm that

reduction of GrB expression correlated with killing activity, CD4

effectors were generated in the presence of IL-2 with and without

Jak3 inhibitor at 400 nM for 4 days in vitro. Cytotoxicity was

determined by staining for Annexin V on peptide pulsed target

cells after incubation with CD4 effectors (Fig. 3C). Figure 3D

shows the average of Annexin V+ cells cultured with CD4 effectors

Figure 1. IL-2 regulates perforin expression and cytotoxicity in a dose dependent manner in vitro. CD4 effectors were generated from
naive DO11.10/IL-22/2 Ova specific TCR tg CD4 cells as described in the Materials and Methods using peptide pulsed APC and increasing doses of IL-
2. Four days later, cells were collected and stained for CD4, KJ126 (Ova specific TCR), CD25 and intracellular levels of GrB (A). The histograms show
levels of GrB and CD25 expression on gated CD4+/KJ126+ effectors generated with increasing doses of IL-2. B) The percent of maximum GrB
expression was calculated by dividing the GrB MFI in CD4 cells incubated with 1, 5 or 100 ng/ml IL-2 by the GrB MFI in CD4 cells incubated with
10 ng/ml as the control. Shown is the average +/2 SD of 3–4 separate experiments. C) Freshly isolated naive TCR tg CD4 cells, or CD4 effectors grown
in the presence of increasing IL-2 concentration were resuspended in lysis buffer as described. Cell lysate was run on a 7.5% polyacrylamide gel,
transferred to membrane and perforin protein detected with mouse anti-perforin antibody. A 66 kD band is shown for perforin (top panel) and b-
actin (bottom panel) is shown as a loading control. D) CD4 effectors were analyzed for their ability to lyse target cells by co-incubation with Ova
peptide pulsed A20 cells for 4 h at a 3:1 E:T ratio. Target cells were then stained with antibody to Annexin V as a marker of target cell killing. Percent
Annexin V positive cells in each group was determined after gating on CD4-negative A20 cells in the presence (open histograms) or absence (shaded
histograms) of Ova peptide. Representative histograms are shown with numbers indicating percent Annexin V+ A20 cells pulsed with peptide after
gating based on negative control (unpulsed A20 cells). Panel (E) shows the average +/2 SD of percent Annexin V positive cells at each dose of IL-2
from 3–4 independent experiments.
doi:10.1371/journal.pone.0089010.g001
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grown in IL-2 or in IL-2 and Jak3i and demonstrates that CD4

effectors generated in the presence of Jak3 inhibitor are markedly

inhibited in their ability to kill peptide pulsed targets compared to

CD4 effectors generated without inhibitor. Jak3 inhibitor does not

induce cell death in CD4 effectors as measured by Annexin V+

staining in the cytotoxicity assay (Fig. S1B). Thus, generation of

CD4 cytotoxicity requires phosphorylation and activation of Jak3

and STAT5.

IL-2Ra (CD25) Deficiency Impairs Differentiation of CD4 T
Cells into Cytolytic Effectors in vitro

Because IL-2, but not other common c chain cytokines, could

induce cytotoxicity in CD4 effectors we wanted to determine the

contribution of the high affinity IL-2R (IL-2Ra, CD25) in driving

the CD4 CTL phenotype. To assess the requirement for IL-2

receptor signaling, we generated CD4 effectors from wildtype

(WT) Ova specific TCR tg mice, Ova specific IL-2Ra knockout

(DO11.10/CD252/2) mice as well as CD25+/2 littermates. WT

CD4 effectors generated in the presence of 10 ng/ml IL-2 express

high levels of IL-2Ra while CD25+/2 CD4 effectors express half

the amount of IL-2Ra and CD252/2 cells do not express IL-2Ra
when activated (Fig. 4A). In agreement with previous results, WT

DO11.10 cells express GrB and demonstrate peptide specific

cytotoxicity (Fig. 4B and C). We also show that CD25 deficient

cells do not express GrB (Fig. 4B) or acquire efficient cytolytic

activity (Fig. 4C) when cultured in the presence of IL-2.

Accordingly, CD25+/2 cells exhibit half maximal expression of

GrB and display reduced cytotoxicity (Fig. 4B and C) when

compared to WT cells. Figure 4D shows GrB expression levels and

killing activity as a percent of wildtype, indicating the level of IL-

2Ra expression correlates with cytolytic potential. Prf expression

was also analyzed in WT and CD25+/2 CD4 effectors and shows

that CD25+/2 cells express less Prf compared to WT cells after

treatment with 10 ng/ml IL-2, however, addition of 100 ng/ml

IL-2 increases Prf expression in CD25+/2 cells similar to WT

(Fig. 4E). These results suggest the high affinity IL-2Ra is required

for CD4 CTL generation in vitro. In addition, cytotoxicity is

dependent on the amount of IL-2Ra present on CD4 cells (Fig. 4)

as well as the amount of IL-2 in the culture (Fig. 1, Fig. 4),

suggesting IL-2 signal strength impacts development of CD4

cytotoxicity.

