
RESEARCH ARTICLE

Imidacloprid soil movement under

micro-sprinkler irrigation and soil-drench

applications to control Asian citrus psyllid

(ACP) and citrus leafminer (CLM)

Evelyn Fletcher1, Kelly T. Morgan2*, Jawwad A. Qureshi3, Jorge A. Leiva4, Peter Nkedi-

Kizza4

1 University of Florida (UF), Institute of Food and Agricultural Sciences (UF-IFAS), Putnam County Extension

Office, East Palatka, Florida, United States of America, 2 UF-IFAS Southwest Florida Research and

Education Center, Immokalee, Florida, United States of America, 3 UF-IFAS Indian River Research and

Education Center, Fort Pierce, Florida, United States of America, 4 UF-IFAS Soil and Water Science

Department, Gainesville, Florida, United States of America

* conserv@ufl.edu

Abstract

Imidacloprid (IM) is used to control the Asian Citrus Psyllid (ACP) and citrus leafminer

(CLM), which are related to the spread of huanglongbing (HLB or citrus greening) and citrus

canker diseases, respectively. In Florida citrus, imidacloprid is mainly soil-drenched around

the trees for proper root uptake and translocation into plant canopy to impact ACP and CLM.

The objective of this study was to determine the effect of imidacloprid rate, and irrigate

amount on concentration of imidacloprid in the soil following drench application to citrus

trees in three age classes. The plots were established at the Southwest Florida Research

and Education Center, Immokalee, using a randomized complete-block design for three age

classes of trees: one-year-old trees (B1), three to five-year-old trees (B2), and eight-year-

old trees (B3). The treatments were a combination of two rates each of imidacloprid (1D,

2D) and micro-sprinkling irrigation (1I, 2I). Imidacloprid and bromide (Br-) used as tracer

were applied simultaneously. Soil moisture and concentrations of imidacloprid and Br were

monitored using soil cores from hand held augers. Soil moisture content (θV) did not differ

under two irrigation rates at any given observation day or depth, except following heavy rain-

fall events. Br- was lost from the observation depths (0–45 cm) about two weeks after soil-

drench. Contrarily, imidacloprid persisted for a much longer time (4–8 weeks) at all soil

depths, regardless of treatment combinations. The higher retardation of imidacloprid was

related to the predominantly unsaturated conditions of the soil (which in turn reduced soil

hydraulic conductivities by orders of magnitude), the imidacloprid sorption on soil organic

matter, and the citrus root uptake.

Findings of this study are important for citrus growers coping with the citrus greening and

citrus canker diseases because they suggest that imidacloprid soil drenches can still be an

effective control measure of ACP and CLM, and the potential for imidacloprid leaching to

groundwater is minimal.
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Introduction

Imidacloprid (IM) is a systemic insecticide commonly used in home lawns, gardens, pets, and

many agricultural commodities such as citrus, tomatoes, grapes, potatoes, and lettuce, just to

name a few [1]. In Florida, imidacloprid use in citrus is common for the control of Asian citrus

psyllid (ACP) which vectors Candidatus Liberibacter asiaticus (CLas) putative pathogens of

“huanglongbing” (HLB) or citrus greening disease, as well as citrus leafminer (CLM) Phylloc-

nistis citrella Stainton (Lepidoptera: Gracillariidae) which exacerbates the spread of citrus can-

ker. [2,3,4]. HLB is the most devastating disease of citrus [4,5]. HLB originated in China [5,6],

and has spread to nearly all citrus producing areas of the world including the United States,

South America, Central America, South Africa, South Korea, and Brazil [7]. The disease was

first confirmed in Florida’s Miami-Dade County in 2005, and has spread as far north as Put-

nam County at the northern edge of the Florida citrus industry. By February of 2009, the dis-

ease had spread to 33 out of 64 Florida counties including nearly all commercial citrus

production areas [8].

Imidacloprid is a neonicotinoid - a synthetic derivative of nicotine - and in Florida citrus it

is most commonly applied on young, nonbearing citrus trees [9]. In Florida citrus, imidaclo-

prid is applied as soil-drench using an applicator metered to deliver 8–10 oz of formulated

solution per tree at the soil-rootstock interface [9]. Then, the irrigation system is activated to

allow the active ingredient’s infiltration into soil to a depth of about 5 to 10 cm. Imidacloprid

blocks the neural pathway in arthropods by stimulating the nicotinic acetylcholine receptors

in the nervous system [10], which makes it effective against insects and less toxic to fish or

mammals [11]. Imidacloprid acts systemically when soil-applied to plant roots, as it travels up

the xylem and throughout the plant to tissues such as the leaves and pollen [12, 13]. Its effec-

tiveness against ACP may last for 11 weeks after application [14]. The soil drench is conducted

because citrus trees have shallow root systems that are concentrated within the first 90 cm of

topsoil in the Florida Central Ridge soils (Entisols), and within 45 cm of topsoil in the south-

west Florida flatwoods soils such as Alfisols, Spodosols, and Entisols [15]. Moreover, about

75% of the citrus feeder roots are present in the first 30 cm of soil [16]. When CLas infects the

tree, the root biomass become less dense and more susceptible to diseases inhibiting water and

nutrients uptake and further weaken the tree [17].

Imidacloprid data on soil sorption coefficients normalized to the soil organic carbon con-

tent (KOC) range from 156 to 960, and its half-life (t1/2) extends from weeks to months [18,19].

Laboratory studies on imidacloprid soil sorption and degradation conducted by Leiva et al.

