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Classifying indolent prostate cancer represents a significant clinical challenge.

We investigated whether integrating data from different omic platforms could

identify a biomarker panel with improved performance compared to individ-

ual platforms alone. DNA methylation, transcripts, protein and glycosylation

biomarkers were assessed in a single cohort of patients treated by radical

prostatectomy. Novel multiblock statistical data integration approaches were

used to deal with missing data and modelled via stepwise multinomial logistic

regression, or LASSO. After applying leave-one-out cross-validation to each

model, the probabilistic predictions of disease type for each individual panel

were aggregated to improve prediction accuracy using all available informa-

tion for a given patient. Through assessment of three performance parame-

ters of area under the curve (AUC) values, calibration and decision curve

analysis, the study identified an integrated biomarker panel which predicts

disease type with a high level of accuracy, with Multi AUC value of 0.91

(0.89, 0.94) and Ordinal C-Index (ORC) value of 0.94 (0.91, 0.96), which was

significantly improved compared to the values for the clinical panel alone of

0.67 (0.62, 0.72) Multi AUC and 0.72 (0.67, 0.78) ORC. Biomarker integra-

tion across different omic platforms significantly improves prediction accu-

racy. We provide a novel multiplatform approach for the analysis,

determination and performance assessment of novel panels which can be

applied to other diseases. With further refinement and validation, this panel

could form a tool to help inform appropriate treatment strategies impacting

on patient outcome in early stage prostate cancer.

Abbreviations

AUC, area under the curve; DRE, digital rectal examination; IGP, Integrated Geometric Pooling; ORC, Ordinal C-index; PCa, prostate cancer;

PCRC, Prostate Cancer Research Consortium; ROC, receiver operating characteristic.
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1. Introduction

Prostate cancer (PCa) is the leading noncutaneous

diagnosed cancer in men, but the majority of men die

with PCa rather than from it indicating that most

tumours are indolent not progressing during the

patient’s life span. These tumours based on the

National Comprehensive Cancer Network classifica-

tion system (Mohler et al., 2010) are characterised by

their clinical behaviour as indolent, slow-growing

tumours. However, PCa can also be aggressive and

fast-growing with lethal progression (Penney et al.,

2011). The ability to distinguish between indolent and

aggressive disease would improve on the selection of

appropriate treatments and impact on patients’ out-

comes and quality of life.

Tumour heterogeneity and multifocality of PCa rep-

resents one reason for the difficulty in distinguishing

these disease types (Oon et al., 2011). Single biomate-

rial-based tests such as Prolaris and Oncotype DX

prostate (Murphy et al., 2015) have shown some

improvements over existing models (Cooperberg et al.,

2013; Klein et al., 2014) but are dependent on sam-

pling the correct site. It is clear that additional fea-

tures, types of biomaterial to be sampled and methods

of tumour classification are needed to guide disease

management at the time of diagnosis and to prevent

over-treatment of indolent disease. We hypothesised

that multivariate models built from different omic data

(DNA methylation, transcriptomic, proteomic and gly-

comic) across different biomaterial (tissue, serum) may

lead to superior accuracy for PCa risk stratification

over individual disease features. Recent studies have

combined genomic instability and the micro-environ-

ment factor hypoxia, with clinical parameters to

improve prognostication in patients with localised dis-

ease to predict biochemical recurrence (Lalonde et al.,

2014).

Building on previous work of the Prostate Cancer

Research Consortium (PCRC), our study undertook

to prove the concept that integrating data from differ-

ent omic platforms assessed in different biomaterial

(serum and tissue) in a single cohort of patients with

prostate cancer could identify a panel of biomarkers

that could distinguish between indolent and aggressive

PCa with improved performance compared to individ-

ual platforms alone. We evaluated preselected panels

of biomarkers across a number of omic platforms

from a cohort of 158 patients with pathologically indo-

lent, significant and aggressive PCa. These panels

included DNA methylation, coding and noncoding

transcripts, protein and glycosylation biomarkers, and

our study undertook to identify an integrated panel

with the ability to distinguish between indolent loca-

lised disease and aggressive nonlocalised disease. We

developed a statistical approach for the integration of

multiple omic data sets, handling missing data in a

multiclass context and assessment of three perfor-

mance parameters of area under the curve (AUC) val-

ues, calibration and decision curve analysis (Klein

et al., 2014) which can be applied to other cancers and

diseases. Through this, the study yielded a panel of

DNA methylation, coding and noncoding transcripts,

protein and glycosylation biomarkers which predict

indolent localised disease with a high level of accuracy

which with further refinement could form a tool to

help to inform appropriate treatments impacting on

early patient outcome and quality of life.

2. Materials and methods

2.1. Clinical cohort and samples

2.1.1. Clinical cohort and patient characteristics

A cohort of 158 radical prostatectomy PCa patients

were recruited following written consent as part of the

Irish PCRC bioresource which were collected from

2004 to 2010 conforming to the standards set by the

Declaration of Helsinki from three tertiary referral

hospitals for newly diagnosed PCa with no prior treat-

ment and identified as suitable for surgical treatment.