CD25 Deficient CD4 T Cells are Impaired in Effector
Differentiation in vivo

Our previous studies demonstrated that cytolytic CD4 T cells

differentiate in vivo following infection with highly pathogenic IAV,

PR8 (H1N1). Influenza specific CD4 cells isolated from the lung,

but not the draining lymph node (DLN), at 7 days post infection

(dpi) expressed GrB and could lyse peptide coated targets directly

ex vivo in a Prf dependent manner [13]. However, the signals

required to direct the differentiation of naive CD4 cells into

cytolytic effectors in vivo have not been elucidated. Given the role

of IL-2 and IL-2Ra in the generation of cytolytic effectors in vitro,

we next wanted to determine the contribution of IL-2Ra (CD25)

in the generation of CD4 CTL in vivo in response to acute

influenza infection.

To address the requirement for IL-2 signaling, WT DO11.10,

DO11.10/CD25+/2 or DO11.10/CD252/2 CD4 T cells were

Figure 2. Sustained STAT5 phosphorylation correlates with GrB expression and cytotoxicity. CD4 effectors were cultured with Ova
pulsed APCs, 10 ng/ml IL-2, 10 ng/ml IL-7 or 25 ng/ml IL-15. At various time points, cells were collected and stained with antibodies to CD4, KJ126
and anti-phospho STAT5. Representative histograms showing the amount of phosphorylated STAT5 after gating on CD4/KJ126+ cells at 2 and 24 h is
shown (A). Panel B is the average +/2 SEM of 3–4 separate experiments of % STATp over time. CD4 effectors grown in IL-2, IL-7 and IL-15 for 4 days
were collected and analyzed for GrB expression by flow cytometry (C) or killing activity by the JAM assay. This experiment was repeated 4 times and
panel D is the average +/2 SD of lytic units on the left axis compared to MFI of GrB expression on the right axis demonstrating a high correlation
between GrB expression and killing activity.
doi:10.1371/journal.pone.0089010.g002
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adoptively transferred into normal BALB/c mice. Mice were

subsequently infected with a sublethal dose of IAV PR8 that

expresses Ova323-339 peptide (PR8/Ova) [35]. At 7 dpi, mice were

sacrificed and DLN and lungs were removed. Single cell

suspensions from these tissues were stained with anti-CD4 and

anti-KJ126 (DO11.10) antibodies to mark donor populations

(Fig. 5A) and total cell numbers were calculated (Fig. 5B). Given

the role of IL-2 in T cell growth, we were not surprised to find that

CD25 deficient cells did not expand well in the DLN (Fig. 5A and

5B). CD25 deficient cells also did not survive as well as WT cells in

the non-draining lymph node (NDLN) (Fig. 5A and 5B). No

significant differences were observed, however, between the

number of CD25+/2 CD4 cells and the WT CD4 cells in the

DLN (Fig. 5A–B), suggesting these cells were able to expand in

response to antigen to a similar degree. CD252/2 cell numbers in

the lung were greatly diminished, with an approximately 50-fold

decrease in the absolute number compared to WT (Fig. 5A–B). In

contrast, there was an approximately 2-fold difference in the

absolute number of CD25+/2 cells in the lung compared to WT,

however, this was not statistically significant (Fig. 5A–B). Thus,

CD25 deficiency impairs CD4 T cell numbers in the DLN and

lung during influenza infection.

We next looked for expression of GrB directly ex vivo (Fig. 5C)

and IFN-cproduction after restimulation with Ova peptide

(Fig. 5D) in donor populations of CD4 T cells. CD4 T cells

isolated from the lung but not the DLN at 7 dpi expressed GrB

(Fig. 5C). This was similar for donor and host populations (data

not shown). From in vitro data, we did not expect DO11.10/

CD252/2 cells to express GrB while DO11.10/CD25+/2 cells

would display an intermediate amount of GrB expression when

compared to WT and CD252/2 T cells. Unexpectedly, nearly

100% of the donor CD4 T cells in the lung expressed GrB,

regardless of their ability to respond to IL-2 (Fig. 5C). However,

significant differences in the mean fluorescence intensity (MFI) of

GrB were observed, where CD25+/2 T cells displayed interme-

diate expression of GrB and CD25 deficient cells expressed the

lowest amount of GrB (Fig. 5C and 5E). CD4 T cells were also

restimulated ex vivo with Ova peptide in order to assess the level of

IFN-cproduced. In the DLN, approximately 20–30% of donor

CD4 T cells secreted IFN-c following restimulation, which was

Figure 3. Inhibitors of the Jak3/STAT5 pathway block GrB expression and cytotoxicity. Naive CD4 DO11.10/IL-22/2 TCR tg cells were
incubated with peptide pulsed APC, 10 ng/ml IL-2 and various concentrations of chemical inhibitors that block phosphorylation of Jak3 or
dimerization of STAT5a and STAT5b. Four days later, CD4 effectors were analyzed for GrB expression by flow cytometry after gating on CD4+/KJ126+