[20], as well as miscible displacement experiments have shown that imidacloprid is a weakly-

sorbed (KOC range 163–230) and persistent chemical (t1/2 range 1.0–2.6 years) during trans-

port in plants in sandy flatwoods soils of Florida [21]. Moreover, evidence of imidacloprid

leaching to groundwater at μg L-1 concentrations have been found in wells located at the Flor-

ida Central Ridge [22,23]. In general, soil-drenched systemic pesticides need to be evaluated in

the field according to formulation, application rates, and irrigation management. For instance,

imidacloprid has been found to have a positive relationship between application dosage and its

stream concentrations in Appalachian managed forests [24]. Also, imidacloprid tablet formu-

lations (rather than wettable powder) was found to improve uptake and control on the hem-

lock woolly adelgid and reduced leaching potential [25]. Drip-chemigation under plastic-

mulch have also shown a significant reduction on the leaching potential of imidacloprid at the

field level [26]. Alva et al. study in Candler fine sand showed the importance of the proper

placement of fertilizers and pesticide drench in citrus groves [27]. They found higher water

fluxes (and therefore higher leaching potential) below the citrus dripline of old-trees compare

to positions below the citrus canopy. More recently, both micro-sprinkling and drip irrigation
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have been shown to have a positive effect on water and nutrient uptake in citrus [28,29] and

could be a potential management strategy to enhance imidacloprid efficiency after the soil-

drench application.

Imidacloprid is an effective systemic insecticide for young non-bearing citrus trees.

Nonetheless, HLB affects citrus trees of all ages so it is important to estimate imidacloprid

soil concentrations as a function of time after application, and its availability for uptake

while monitoring and controlling ACP populations. Another key aspect of citrus (and imi-

dacloprid) management is that little is known about the effects of irrigation rates on the

potential leaching of soil-drenched organic chemicals. Therefore, the main objective of this

study was to measure imidacloprid concentrations as a function of time after the drench

application to increasingly larger soil areas (as citrus tree canopies increase in size with age)

in experimental citrus groves on Immokalee fine sand. The study analyzed the effect of

drench rates and micro-sprinkler irrigation on the overall field leaching pattern of imida-

cloprid in sandy profiles. This study was conducted during summer (rainy season) and

spring (dry season) and also generated data on plant tissue concentrations of imidacloprid

and ACP control under different drench and irrigation rates that will be discussed in a sepa-

rate paper.

We believe that information on imidacloprid fate in soil, as a function of time after soil-

drench application, will be useful for citrus managers and growers in Florida and other regions

to improve control of the HLB vector using most effective and environmentally conscious

approach. Our hypothesis was that imidacloprid would persist longer in soil when citrus trees

are subjected to lower irrigation rates and higher imidacloprid concentration during drench

application, without changing the frequency of irrigation. Another hypothesis was that, re-

gardless of the initial imidacloprid soil concentration immediately after application, keeping

soil moisture content below field capacity would increase imidacloprid retardation and there-

fore its persistence time in the citrus root zone. The longer soil persistence time would enhance

imidacloprid uptake by the citrus trees and control of both ACP and CLM.

Materials and methods

Location and soils

No permit or specific permission was required, because these studies did not involve endan-

gered or protected species. This study was conducted at the University of Florida, Institute of

Food and Agricultural Sciences (UF-IFAS) Southwest Florida Research and Education Center

(SWFREC), Immokalee (Lat. 26˚ 27.75’ N; Long. 81˚ 26.83’ W), where the dominant soil series

is Immokalee fine sand (IFS), which is a flatwoods Spodosol commonly found in south Florida

[30]. This soil series was formed from marine sedimentation, with slopes generally in the 0 to

2% range. The study soil taxonomy is sandy, siliceous, hyperthermic, Arenic Alaquods, and a

typical profile contains the following master horizons: A, E1, E2, Bh1, Bh2, and BC. This soil is

predominantly composed of deep layers of uncoated sand (E horizon) to a depth of approxi-

mately one meter, followed by a spodic layer or Bh horizon. During the rainy season (sum-

mer), the water table can be as high as 15 cm below the soil surface, and as deep as 150 cm

during the dry season (spring). IFS properties in our experimental blocks are summarized in

Table 1. The soil has sandy texture and low contents of both clay and organic carbon.

Experimental design and sampling

Experimental plots of ‘Hamlin’ orange trees (Citrus sinensis (L.) Osbeck) were established at

the SWFREC previously, as part of a larger plot for citrus research. The study was conducted

in a randomized complete-block design with 3 replications. Each block consisted of twelve
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trees of the same age: one-year-old trees (B1), three to five-year-old trees (B2), and eight-year-

old trees (B3). The treatments in each block had a factorial design: two drench rates of imida-

cloprid (factor 1) and two micro-sprinkling irrigation rates (factor 2). Each treatment combi-

nation was applied to three trees that were planted next to each other. The average planting

distance between trees and between rows (respectively) for B1 was 2.45 m by 5.50 m, for B2

was 3.05 m by 6.90 m, and for B3 was 4.50 m by 6.70 m. We measured the following variables

at three soil depths (0–15, 15–30, 30–45 cm), and as a function of time after the drench applica-

tion: soil moisture content (cm3 cm-3), imidacloprid soil concentration (μg cm-3), and the

tracer (Br-) soil concentrations (μg cm-3).

The irrigation system consisted of micro-sprinkling emitters that were located alongside

the tree-rows with each emitter located in between every other tree. On average, irrigation tim-

ing or frequency was 1.5 to 2 hours of irrigation, three times per week (Mondays, Wednesdays,

Fridays), which was adjusted depending on climatic conditions. Data in Fig 1 shows precipita-

tion and evapotranspiration [31] during our field experiments. Each micro-sprinkling emitter

had a circular area of 2.6 m in diameter that covered two trees in the planting line. Irrigation

water was applied at two different rates: 23 and 38 L h-1 (treatments 1I and 2I, respectively).