Blood and tissue samples were collected in accordance

with standard operating procedures. Patients were

assigned based on their final histopathology applying

the Epstein criteria, to: indolent or low-risk disease

defined as organ confined Gleason score 6 with no

grade 4 (N = 46); significant or intermediate risk

defined as the presence of Gleason grade 4 but organ

confined (N = 56); and aggressive disease (N = 56)

defined as the presence of Gleason grade 4 and extra

prostatic disease. Patients were matched for age and

pre-operative PSA (Table S1 for patients’ clinical

details). Power analysis was conducted in accordance

with Ferriera and Zwinderman (2006).

Ethical approval was granted from the respective

ethics committees at the Mater Misericordiae Univer-

sity Hospital, St James Hospital and Beaumont

Hospital.

2.1.2. Tissue sample preparation

Tissue sections were reviewed by a pathologist who

identified areas of tumour for macrodissection which

was placed in an ‘RNase/DNase-free’ Eppendorf
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tube. DNA and total RNA were isolated using

RecoverAll Total Nucleic Acids Isolation kit

(Ambion, ThermoFisher Scientific, Waltham, MA,

USA) and quantified by Qubit fluorescence (Pro-

mega, Madison, WI, USA).

2.1.3. Serum samples

Pre-operative blood samples were collected under stan-

dard operating procedures and underwent no more

than two freeze/thaw cycles prior to analysis.

2.2. DNA methylation tissue analysis

DNA was subjected to sodium bisulphite conversion

using the EpiTectFast Bisulfite Modification kit (Qia-

gen, Manchester, UK). Briefly, DNA methylation at

17 differentially methylated regions identified from

previous unpublished studies in independent cohorts

was studied by quantitative methylation-specific PCR,

as previously described (Perry et al., 2013). For each

assay, oligonucleotides were designed to span multiple

CpG dinucleotides.

2.3. mRNA and miRNA tissue analysis

2.3.1. cDNA synthesis for mRNA expression analysis

cDNA was synthesised using the High Capacity cDNA

Reverse Transcription Kit (Applied Biosystems,

Dublin, Ireland).

2.3.2. cDNA synthesis for miRNA expression analysis

cDNA for use in miRNA expression analysis was syn-

thesised using the TaqMan© miRNA Reverse Tran-

scription Kit (Applied Biosystems). miRNA was

assessed by two platforms depending on the panel as

detailed below and are included in the two separate

Transcript 1 and Transcript 2 data blocks due to the

scaling of the data.

2.3.3. PCR ExiLENT SYBR� analysis

For the Transcript 1, panel miRNA profiling was per-

formed by Exiqon Services (Denmark). RNA was

reverse transcribed using the miRCURY LNATM

Universal RT miRNA PCR, Polyadenylation and

cDNA synthesis kit (Exiqon). cDNA was assayed using

ExiLENT SYBR� Green master mix and LNA pri-

mers. PCR amplification was performed in a LightCy-

cler� 480 Real-Time PCR System (Roche, Dublin,

Ireland).

2.3.4. Custom TaqMan� Low Density Arrays (TLDAs)

with pre-amplification

TaqMan� gene and miRNA low-density 384-well

arrays were performed according to manufacturer’s

guidelines for the assessment of Transcript 2 panel.

Briefly, arrays were designed with custom hybridised

probes using the Applied Biosystems protocol.

2.4. Proteomics Multiple Reaction Monitoring

(MRM) design and data acquisition of serum

analysis

All MRM assay design and data analysis was con-

ducted using SKYLINE software (V.2.5.0.6157; Univer-

sity of Washington, Seattle, WA, USA) using

previously reported criteria for proteotypic peptide

selection. MRM data were acquired using an Agilent

6460 mass spectrometer coupled to a ChipCube inter-

face with a C18 nano-LC Chip (Agilent G4240-62010)

(Agilent Technologies, Dublin, Ireland). MRM data

were analysed in Skyline using an external peptide

library database (www.peptideatlas.org) and with in-

house spectral libraries generated from previous serum

LS-MS/MS discovery experiments and from synthetic

peptides. Dried peptide samples were reconstituted,

and prior to analysis, serum samples were subjected to

trypsin digestion using a method adapted from the

FASP protocol (Wi�sniewski et al., 2009). The pre-ana-

lytical reproducibility of serum digestions was mea-

sured and shown to be highly reproducible by MRM

quantification of proteotypic peptides representing the

14 most abundant serum proteins which between them

comprise > 95% total serum protein. Patient samples

were analysed using liquid chromatography–mass spec-

trometry/mass spectrometry in randomised order in

batches. To establish the reproducibility of multiple

reaction monitoring (MRM) analysis across each batch

and between batches, a technical replicate sample was

used. Furthermore, evaluation of possible matrix

effects was analysed by experiments in which synthetic

peptides were spiked into serum samples (Rogatsky

and Stein, 2005). The chromatographic resolution and

signal/noise ratios for individual peptides revealed that

matrix effects did not interfere with peptide measure-

ments. Analysis reports for each batch of samples were

exported from Skyline for further evaluation of dis-

criminating candidate biomarkers.