cells (A). Panel B shows the percent of maximum GrB MFI in CD4 effectors treated with concentrations of inhibitors shown in panel A. Effectors
incubated with DMSO are shown as a diluent control for inhibitors. Shown is the average +/2 SD for 3 separate experiments. Jak3i at 400 nM and
STAT5i at 50 mM show statistically significant decreases in GrB MFI ({ p= .0006, *p = .0005). In C and D, CD4 effectors were generated as described
from naive CD4 TCR tg cells from 3 separate mice and 4 days later, co-incubated with peptide pulsed targets in a 4 h killing assay. Panel C shows
representative histograms of CD4 effectors incubated with IL-2 or IL-2 and Jak3i at 400 nM and Panel D is the average +/2 SD of 3 individual effector
preparations per group. Cytotoxicity by CD4 effectors treated with Jak3i is statistically lower than cytotoxicity by CD4 effectors generated with IL-2
alone (*p = 0.0014).
doi:10.1371/journal.pone.0089010.g003
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again independent of their ability to respond to IL-2. In the lung,

nearly 70% of WT DO11.10 CD4 T cells expressed IFN-c upon

restimulation, while an average of 55% of CD25+/2 and only 25%

of CD252/2 CD4 T cells expressed IFN-c (Fig. 5D and F).

Similarly, the MFI of IFN-c expression was significantly different

between the three groups of donor cells (data not shown). In

summary, these results indicate that CD25 is required in vivo for

optimal CD4 T cell numbers in the DLN and the lung.

Furthermore, maximum CD25 expression is required for maximal

GrB and IFN-c expression, but not for IL-2 expression (Fig. S2F).

High IL-2R Expression is Required for GrB and Th1
Functions, but not for Eomes Expression and
Degranulation

While GrB has been used as a marker for cytolytic potential in

CD4 effectors and is highly correlative with cytotoxicity [13], we

have observed that high GrB expression does not necessarily

indicate perforin mediated cytotoxicity ([13] and Workman, et al

in preparation). Therefore, we wanted to test whether differences

in IL-2Ra signaling led to differences in cytolytic activity in

response to IAV infection. Because WT and CD25+/2 CD4 cells

showed only a 2-fold difference in cell numbers in the lung, we

compared Ova specific responses in WT and CD25+/2 effectors,

but not CD252/2 effectors after PR8/Ova infection. In vivo

cytotoxicity assays [15,28,36] were initially employed to compare

killing activity between WT and CD25+/2 effectors but demon-

strated that CFSE labeled targets were lysed more efficiently in

mice given WT DO11.10 cells than in mice given CD25+/2 cells

(Fig. S3C). However, in this experiment, there was a much lower

frequency of CD25+/2 cells in the lung compared to WT cells (Fig.

S3A). Thus, it appeared that killing activity correlated with the

number of Ova specific cells in the lung rather than the expression

of cytolytic markers such as GrB. To analyze killing activity on a

per cell basis, we used the degranulation assay, marked by

appearance of CD107a/b on the cell surface of effector cells as

degranulation occurs after restimulation with peptide pulsed target

cells [11,14,24,26,37]. We also analyzed expression of NKG2A/

C/E [38,39] and intracellular expression of Eomesodermin [24–

26] as additional markers of cytolytic potential in CD4 effector

Figure 4. Expression of the high affinity IL-2R (CD25) is necessary for optimal CTL activity. Naive CD4 cells from DO11.10 (WT), DO11.10/
CD25+/2 and DO11.10/CD252/2 mice were cultured with Ova pulsed APC and IL-2 as described. Four days later, cells were collected and stained for
CD4/KJ126, CD25 (A) and intracellular levels of GrB (B). Representative histograms are shown in Panel A and B. In C) 4 day WT, CD25+/2 and CD252/2

effectors were collected and co-incubated with peptide coated A20 cells in a 4 h killing assay. Shown are representative histograms of percent
Annexin V positive cells of peptide pulsed A20, using unpulsed A20 as a negative control to set histogram gates. Panel D is the average +/2 SD of
GrB intensity in different effector populations compared to Annexin V+ target cell killing for each effector population over 4 independent
experiments. In each experiment, GrB MFI and Annexin V+ cells incubated with WT was used as 100% maximum value. E) Lysates of effectors
generated with 10 or 100 ng/ml IL-2 were run on SDS-PAGE gel as described and incubated with antibody to perforin. Levels of b-actin are shown as
a loading control.
doi:10.1371/journal.pone.0089010.g004
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cells. Figure 6A and 6C indicate that CD25+/2 CD4 cells migrate