Each combination of irrigation (1I and 2I) and drench (1D and 2D) rates was replicated on

three trees, for a total of twelve trees per block (tree age class). All treatment combinations

were applied to each block (and the same individual trees) during three trials corresponding to

spring 2012, summer 2012 and spring 2013 growing seasons.

Background concentrations of imidacloprid in soils were measured to determine any imi-

dacloprid residues prior to our soil-drench applications, along with the initial soil moisture

content. Imidacloprid was soil-drenched by applying 250 mL of application solution within

the drip line of each tree using a motorized sprayer in B1 for all three trials. After application,

the trees were irrigated for 2 hours, as suggested by the label. In the second and third trials

(summer 2012 and spring 2013), the drench application volume per tree was adjusted to 750

mL (using the same concentration) to apply a larger mass of active ingredient and account for

the larger root biomass and tree canopy cover in B2 and B3. Imidacloprid soil-drench rates

were based on label recommended concentrations for Admire-Pro Systemic Protectant [32],

which is a concentrated liquid solution with 550 g L-1 of active ingredient. The label recom-

mended a maximum application per year between 508 and 1015 mL ha-1. Since, the total rate

is normally split into several applications per year, we determined that summer applications

Table 1. Selected soil physical and chemical properties in experimental blocks (B1, B2, B3).

Block Depth (cm) pH c Texture (%) SOC d (%) Ksat e (cm h−1) Bulk density (g cm−3)

Sand Silt Clay

B1 a 0–15 5.5 93.8 5.0 1.2 0.80 3.6 1.55

B1 15–30 5.8 97.2 2.7 0.1 0.19 1.2 1.64

B1 30–45 5.8 98.4 0.5 1.1 0.10 0.8 1.68

B2 & B3 b 0–15 5.6 98.0 1.2 0.8 0.30 16 1.55

B2 & B3 15–30 5.2 97.2 2.7 0.1 0.20 14 1.58

B2 & B3 30–45 5.8 95.0 2.5 2.5 0.24 13 1.55

a Data from Leiva et al. [15].
b Data from Kadyampakeni et al. [28].
c pH in water, soil:solution ratio of 1:2.
d Soil organic carbon.
e Saturated hydraulic conductivity

https://doi.org/10.1371/journal.pone.0192668.t001
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would have to be more concentrated because of the more intense rainfall and higher activity of

the ACP during the summer growing season. The application rates (1D & 2D) for Trial 1 were

254 and 508 mL ha-1, in March and April of 2012. Trial 2, 1D and 2D rates were 508 and 1015

mL ha-1, in May and June of 2012. Trial 3 was conducted in spring 2013 (March-April) using

the same drench rates for Trial 2.

The application tanks were also spiked with reagent grade NaBr (Sigma Aldrich) as a source

of Br- to use as tracer for water movement during the experiment, since it is a soluble anion

not conspicuously present in IFS. We used a concentration that incorporated approximately

one gram of Br- per tree at soil-drenching. Therefore, each block of trees (B1, B2, B3) received

Fig 1. Rainfall (bars), evapotranspiration or ET (step-line), and temperature data (⋯ maximum, - - - average, ―
minimum) during trial 1 (Day 1: March 7th, 2012), trial 2 (Day 1: May 10th, 2012), and trial 3 (Day 1: March 28th, 2013).

https://doi.org/10.1371/journal.pone.0192668.g001
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a 2 x 2 combination of treatments (drench rate and irrigation rate): 1D+1I (Treatment 1), 1D

+2I (Treatment 2); 2D+1I (Treatment 3); 2D+2I (Treatment 4). The Br- was only applied in

the 1D IM combinations.

Soil sampling and extractions

Soil samples were collected at three depths (0–15, 15–30, and 30–45 cm) from several loca-

tions within the tree canopy using a stainless-steel bucket auger (15 cm length by 5.08 cm

i.d.). The B1 soil samples were taken using a stainless-steel push probe (1.27 cm i.d.) to pre-

vent disrupting the roots of these small non-bearing trees. During sampling, care was taken

to clean the augers with nanopure-deionized water before sampling each location and

depth. Soil samples were stored in lined sample bags (Fisherbrand), transported in coolers

and immediately frozen at the field laboratory until extraction and analysis. The soil bulk

density (g cm-3) was measured with stainless-steel cores, and was used to convert from

gravimetric (g g-1) to volumetric measurements of water content (cm3 cm-3), Br- (g cm-3)

and IM (g cm-3).

Soil samples for imidacloprid extraction and analysis were thawed overnight at 4.4˚C in a

refrigerator. Soil water content was determined by taking subsamples from each bag and dry-

ing them in aluminum pans at 105˚C for 24 hours. Then, 20 g of moist soil sample were

weighed in a 50 mL polypropylene centrifuge tube, and 20 mL of extracting solution of metha-

nol and 0.01M CaCl2 (80:20) was added. The tubes were shaken for two hours [33] and left to

stand on laboratory benches for two hours for the soil particles to settle down. Centrifugation

was performed at 6000 rpm for 15 minutes if required. Samples were then filtered using What-

man 42 filter paper into 20 mL scintillation vials. The extracts for imidacloprid were frozen at

-12.2˚C until HPLC-UV analysis.