to the lung at lower numbers than WT cells and demonstrate

lower levels of GrB expression (Fig. 6A and 6D). In addition,

CD25+/2 cells produced significantly lower levels of IFN-c upon

restimulation (Fig. 6B and 6F) as seen previously (Fig. 5F), and

demonstrated lower Tbet expression (Fig. 6A and 6E). Surpris-

ingly, NKG2A/C/E (Fig. 6A and 6G) and Eomes (Fig. 6A and

6H) expression was equivalent between WT and CD25+/2 CD4

cells. Further, the percent of DO11.10 cells degranulating, or

expressing CD107a/b, was similar regardless of CD25 expression

Figure 5. High affinity IL-2R is required for optimal GrB expression and IFN-c secretion in response to influenza infection. Ova
specific cells were transferred i. v. to BALB/c mice followed by infection with 5000 EID50 PR8/Ova. Seven dpi, mice were sacrificed, NDLN, DLN and
lungs isolated and stained with antibodies to CD4 and Ova specific TCR (KJ126). A) Shown are representative FACS plots and percentage of Ova
specific CD4 cells in NDLN (top) DLN (middle) and lung (bottom) samples. B) Total number of Ova specific CD4 cells were also calculated for each
organ based on percentages from (A) and total cell numbers (p = .0002). Total lung cells were stained with CD4, KJ126 and intracellular stained for
GrB directly ex vivo. Panel C shows a representative overlay histogram after gating on CD4+/KJ126+ cells and panel E shows the mean fluorescent
intensity (MFI) of GrB expression for all mice. Total cells in the DLN and lung were restimulated with Ova323-339 peptide followed by intracellular
staining for IFN-c (D and F). D) Shown are representative overlay histograms of % IFN-c cells in the DLN (left panel) or lung (right panel) after gating
on CD4+/KJ126+ cells. Panel F shows the percent IFN-c positive cells in the DLN (left panel) or lung (right panel) of 5 individual mice per group. The
bar represents the average of all 5 mice per group. *p is ,0.05 by student’s t test. { denotes p,.002 by student’s t test.
doi:10.1371/journal.pone.0089010.g005
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level (Fig. 6B and 6I). When the expression level of IFN-c (data not

shown) or CD107a/b (Fig. 6K) was measured by MFI, Th1

cytokine levels were decreased, but the amount of degranulation

was similar between WT and CD25+/2 cells (Fig. 6J). Thus, IL-2

signaling appears to be necessary for Th1 cell functions such as

IFN-c production, but dispensable for degranulation, NKG2A/

C/E and Eomes expression. In addition, high GrB expression is

more correlative with Th1 functions than ability to degranulate

and express Eomes.

Discussion

IL-2 is a pleotropic cytokine that plays a complex role in CD4

cell expansion, survival and CD4 T helper subset generation. For

example, IL-2 is absolutely required for Treg development [40].

IL-2 signaling is also necessary for effective Th1 development,

where IL-2 enhances expression of IL-12Rb2 and T-bet leading to

high IFN-c production [41]. At the same time, IL-2 can inhibit

Th17 formation by downregulating gp130 and IL-6R [41].

Further work investigating the role of IL-2 signaling in CD4 T

cells during IAV infection has shown that CD25 deficient CD4

cells differentiate more efficiently to the T follicular helper (Tfh)

phenotype and suggests strong IL-2 signaling negatively impacts

differentiation to Tfh [42]. Our previous work has shown that IL-2

positively regulates differentiation to a cytolytic phenotype in CD4

T cells [23]. These studies, however, did not address the amount of

IL-2 needed to drive cytotoxicity, or the role of IL-2 signaling in

driving CD4 CTL differentiation in vivo. Therefore, this paper set

out to determine the relative contribution of IL-2 signaling to the

development of CD4 CTL in vitro and in vivo in response to acute

viral infection.

In this report, we show that the minimum requirements to drive

GrB and killing activity in CD4 T cells are peptide pulsed APC

and IL-2 (Fig. 1). However, while GrB expression was maximal at

a relatively low dose of IL-2, high Prf expression required higher

doses of IL-2 (Fig. 1C and 1D). This is similar to reports

investigating the regulation of GrB and Prf expression in CD8 cells

where strong IL-2R signals increased STAT5 and Eomes binding

to the Prf promoter, thus enhancing Prf transcription [43]. In

contrast, GrB expression in CD8 cells activated in vitro was not

enhanced at higher IL-2 concentrations and was equally expressed

at low and high dose IL-2 [43], similar to what we have shown

here for CD4 effectors. Additionally, our data also indicate a role

for Jak3 and STAT5 signals in driving GrB and cytotoxicity

(Fig. 2). Although IL-15 can induce perforin expression in NK cells

[44] and CD8 cells [45], and during priming of CD8 T cells [46],

our results indicate that IL-15 induces only moderate upregulation

of GrB and cytotoxicity in CD4 cells after TCR stimulation

(Figure 2C and D). The contribution of Jak3 and STAT5 signaling

in driving GrB and killing was confirmed using selective inhibitors

of these kinases. Thus, strong IL-2 signals, acting through Jak3 and

STAT5 were necessary to induce GrB, Prf and cytotoxicity in

CD4 effectors. Because of the differential expression of IL-2 in the

DLN vs lung after influenza infection, we suggest that initial

signals through IL-2R and possibly IL-12R delivered upon antigen

recognition in the DLN are necessary to program early CD4 CTL

differentiation while inflammatory signals in the lung such as IL-6

(Workman, et al in preparation) and type I IFNs [27] enhance

perforin expression and killing. The intracellular Jak/STAT

signals that control enhanced CD4 CTL effector function have

yet to be determined in this system.

The role for IL-2 signaling in generation of CD4 CTL was

further supported in studies examining the contribution of the high

affinity IL-2 receptor. We show here that CD25 expression had a

positive impact on GrB and Prf expression as well as cytotoxicity

in vitro. Again, strength of IL-2 signaling was important in driving

Prf expression since CD25+/2 CD4 cells cultured in low dose IL-2

showed less Prf expression than WT CD4 cells, but the defect in

CD25 was overcome by high dose IL-2 (Fig. 4E).

We next tested the contribution of CD25 in the generation of

CD4 CTL in vivo in response to acute influenza infection. Our

results show that in vivo, CD25 deficiency impacts GrB expression

(Fig. 5C and E), IFN-csecretion in the lung (Fig. 5D and F), and

number of CD4 cells in the lung (Fig. 5A and B). It has been

demonstrated that IL-2 regulates many T cell trafficking genes

[47]. However, the lower number of CD252/2 CD4 cells in the

lung could be due to less expansion in the DLN (Fig. 5B) or less

survival overall since CD252/2 cells are also significantly

decreased in the NDLN (Fig. 5A). In any case, the work described

herein and our previous data [13] point to a role for the lung

microenvironment in supplying additional signals to drive

cytotoxicity. First, CD4 cells in the DLN do not express GrB or

demonstrate killing activity [13]; second, IL-2R deficiency did not

impact IL-2 and IFN-c production in the DLN (Fig. 5F, Fig. S2),

but did impact CD4 effector functions in the lung. Thus, we

hypothesize that CD4 CTL receive secondary signals in the lung

to drive GrB and killing activity. Indeed, it has been shown that

CD8 CTL require secondary signals from dendritic cells in the

lung for protective efficacy [48] and IL-15 presented in trans was

necessary for enhanced survival of CD8 CTL [49] during IAV

infection. Whether CD4 CTL require inflammatory cytokines

such as IL-6 in the lung, or interact with lung resident DCs that

may present IL-2 or IL-15 in trans [50] are future questions to be

answered.

While GrB has been used as a marker for cytolytic potential in

CD4 CTL, our preliminary data suggests that high GrB expression

does not always correlate with perforin-mediated cytotoxicity

(Workman et al., in preparation). Therefore, we also analyzed

expression of NKG2A/C/E and Eomes and measured degranu-

lation by the appearance of CD107a/b as additional markers of

cytolytic potential following influenza infection. These studies

demonstrate that the ability to degranulate and express NKG2A/

C/E and Eomes was independent of high IL-2R expression. The

percentage of cells expressing GrB was also independent of IL-2R

expression (Fig. 5C, 6H, Fig. S2). In contrast, the amount of GrB,

as measured by MFI, was dependent on IL-2Ra levels (Fig. 5E,

6E). Similarly, measures of Th1 differentiation, such as IFN-c
secretion and Tbet expression, were also dependent on IL-2Ra
(Fig. 5F, 6F, 6G). This is slightly different that what has been

observed in CD8 T cells. In the case of CD8 T cells, Eomes

expression was highly dependent on IL-2 in vitro [43]. Further

results showed that CD252/2 CD8 T cells exhibited lower lytic

ability, lower Prf expression by qPCR and lower levels of GrB and

KLRG1, but similar peptide specific IFN-c production [43]. Thus,

these results highlight the role of IL-2 in driving CD4 effector

functions in which IL-2R signaling plays a major role in Th1

differentiation but may be dispensable for CD4 CTL functions,

especially in the context of infection. Indeed, recent work by Hua

et al point to a role for type I IFN in driving full CD4 CTL activity

in response to influenza infection [27]. Our data suggests that IL-2

signals in the DLN may prime CD4 CTL for receiving additional

cytokine signals in the lung microenvironment for optimal perforin

expression and CTL activity. Preliminary data indicates that

higher pathogenicity IAV induces higher levels of IL-6 in the lung

microenvironment and influx of CD4 effectors with greater

cytolytic potential than lower pathogenicity IAV strains (Work-

man, et al, in preparation). IL-6 has been shown to enhance

perforin mediated cytolytic activity in CD8 cells [51], thus, this
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inflammatory mediator may also have direct effects on enhancing

perforin mediated cytotoxicity in lung resident CD4 CTL.