Br- soil samples were thawed in a refrigerator overnight before extraction. Soil moisture

content was measured as previously indicated. Then, 20 g of soil sample were weighed in a

50 mL polypropylene centrifuge tube, and 20 mL of HPLC grade water was added. The tubes

were shaken for 5 min at high speed in a reciprocating shaker. The tubes were left to stand for

two hours, and centrifuged at 6000 rpm for 15 minutes if needed. The supernatant extract was

filtered using Whatman 42 filter papers into 20 mL scintillation vials. Each vial contained

between 10 to 20 mL of extract and were stored in the refrigerator at 4.4˚C until analysis.

Analytical methods

Soil imidacloprid extracts were analyzed at the UF-IFAS Environmental Soil Physics Labo-

ratory, Soil and Water Sciences Department, Gainesville. The chromatographic conditions

were based on previous analytical studies of imidacloprid in soil and water matrixes using

HPLC-UV [33,34]. Analytical-grade standards for imidacloprid were obtained from Chem-

Service, Inc. (West Chester, PA). A 100 μg mL-1 standard stock solution was prepared in

methanol. Before each analysis, a matrix-matched calibration was built with the following

levels 0, 0.01, 0.05, 0.1, 0.5, 1.0, 10.0 and 15.0 μg mL-1 in 40:60 (methanol:0.01 M CaCl2)

using a serial dilution technique from the imidacloprid stock. The method detection limit

was 0.01 μg mL-1. The extracts were analyzed using an Infiniti-1260 HPLC-UV system (Agi-

lent Technologies, Hamburg), with a Supelcosil™ LC-18 (15 x 4.6 cm) column. After filtra-

tion, an aliquot of 2 mL of extract was transferred to HPLC vials for analysis. The injection

volume was 30 μL, and the flow rate was 1.0 mL min-1. The mobile phase consists of 60%

HPLC grade water and 40% methanol. The detection wavelength was set at 272 nm. Imida-

cloprid showed a symmetric peak with an average retention time of 3.8 min.

Imidacloprid movement in sandy soils
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Br- was analyzed at the UF-IFAS SWFREC, using a QuikChem1 method (Lachat Instru-

ments, method 30-135-21-1-A). The method is colorimetric and was performed in a flow-

through auto-analyzer. Br- in the extract was oxidized to bromine by Chloramine-T, and then

bromine is substituted on phenol red to produce bromophenol blue [35–37]. Sodium thiosul-

fate was added to reduce Cl- interference. The absorbance is measured continuously at 590

nm. The calibration range (0.1 to 10 μg Br- mL-1) was linear, and the method detection limit

was 5 ng Br- mL-1.

Statistical analysis

The data was analyzed using SigmaPlot 13.0 (SYSTAT, San Jose, California) using a nonpara-

metric procedure: the Kruskal-Wallis (KW) analysis of variance on ranks. The IM volumetric

concentrations, as well as the log10 and squared-root transforms showed non-normality (right

Fig 2. Soil moisture content (θv, cm3 cm-3) at selected sampling days after soil-drench application during spring

2012 for trial 1 (Day 1: March 7th, 2012). Grouped-vertical bars represent the 3 sampling depths (0–15, 15–30, 30–45

cm), with averages and standard error bars (n = 6). The horizontal bars represent the average field capacity for

Immokalee fine sand. B1: one-year-old trees; B2: 3 to 5-year-old trees; and B3: 8-year-old trees. Irrigation treatments:

1I = 23 L h-1; 2I = 38 L h-1.

https://doi.org/10.1371/journal.pone.0192668.g002
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skewed, and unequal variances), according to Shapiro-Wilk’s procedure. There were two com-

bined factors: (i) drench rate and (ii) irrigation rate. Our goal was to estimate the effect of the

resulting four combinations of soil-drench (1D, 2D) and irrigation (1I, 2I) on imidacloprid

volumetric concentrations at different depths and sampling times after the drench application.

The KW test was conducted for each sampling day by pooling all blocks and ranking all imida-

cloprid concentrations for each observation depth. When the KW test detected significant dif-

ferences between ranked concentrations of imidacloprid, pairwise multiple comparisons were

conducted using the Tukey procedure.

Results

Soil moisture and irrigation rates

Averages and standard errors (n = 6) for any given sampling day or depth were calculated

based on irrigation rate, without considering drench application rates (1D & 2D) for trial 1

Fig 3. Soil moisture content (θv, cm3 cm-3) at selected sampling days after soil-drench application during summer

2012 or trial 2 (Day 1: May 10th, 2012). Grouped-vertical bars represent the 3 sampling depths (0–15, 15–30, 30–45

cm), with averages and standard error bars (n = 6). The horizontal bars represent the average field capacity for

Immokalee fine sand. B1: one-year-old trees; B2: 3 to 5-years-old trees; and B3: 8-years-old trees. Irrigation treatments:

1I = 23 L h-1; 2I = 38 L h-1.

https://doi.org/10.1371/journal.pone.0192668.g003
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and trial 2 (spring 2012 and summer 2012) in Figs 2 and 3, respectively. In general, the soil

moisture content (θV) showed no important differences between the two irrigation treatments

at any given day or depth. For instance, during Trial 1 in B1-1I data (young trees, 23 L h-1) the

soil samples had an average θV of 0.07 in the 0–15 cm depth, 0.07 in the 15–30 cm depth, and

0.06 in the 30–45 cm depth. For the same group of trees (B1), the 2I irrigation treatment (38 L

h-1) had an average θv of 0.05 for all depths. The same trend was observed for the blocks of 3–5

years-old trees (B2) and the 6–8 years-old trees (B3).