In summary, this work begins to delineate the signals required

for the differentiation of CD4 T cell effectors with cytolytic

potential. In vitro, IL-2 signaling via STAT5 activation was

required to induce GrB and cytotoxicity in CD4 effectors. Amount

of IL-2 and IL-2Ra levels regulated GrB and perforin expression

leading to maximal CD4 CTL differentiation in vitro. In vivo, high

IL-2Ra expression was necessary for maximal GrB expression and

Th1 effector functions in response to IAV infection. However,

inflammation induced by viral infection could overcome the

requirement for high CD25 expression in inducing NKG2A/C/E,

Figure 6. High IL-2R expression is required for GrB and Th1 functions, but not for cytolytic activity. Ova specific cells were transferred i.
v. to BALB/c mice followed by infection with 1000 EID50 PR8/Ova. Seven dpi, mice were sacrificed, lungs isolated and stained with antibodies to CD4
and KJ126, followed by staining with NKG2A/C/E and intracellular GrB, or intracellular Tbet and Eomes. A) Shown are representative FACS plots and
percentage of WT Ova specific CD4 cells (top) or CD25+/2 Ova specific CD4 cells (bottom). Also shown are representative 2 parameter histograms for
NKG2ACE and GrB after gating on CD4+/KJ126+ cells. B) Representative overlay histograms of Tbet (top) and Eomes (bottom) after gating on Ova
specific cells. The solid line represents expression in WT cells while the shaded histogram is expression in CD25+/2 cells. C) Lung cells were also
restimulated with Ova peptide or media alone for 4h in vitro followed by staining for CD4, KJ126, CD107a/b and IFN-c. Shown are 2 parameter
histograms for CD107a and IFN-c after gating on WT Ova specific cells (top) or CD25+/2 Ova specific cells (bottom) with or without (media) Ova
peptide. The absolute number of Ova specific cells in lungs (D) is shown. GrB MFI (E), percent Tbet+ (F) and percent IFN-c+ (G) after gating on Ova
specific cells are shown. Percent NKG2A/C/E and GrB double positive cells (H), percent Eomes+ (I), percent CD107a/b+ cells (J) and CD107a/b MFI (K)
are shown after gating on Ova specific cells. The { represents statistically significant differences where p,0.004 by student’s t-test.
doi:10.1371/journal.pone.0089010.g006
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Eomes and degranulation in antigen specific T cells, suggesting

that cytolytic potential and Th1 effector potential may be

differentially regulated. It is still unclear whether CD4 CTL

represent a terminally differentiated Th1 effector [7,9], comprise a

novel T helper subset [52], or differentiate in the same way as

CD8 CTL [53]. In tumor studies, high levels of costimulation with

OX-40/OX-40L [24], 4-1BB [25] or costimulation in conjunction

with lymphopenia [26] induce a subset of CD4 CTL that express

high levels of the T-box transcription factor, Eomes. Recent data

indicates that CD4 CTL generated during viral infection express

Blimp-1 and T-bet transcription factors, but not Eomes [27].

More work is necessary to determine whether anti-viral CD4 CTL

develop through a separate T helper pathway. As CD4 CTL have

been shown to be important in influenza, HIV and anti-tumor

responses, this information will be vital for inducing potent CD4

effectors with multifunctional properties against a variety of

diseases.

Materials and Methods

Mice
TCR tg mice in which CD4 cells recognize Ova323-339 on the

BALB/c background (DO11.10) as well as DO11.10 TCR tg mice

deficient in the ability to produce IL-2 (IL-22/2) or the IL-2Ra
subunit (CD252/2) were a generous gift from Dr. Abul Abbas

(UCSF) and used at 6–8 weeks of age. BALB/c By mice were

purchased from The Jackson Laboratory, Bar Harbor, ME and

used at 8–10 weeks of age.

Ethics Statement
These experiments were performed in accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. Our

protocol was approved by the Institutional Animal Care and Use

Committee of the University of Nebraska-Lincoln, protocol #695-

E on 6/24/2011. All efforts were made to minimize suffering of

animals.

Medium, Peptides, Cytokines and Virus
All cells were grown in RPMI 1640 media (Invitrogen,

Carlsbad, CA) containing 2 mM L-glutamine, 100 IU penicillin,

100 mg/ml streptomycin (all from Invitrogen) 10 mM HEPES

(Sigma, St. Louis, MO), 50 mM 2-mercaptoethanol (Sigma) and

8% fetal bovine serum (FBS) (Hyclone, Logan, UT). Ova

peptide323-339, ISQAVHAAHAEINEAGR was synthesized by

New England Peptide, Inc. (Gardner, MA). Influenza virus A/

Puerto Rico/8/34 (H1N1) expressing Ova323-339 peptide fragment

(PR8/Ova) [35] was a generous gift from Dr. Paul G. Thomas (St.

Jude Children’s Research Hospital, Memphis TN). Mouse IL-2

was purchased from PeproTech (Rocky Hill, NJ). Janus activating

kinase (Jak)-3 inhibitor (PF-956980), purchased from Sigma and

STAT5 inhibitor (N’-((4-Oxo-4H-chromen-3-yl)methylene) nico-

tinohydrazide, purchased from EMD Millipore Chemicals (Bill-

erica, MA) were used at the indicated concentrations.

Isolation of CD4 T Cells and in vitro Activation
CD4 effectors were generated in vitro as previously described

[23,28], with modifications listed below. Briefly, naive CD4 cells

were isolated from TCR tg mice using a positive selection protocol

with anti-CD4 beads (clone GK1.5) according to the manufac-

turer’s instructions (Miltenyi Biotech, Auburn CA). A20s (H-2d

expressing mouse B lymphoma cell line) were pulsed with Ova

peptide323-339 at a concentration of 0.5 mM and combined with

naive CD4 cells at a 1:1 ratio. For IL-2 dose response studies, IL-2

was added to culture medium at concentrations ranging from

1 ng/ml to 100 ng/ml. After 2 days in culture, an equal volume of

complete media containing the appropriate concentration of fresh

IL-2 was added to all cultures that were then incubated for an

additional 2 days.

On day 4, cultures were assayed for purity, activation and

polarization as described previously [23,28]. To assay for purity of

the resulting TCR tg effector populations, CD4 cells were stained

with PerCP labeled anti-CD4 (clone RMA-4.4) and FITC labeled

antibodies to KJ126 (DO11.10) and activation state of effector

populations was further assessed by staining cells with PE labeled

antibodies to CD62L (MEL-14), CD43 (1B11), CD27 (LG.3A10)

and CD25 (3C7) (all antibodies purchased from eBiosciences, San

Diego, CA). Following surface staining, cells were fixed in 4%

paraformaldehyde and incubated in saponin buffer (PBS plus 1%

FBS, 0.1% NaN3 and 0.25% saponin; Sigma-Aldrich) containing

APC labeled mouse anti-human GrB (Clone GB11, Invitrogen).

APC conjugated mouse IgG1 was used as an isotype control. Cells

were then analyzed using a Becton Dickinson FACS Caliber and

data processed using Flow Jo software (Treestar, San Carlos, CA).

Analysis of STAT5 Phosphorylation
To determine STAT5 activation in CD4 effectors, naive CD4

cells were incubated with peptide pulsed A20 cells and IL-2, IL-7

or IL-15. At various time points, cells were collected and stained

with anti-CD4, anti-TCR (KJ126) and anti-CD44, followed by

intracellular staining for phosphorylated STAT5 using anti-

STAT5 (pY694) from BDBiosciences (San Diego, CA) as

described in [54].

In vitro Cytotoxicity Assay
For flow cytometric killing assays, A20 target cells were loaded

with 5 uM Ova peptide for 1 hour prior to a 4 h co-incubation

with CD4 effectors at a 3:1 effector to target ratio. Following a 4 h

incubation at 37uC, cell death was assayed using the Annexin V

PE apoptosis detection kit (eBiosciences) as described by the

manufacturer. Peptide specific lysis was determined relative to the

spontaneous lysis control (CD4 effectors+targets without peptide).

In some experiments the JAM assay was used to determine cell

killing as previously described [23,28]. Lytic units were then

calculated from the JAM assay results as the number of

lymphocytes required to yield 30% lysis in a population of 106

cells [23].

SDS-PAGE and Western Blot
In vitro generated CD4 effectors were washed with phosphate-

buffered saline (PBS) and resuspended in RIPA buffer (Millipore,

Temecula, CA) at 16107 cells/100 uL. Cell lysate was incubated

on ice for 30 min and clarified by centrifugation at 14,000 rpm at

4uC for 15 min. Protein concentrations were quantified by the

Bradford assay. For sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS-PAGE), proteins were mixed with an equal

amount of 1x sample loading buffer (62.5 mM Tris-HCl [pH 6.8],

2% SDS, 50 mM dithiothreitol, 0.1% bromophenol blue, 10%

glycerol) and boiled for 5 min. Proteins were separated in a 7.5%

SDS-PAGE gel. After electrophoresis, proteins were transferred

onto a polyvinylidene difluoride membrane (Immobilon-P; Milli-

pore) and blocked for 2 h in 5% nonfat dry milk with Tris-buffered

saline–0.1% Tween 20 (TBS-T). Membranes were then incubated

with primary antibody overnight at 4uC. The anti-perforin

antibody clone CB5.4 (Abcam, Cambridge, MA) was diluted

1:1000 in the blocking solution. An antibody directed against b-

actin (Abcam) was used as a loading control. After 45 min of

washing with TBS-T, the blots were incubated with goat anti-rat
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(Abcam) or goat anti-rabbit (R&D Systems, Minneapolis MN)

HRP-conjugated IgG, which was diluted in blocking solution.

Following 1 hour incubation at room temperature, blots were

washed for 45 min with TBS-T, exposed to Amersham ECL

reagents, and autoradiography was performed.

Adoptive Transfer and Infection of Mice
16106 naı̈ve CD4 T cells (isolated as described above) were

adoptively transferred into normal BALB/c By mice via retro

orbital injection. Eighteen to 24 hours after CD4 T cell injection,

mice were infected intranasally with 1,000 or 5,000 EID50 of PR8/

Ova virus [35].

Isolation of Cell Populations for FACS Analysis of Donor
and Host Populations

PR8/Ova infected BALB/c mice were sacrificed at 7 days post

infection (dpi) and lungs perfused via the right ventricle of the

heart with PBS, minced and incubated with collagenase D

(2.5 mg/ml final concentration) at 37uC for 75 minutes to

dissociate lung tissue. Single cell suspensions were generated by

passing lung homogenate through a 70 mM mesh filter. Draining

lymph nodes (DLN) were dissociated through a 70 mM mesh filter

to generate single-cell suspensions. Single cell suspensions from

these tissues were stained with PerCP labeled anti-CD4 (clone

RMA-4.4) and FITC labeled anti-DO11.10 TCR (KJ126) for

30 min in FACS buffer at 4uC to mark donor cells. Lung cells

were subsequently fixed in 100 ml 4% paraformaldehyde and

stained for intracellular GrB using APC labeled mouse anti-human

GrB (GB11) in saponin buffer for 40 minutes at room temperature.