Also, sampling was conducted several hours after irrigation events, allowing redistribution

of infiltration water between the observation depths. The only exception to this trend was the

evident spikes in θV for the 0–15 and 15–30 cm sampling depths observed during summer sea-

son or Trial 2 (Fig 2, panels B2 and B3), because of heavy rainfall events. Regardless of irriga-

tion treatment, θV was greater for the 0–15 and 15–30 cm depths, at most sampling times

where the moisture content was significantly higher than the field capacity for IFS, which is

estimated to be around a θV value of 0.10 cm3 cm-3 [38]. During our experiments, there was no

evidence of saturation (θv� 0.38 cm3 cm-3). Also, average θV for block B1 (young non-bearing

citrus trees) was significantly lower than blocks B2 and B3, at any given day or sampling depth.

Fig 4. Bromide concentrations detected (μg cm-3) after soil-drench application during trial 3 (spring 2013) at

sampling depths 0–15 cm (white bars), 15–30 cm (gray bars), and 30–45 cm (black bars) in 1 year-old trees (B1),

3–5 year-old trees (B2), and 8 year-old trees (B3).

https://doi.org/10.1371/journal.pone.0192668.g004
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This reduction in soil moisture content was evident during all sampling seasons and is typi-

cally because of increased surface evaporation.

Tracer concentrations after soil-drench

Tracer concentration from Trial 3 (Fig 4) explained the overall trend for the tracer during all

experimental trials conducted, which we assumed represent the wetting front after application.

Except for the data in B1 at one day after application (DAA), initial concentrations showed no

differences in Br- concentrations between irrigation rates 1I and 2I regardless of sampling time

and depth. Less than 0.1 μg Br- cm3 was observed at 0–15 cm 14 DAA, and less than 0.3 μg Br-

cm2 remained in the 15–30 cm and 30–45 cm depths. In the youngest trees (B1), about 13% of

Br- applied remained in the soil 17 DAA in the 23 L h-1 irrigation rate (1I), while about 35%

remains with 38 L h-1 irrigation rate (2I). In the 3-5-year-old trees (B2), 14% of Br- remained

in the 23 L h-1 irrigated trees, and 10% remains in the 38 L h-1 irrigated trees. The oldest trees

at 8 years-old (B3) showed 12.5% of Br- applied remaining 17 DAA with 23 L h-1 irrigation,

while 20% remained in the higher irrigation rate. Br- leached out of the 0–15 cm depth and

increased in concentration in the lower depths, particularly in 15–30 cm. There were no traces

of Br- at the soil surface (0–15 cm) by 11 DAA in the 38 L h-1 irrigation treatment, or by 17

DAA with the 23 L h-1 irrigation treatment in the youngest trees (B1). Therefore, the wetting

front of the initial application pulse (250 or 750 mL per tree) leached out of the 0–15 cm depth

about two weeks after application.

Imidacloprid concentrations after soil-drench

Imidacloprid was sorbed or retained by the soil matrix for a longer time compared to the Br-

tracer, which was attributed to the affinity or sorption onto the soil organic matter. This trend

was true regardless of the initial drench application rate and irrigation treatment, and was con-

sistent across sampling seasons. Imidacloprid soil concentrations for Trials 2 and 3 are shown

in Tables 2 and 3, respectively. In general, imidacloprid concentrations were higher in the 2D

treatments compared to 1D, especially during the first week after application. The results from

the Shapiro-Wilk test showed that the data did not satisfy the normality features required to

conduct parametric analysis of variance.

The lower imidacloprid concentrations observed in blocks B2 (3–5 years old tree) and B3 (8

years old tree) during trial 2 (Table 2) were attributed to the larger application area where imi-

dacloprid was soil-drenched. Also, larger trees have a significantly higher transpiration (and

water uptake) rates than smaller citrus trees, which would reduce imidacloprid concentration

in soil during the growing season. This was one of the main reasons that imidacloprid was

applied at higher rates during both trials 2 and 3 (Tables 2 and 3), to compensate for the larger

canopy volume and transpiration stream. For instance, in Trial 3 block B3 showed the largest

concentrations of imidacloprid at any given observation depth during our experiments.

During Trial 2 (summer 2012) differences in soil imidacloprid concentrations among the

four treatment combinations (drench rates by irrigation rates) were not statistically important

based upon the results of the KW test for most sampling times (Table 2, H statistics < 9.65, P

values ranging from 0.07 to 0.90). The only exception was during Day 11 where the 15–30 cm

data showed a significant difference between the 2D-1I and the 2D-2I treatments (Tukey’s

q = 4.24, P = 0.014). Furthermore, the larger variability in imidacloprid data added consider-

able noise for detecting differences between combinations of drench rates (1D, 2D) and irriga-

tion rates (1I, 2I). Neither log10- nor root-square-transformed data satisfied the required

assumptions of data normality. Nevertheless, the data trend showed a higher affinity or sorp-

tion of imidacloprid to the soil organic matter, which increased soil residence time compared
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Table 2. Imidacloprid average concentration (ng cm-3; n = 3) and standard deviations (in parenthesis) at three depths during trial 2 (summer 2012) for two soil-

drench application rates (1D, 2D) and two irrigation rates (1I, 2I) in blocks B1, B2, and B3. Kruskal-Wallis test results (for each day and depth) are included.

Block/Treatment Depth (cm) Day after application (DAA)

1 4 7 11 14 20 25

Mean Imidacloprid Concentration, ng cm-3 (standard deviation)

B1

1D-1I

0–15 1958 (392) 1102 (217) 331 (114) 1640 (135) 1207 (18) 1065 (249) 1065 (176)

15–30 326 (28) 776 (74) 350 (179) 210 (23) 218 (41) 208 (22) 587 (369)

30–45 365 (109) 237 (37) 235 (1) 201 (1) 199 (2) 209 (14) 222 (42)

B1

1D-2I

0–15 1638 (263) 1216 (580) 232 (13) 238 (89) 183 (3) 312 (117) 216 (55)

15–30 287 (69) 315 (25) 240 (19) 197 (1) 202 (9) 250 (23) 143 (43)

30–45 363 (82) 223 (40) 235 (1) 201 (1) 201 (3) 201 (1) 198 (1)

B1

2D-1I

0–15 3288 (876) 1330 (70) 1560 (87) 1965 (130) 1660 (155) 2030 (155) 1026 (260)

15–30 343 (28) 307 (26) 396 (116) 332 (89) 249 (36) 224 (48) 299 (129)

30–45 295 (28) 216 (30) 270 (38) 291 (83) 225 (42) 254 (44) 331 (2)

B1

2D-2I

0–15 5523 (2639) 1491 (308) 709 (280) 665 (50) 581 (231) 442 (113) 302 (23)

15–30 539 (176) 245 (50) 242 (21) 197 (2) 196 (1) 211 (16) 248 (19)

30–45 678 (277) 200 (1) 281 (75) 225 (22) 200 (2) 212 (20) 212 (23)

B2

1D-1I

0–15 353 (46) 291 (87) 260 (59) 219 (31) 221 (46) 193 (9) 572 (227)

15–30 246 (21) 201 (21) 249 (90) 231 (71) 189 (1) 229 (65) 433 (32)

30–45 262 (31) 191 (5) 195 (2) 187 (1) 186 (1) 185 (1) 179 (1)

B2

1D-2I

0–15 377 (87) 669 (87) 194 (13) 389 (36) 236 (46) 237 (83) 626 (87)

15–30 285 (25) 198 (8) 198 (12) 200 (13) 191 (1) 192 (1) 495 (157)

30–45 267 (7) 187 (1) 187 (8) 189 (1) 186 (1) 188 (2) 382 (50)

B2

2D-1I

0–15 1035 (222) 701 (19) 891 (258) 245 (53) 228 42) 324 (82) 527 (81)

15–30 287 (11) 192 (2) 188 (8) 194 (2) 189 (1) 190 (2) 318 (116)

30–45 264 (54) 194 (13) 232 (63) 186 (1) 185 (1) 191 (9) 194 (12)

B2

2D-2I

0–15 1062 (181) 197 (1) 196 (6) 264 (73) 211 (41) 244 (55) 594 (159)

15–30 335 (44) 239 (75) 229 (37) 199 (4) 219 (25) 240 (82) 713 (443)

30–45 243 (37) 186 (1) 227 (70) 187 (1) 185 (1) 186 (1) 371 (166)

B3

1D-1I

0–15 249 (50) 199 (10) 194 (4) 198 (9) 195 (8) 233 (52) 182 (2)

15–30 349 (115) 232 (34) 195 (11) 199 (5) 191 (5) 191 (2) 185 (2)

30–45 260 (48) 212 (37) 194 (7) 194 (3) 191 (4) 187 (1) 184 (5)

B3

1D-2I

0–15 423 (41) 197 (4) 201 (1) 198 (4) 203 (26) 254 (92) 188 (7)

15–30 351 (32) 213 (20) 194 (2) 195 (1) 192 (1) 193 (2) 188 (5)

30–45 227 (23) 185 (4) 188 (2) 191 (8) 189 (9) 186 (3) 182 (3)

B32D-1I 0–15 301 (154) 194 (20) 194 (8) 208 (23) 201 (20) 205 (18) 184 (2)

15–30 264 (35) 204 (16) 193 (7) 194 (3) 192 (3) 190 (1) 191 (5)

30–45 263 (89) 194 (15) 197 (23) 189 (4) 185 (2) 189 (7) 184 (4)

B3

2D-2I

0–15 491 (148) 324 (118) 269 (76) 191 (5) 215 (26) 197 (13) 184 (2)

15–30 260 (72) 191 (6) 194 (6) 218 (35) 194 (3) 189 (3) 189 (4)

30–45 256 (49) 219 (33) 217 (49) 188 (1) 186 (1) 190 (4) 185 (2)

Kruskal-Wallis Tests (H-statistic and corresponding P value)

Pooled

data

(n = 9; df = 3)

0–15 4.10 (0.25) 0.77 (0.86) 4.11 (0.25) 5.99 (0.11) 5.72 (0.13) 2.36 (0.50) 4.96 (0.18)

15–30 2.03 (0.57) 2.57 (0.46) 2.90 (0.41) 9.65 (0.02)+ 7.13 (0.07) 1.47 (0.69) 3.90 (0.27)

30–45 0.96 (0.81) 0.57 (0.90) 2.45 (0.49) 0.76 (0.86) 0.90 (0.83) 0.76 (0.86) 5.57 (0.14)

1D = 508 mL ha-1, 2D = 1015 mL ha-1, 1I = 23 L h-1; 2I = 38 L h-1. df: degrees of freedom for the KW-H.

+ KW test was significant. The differences in the median values among the treatments were greater than would be expected by chance.

https://doi.org/10.1371/journal.pone.0192668.t002
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Table 3. Imidacloprid average concentration (ng cm-3; n = 3) and standard deviations (in parenthesis) at three depths during trial 3 (spring 2013) for two soil-

drench application rates (1D, 2D) and two irrigation rates (1I, 2I) in blocks B1, B2, and B3. Kruskal-Wallis test results (for each day and depth) are included.