Cells from DLN or lung were also restimulated for 4 h with

peptide-pulsed A20 cells (2.5 mg/ml Ova peptide) as APCs.

10 mg/ml Brefeldin A (Sigma) was added for the final 2 h of

culture and maintained throughout the intracellular cytokine

staining procedure. Donor T cells were surface stained with FITC

labeled antibodies to KJ126 (DO11.10) and PerCP conjugated

anti-CD4 as described previously, fixed in 100 ml 4% paraformal-

dehyde, and stained in saponin buffer containing anti–IFN-c APC

(BD-Biosciences) and IL-2 PE. In some experiments, lung cells

were restimulated with Ova peptide pulsed or unpulsed A20 cells

in the presence of anti-CD107a-PE and anti-CD107b-PE for 4 h

at 37uC. Brefeldin A was added for the last 2 h in culture, followed

by intracellular staining for IFN-c as described. Lung cells

restimulated with CD8 specific NP peptide were used a positive

control for degranulation. Cells were then analyzed using a Becton

Dickinson FACS Caliber and data processed using Flow Jo

software (Treestar, San Carlos, CA).

Statistical Analyses
Statistical analyses were performed using Prism software.

Students two-tailed unpaired t-test was used for analysis of

statistical significance between experimental samples.

Supporting Information

Figure S1 Pharmacological inhibitors of the Jak/STAT
pathway do not inhibit CD25 expression or induce high
levels of cell death in CD4 effectors. Naive CD4 cells were

activated in vitro with peptide pulsed APC and IL-2 in the presence

or absence of inhibitors. A) Levels of CD25 expression in CD4

effectors analyzed 4 days after culture with STAT5 inhibitors.

These same effectors were analyzed for GrB expression as shown

in Figure 3A. B) Analysis of CD4 effector viability by Annexin V

staining after 4h in culture with peptide pulsed A20 target cells

after gating on CD4+ population. Effectors generated in the

presence of Jak3 inhibitor did not demonstrate increased

apoptosis, although CD4 effectors incubated with peptide pulsed

targets showed increased apoptosis. These same effectors were

analyzed for killing activity in Figure 3D.

(TIF)

Figure S2 CD4 T cells deficient in IL-2Ra show defects
in GrB and IFN-c, but not IL-2, production at 1000 EID50

PR8/Ova infection. Mice were adoptively transferred with

WT, CD25+/2 and CD252/2 Ova specific CD4 T cells as

described and subsequently infected with 1000 EID50 PR8/Ova i.

n. Seven days p. i., mice were sacrificed, lungs removed and cells

stained with antibodies to CD4 and Ova specific TCR (KJ126). A)

Shown are representative FACS plots and percentage of Ova

specific CD4 cells in lung samples. B) Total lung cells were stained

with CD4, KJ126 and intracellular stained for GrB directly ex vivo.

Panel B shows a representative overlay histogram after gating on

CD4+/KJ126+ cells and panel D shows the mean fluorescent

intensity (MFI) of GrB expression for all mice. C) Total number of

Ova specific CD4 cells was also calculated for the lung based on

percentages from (A) and total cell numbers (p..002). Total cells

in the lung were restimulated with Ova323-339 peptide followed by

intracellular staining for IFN-c (E) or IL-2 (F). Shown is the

average +/2 SD percent IFN-c positive cells (E) or percent IL-2

positive cells (F) in the lung of 5 individual mice per group. *p is ,

0.05 by student’s t test.

(TIF)

Figure S3 WT CD4 cells demonstrate enhanced killing
in vivo that correlates with frequency of cells in the
lung. WT or CD25+/2 DO11.10 were adoptively transferred to

BALB/c mice followed by infection with PR8/Ova virus. Seven

dpi, naive Ova323-339 pulsed CD19+ cells were labeled with 5 mM

CFSE and combined at a 1:1 ratio with unpulsed CD19+ cells

labeled with 0.5 mM CFSE and injected i. v. Eighteen hours after

target injection, mice were sacrificed, spleens were removed, red

cells were lysed and resuspended in FACS buffer. Cells were

analyzed with a BD Biosciences FACSCalibur, and data were

processed using FlowJo software (Tree Star). Percentage of specific

cytotoxicity was calculated as follows: 100– {((percentage of

peptide pulsed in transferred/percentage of unpulsed in trans-

ferred)/(percentage of peptide pulsed in naive/percentage of

unpulsed in naive))6100}. Panel A shows the percentage of Ova

specific cells in the DLN and lung 7 dpi while panel B shows the

level of GrB expression in Ova specific lung cells. Panel C is the

calculated % cytotoxicity after analysis of CFSE labeled targets in

the spleen.

(TIF)
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