Block/Treatment Depth (cm) Days after application (DAA)

1 6 11 14 18 21

Mean Imidacloprid Concentration, ng cm-3 (standard deviation)

B1

1D-1I

0–15 1037 (434) 1033 (514) 987 (664) 492 (202) 900 (1) 372 (87)

15–30 1244 (11) 172 (2) 310 (1) 446 (143) 501 (103) 453 (347)

30–45 600 (120) 134 (139) 169 (1) 92 (10) 128 (51) 363 (271)

B1

1D-2I

0–15 328 (29) 695 (�) 499 (179) 397 (334) 511 (�) 471 (�)

15–30 303 (268) 555 (75) 243 (�) 568 (�) - -

30–45 77 (60) 413 (217) 187 (�) 84 (�) - 187 (�)

B1

2D-1I

0–15 556 (70) 715 (15) 668 (64) 543 (106) 459 (150) 543 (�)

15–30 380 (245) 480 (�) 465 (58) 64 (�) 146 (35) 232 (225)

30–45 782 (228) 558 (178) 276 (88) 213 (68) 122 (45) 116 (35)

B1

2D-2I

0–15 820 (59) 580 (155) 290 (75) - - 49 (�)

15–30 64 (27) 92 (7) 308 (203) 68 (�) 114 (�) -

30–45 114 (32) - 204 (51) - - -

B2

1D-1I

0–15 426 (117) 765 (457) 473 (158) 811 (327) 875 (405) 477 (�)

15–30 88 (44) 209 (29) - 280 (122) 195 (78) 164 (41)

30–45 40 (27) 165 (141) - 182 (99) 320 (�) 101 (71)

B2

1D-2I

0–15 419 (13) 625 (274) 261 (181) 305 (112) 411 (15) 293 (17)

15–30 53 (9) 89 (74) 171 (53) 292 (101) 323 (226) 54 (31)

30–45 35 (7) 184 (47) 102 (1) 149 (41) 110 (36) 71 (18)

B2

2D-1I

0–15 2217 (440) 1232 (44) 996 (77) 1418 (275) 1363 (76) 565 (136)

15–30 225 (172) 523 (356) 302 (235) 494 (81) 641 (94) 519 (153)

30–45 44 (10) 88 (32) 549 (233) 255 (44) 183 (58) 131 (26)

B2

2D-2I

0–15 1946 (166) 1229 (43) 896 (615) 646 (466) 677 (176) 480 (182)

15–30 148 (70) 312 (131) 133 (69) 349 (299) 317 (135) 209 (102)

30–45 93 (10) 204 (�) 92 (17) 270 (23) 237 (55) 160 (20)

B3

1D-1I

0–15 1117 (85) 1111 (83) 1042 (782) 853 (399) 773 (117) 103 (42)

15–30 170 (161) 357 (42) 206 (�) 547 (23) 428 (88) 356 (5)

30–45 48 (26) 194 (�) 93 (�) - - 279 (�)

B3

1D-2I

0–15 1287 (422) 449 (127) 385 (285) 525 (130) 190 (110) 188 (102)

15–30 93 (79) 357 (42) 137 (62) 571 (59) - 175 (145)

30–45 218 (12) 179 (30) 164 (31) 338 (275) 107 (8) 143 (�)

B3

2D-1I

0–15 3344 (239) 1857 (266) 2085 (765) 1329 (163) 1279 (330) 155 (49)

15–30 79 (66) 212 (93) - 161 (�) 82 (�) 191 (�)

30–45 394 (95) 73 (�) 275 (33) 328 (184) 106 (51) 400 (97)

B3

2D-2I

0–15 1010 (�) 1214 (77) 801 (28) 1684 (214) 1530 (366) 833 (723)

15–30 170 (161) 360 (7) 180 (�) 209 (147) 145 (�) 280 (�)

30–45 57 (28) 151 (63) 230 (157) 290 (157) 372 (85) 659 (64)

Kruskal-Wallis Tests (H-statistic and corresponding P value)

Pooled

data

(n = 9; df = 3)

0–15 11.2 (0.01)+ 15.0 (0.002)+ 12.5 (0.006)+ 8.14 (0.04)+ 13.3 (0.004)+ 2.61 (0.46)

15–30 3.36 (0.34) 1.36 (0.72) 2.43 (0.49) 6.35 (0.10) 10.1 (0.02)+ 11.3 (0.01)+

30–45 3.68 (0.30) 6.21 (0.10) 19.2 (0.001)+ 8.28 (0.04)+ 5.83 (0.12) 6.44 (0.09)

1D = 508 mL ha-1, 2D = 1015 mL ha-1, 1I = 23 L h-1; 2I = 38 L h-1. df: degrees of freedom for the KW-H.

- Soil concentration was below method limit of detection.

� Value reported was one-out-of-three replicates that were above the method limit of detection.

+ KW test was significant. The differences in the median values among the treatments were greater than would be expected by chance.

https://doi.org/10.1371/journal.pone.0192668.t003
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to the Br- tracer. Also, imidacloprid soil concentrations were consistently higher in the first

depth of observation (0–15 cm) during most of the sampling days.

Trial 3 (spring 2013) data and corresponding KW tests showed differences between the

ranked values of imidacloprid concentrations (Table 3), specially for the 0–15 cm observation

depth (Table 4). The Tukey procedure showed consistently higher concentrations in the 2D-1I

treatment (highest drench rate and lowest irrigation rate) compared to the 1D-2I treatment.

This trend was consistent for most sampling dates, except Day 21. The other pairwise compari-

sons were not statistically different between the treatments (q statistics and P values are not

shown). It may be that the lower variation in soil moisture contents during spring time (see

Fig 2) as well as the lower frequency of heavy rainfall events, yielded lower noise during soil

sampling allowing a better detection of the treatment effects on imidacloprid soil

concentrations.

Discussion

Unsaturated conditions during field trials

The similarity of θV between observation depths and irrigation rates were probably due to

the procedures followed for sampling and the homogeneous particle-size distribution of

these soils (Table 1). The coarse nature of IFS (sand fraction >94% w/w) and a porous frac-

tion mostly composed of macropores facilitated water infiltration and reduced lateral

redistribution or dispersivity [39]. It is also possible that older (and larger) citrus trees in

experimental blocks B2 and B3 intercepted more rainfall and/or micro-sprinkler irrigation

during our field experiments. This phenomenon has been documented by Alva et al. [27]

when they found that a larger tree canopy was one of the main factors explaining higher

soil water fluxes directly below the tree dripline, a condition that would increase moisture

content in these blocks.

Moreover, common weed control practices in Florida citrus rely upon herbicide application

around the tree planting line to keep the soil surface uncovered during most of the year. This con-

dition would certainly increase evaporation and reduce moisture content at the soil surface in B1.

Conversely, the B2 and B3 larger canopy cover reduced evaporation rates from the surface, which

was evident in the higher soil moisture content at most observation days and depths. The second

trial experienced higher values of soil moisture throughout the season due to the higher frequency

of rainfall during summer. The experimental site received 69 mm of rain during the span of the

second trial, while only 16 mm of rain occurred during the first trial (Fig 1). The θv for Trial 3

(data not shown) followed a similar trend as Trial 1, with the main difference in the larger rainfall

Table 4. Imidacloprid median concentrations (ng cm-3; n = 9) at 0–15 cm depth during trial 3 and Tukey multiple comparison results.

Treatment combination Days after drench application

Day 1 Day 6 Day 11 Day 14 Day 18

1D-1I 1020 1033 580 705 890

1D-2I 419 b 441 b 320 b 384 b 290 b

2D-1I 2217 a 1232 a 996 a 1150 a 1280 a

2D-2I 1780 1186 772 646 619

Tukey’s q � 2.9 5.2 4.9 4 4.8

(P value) (0.02) (0.01) (0.01) (0.02) (0.01)

1D = 508 mL ha-1, 2D = 1015 mL ha-1, 1I = 23 L h-1; 2I = 38 L h-1

� q statistic for the 1D-2I vs 2D-1I comparison.

https://doi.org/10.1371/journal.pone.0192668.t004
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events that increased θv to values larger than field capacity (<0.10 cm3 cm-3). Nonetheless, satu-

rated conditions during our sampling (θv� 0.38 cm3 cm-3) were never recorded.

Also, there were small differences in the average θv between the two irrigation rates (1I, 2I),

at any given depth or sampling day during Trials 1, 2, and 3. This trend was mainly attributed

to supplemental irrigation that replenished daily evapotranspiration (ET) without creating satu-

rated conditions nor saturated flow, which would consequently create a drastic decline in the

soil hydraulic conductivity. Using the model by van Genuchten, Leiva [21] showed that IFS

hydraulic conductivities (Kh) would be several orders of magnitude lower (<0.01 cm day-1)

than the Kh values at saturation (>100 cm day-1). Also, redistribution of soil water after micro-

sprinkler irrigation events allowed the soil moisture content to remain relatively constant

between irrigation treatments, or well below the field capacity value, which increases the retar-

dation factor of an adsorbed solute like imidacloprid almost three times.

Imidacloprid movement and retardation in Florida sandy soils

Previous research has shown that imidacloprid is sorbed by the soil organic matter of IFS

[20], which has a very low content compared to other agricultural soils. Based on the con-

vective-dispersive equation for water and solute transport, the prevalent conditions in our

field experiments increased the retardation factors of imidacloprid compared to the Br-

tracer which has a retardation of 1 and leached out of the root zone about 2 weeks after

application (Fig 4). On the contrary, imidacloprid was still present in the soil profile even

four to six weeks after application (Tables 2 and 3). In this regard, the best available mod-

els for Imidacloprid transport in IFS - the convective-dispersive model (CD-model) and

the one-site nonequilibrium model (OSNE) - were studied in detailed by Leiva et al. [40].

Shortly, both models describe the solute transport process, and the models’ dimensionless

form have a variable called the Retardation Factor (R), which is a function of Imidacloprid

soil sorption coefficient (KD, mL g-1) and the volumetric soil moisture (θv, in cm3 cm-3).

According to the following equation R = 1+[(KD ρb)/θ], R is inversely proportional to the

soil moisture content θv. The bulk density - ρb - is expressed in g cm-3. Therefore, keeping

the soil moisture content around or below the IFS field capacity value (θv < 10%)

increased the R value for imidacloprid by a factor of three compared to IFS when saturated

(θ�38%). In essence, the residence time of Imidacloprid in IFS was at least three times

longer than the tracer.

Moreover, trends in ACP mature and immature populations (data not shown) agreed with

longer retention times of imidacloprid in these soils, because of significant ACP population

reductions about two weeks after imidacloprid soil-drench, with ACP populations under sus-

tained control in soil-drenched plots for 4-to-8 weeks.

Results of this study are important for citrus growers currently affected by citrus greening.

Findings indicate that micro-sprinkler irrigation systems will keep the citrus rootzone unsatu-

rated at most times, significantly reducing the chance for imidacloprid to be lost by leaching to

groundwater, even in the sandy soils of Florida flatwoods. Moreover, imidacloprid has shown

to be very persistent in Immokalee Fine Sand [20, 21]. This should help increase its uptake by

the citrus roots and later availability in the plant tissues for effectiveness against target pests.
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