2.5. N-Glycan serum analysis

Glycoprotein denaturation and N-glycan release was

carried out in a Hamilton Robotics Star Let liquid-
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handling platform as previously described (Royle

et al., 2008). 2-AB labelled N-glycans were separated

by ultra-performance liquid chromatography with fluo-

rescence detection on a Waters Acquity ultra-perfor-

mance liquid chromatography H-Class instrument with

a fluorescence detector and EMPOWER software (Waters,

Dublin, Ireland). The system was calibrated using an

external standard of hydrolysed and 2AB-labelled glu-

cose oligomers to create a dextran ladder, as described

previously by Royle et al. (2006).

2.6. Modelling and statistical analysis

2.6.1. Modelling

A multiblock approach was taken to integrate the vari-

ous data blocks into a single model by aggregating the

probabilistic outputs of each separately modelled

block. Under this analysis, the DNA methylation,

Transcript 1, Transcript 2, proteomics and glycosyla-

tion datasets are considered as separate blocks. Clini-

cal data are treated as a constituent block like any

other. It includes Age; PSA (recorded continuously

without thresholding); Gleason Score at biopsy (as an

ordinal factor with levels 6, 3 + 4, 4 + 3 and ≥ 8); and

digital rectal examination (DRE).

Rather than imputing the missing DRE values, DRE

was coded as missing (27%), abnormal (23%) or normal

(50%), with missing as the baseline reference category,

as proposed by Formann (2007), because we considered

that missingness of DRE may be informative. Further-

more, we avoid the sensitivity of imputation methods to

assumptions about the missingness mechanism. Other-

wise, all blocks contained full information.

Preprocessing is applied to the omic blocks: the

square-root transform on the methylation data, the log

transform on the Transcript 1 and Transcript 2 blocks,

the centred log ratio transformation on the glycosyla-

tion data, to standardise the composite peak heights

(Aitchison, 1982), and finally, for the proteomic data,

peptides with large amounts of undetected values are

recoded as simply present or absent.

Apart from the protein biomarkers, multinomial

logistic regression is used to model each individual

block against the indolent, significant and aggressive

disease types. This models the log-odds ratio of signifi-

cant disease and log-odds ratio of aggressive disease,

relative to the log-odds ratio of indolent disease as a

linear function of the biomarkers (Hastie et al., 2009).

The model equation (Equation S1) is used to estimate

the probability of indolent, significant and aggressive

disease for each patient, which are ultimately treated

as inputs to the final aggregate model.

For the proteomic block, quasi-perfect separation

occurred using logistic regression (Albert and Ander-

son, 1984); to deal with this and overcome issues of

overfitting, LASSO regularisation is used on this data

only (Hastie et al., 2009; Heinze and Scheraper, 2002).

This also achieves variable selection: the proteomic

panel is treated as those variables with non-negative

LASSO coefficients. For the logistic regression models

fitted to all other blocks, forward and backward step-

wise variable selection algorithms using Akaike Infor-

mation Criterion are employed to compare models

with different marker combinations (Hastie et al.,

2009); this penalises model complexity, in order to

refine each block to the most parsimonious biomarker

panels (Table 1).

Cross-validation was used to tune the LASSO pen-

alty for the proteomic panel. In addition, leave-one-

out cross-validation is used on each model after vari-

able selection to obtain accurate, unbiased predicted

probabilities for each patient.

2.6.2. Geometric pooling

The predicted probabilities are aggregated according

to the geometric pooling formula (*1) below (also see

Equation S2) where i denotes patient identity, t

denotes disease type and b denotes the biomarker

block, such that Bi represents the available blocks of

information for the ith patient, Xi,b represents data for

the ith patient from block b, and Mb represents the

model for the bth block of data. This constitutes an

ensemble system whereby individual biomarker panels

and their associated models vote according to a

weighted combination of their predicted probabilities.

Therefore, if biomarkers of different types measure dif-

ferent biological activities and perform well in doing

so, one model could help correctly classify a patient

that has been misclassified by another, by having a

stronger contribution in the aggregation process if it is

more confident in its classification. Conversely, mis-

classifications from individual models will have a

weaker contribution if they have low probability.
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The denominator here represents the unequal prior

prevalences of indolent, significant or aggressive dis-

ease in each block (Table 2), whereas the numerator

represents the posterior predicted probability of that

disease type according to each individual model. The

method therefore computes the probability of a partic-

ular disease type for a given patient, by multiplying

the predicted probabilities for that disease type, for

each model for which there exists information for that

patient, dividing by the unequal prior prevalences of

that disease type in each block, and then multiplying

this quantity by the geometric mean of the prevalences

in blocks which are available for that patient. Finally,

the outputted probabilities are normalised to uncover

the proportionality constant. A small zero-correction

term, e, is added to the numerator inside the product

to ensure that predicted probabilities of exactly zero

arising from any individual models do not subse-

quently dominate the product. This is set to the

inverse of the product of the sample size (n = 158) and

the number of disease types (indolent, significant and

aggressive) (|T| = 3), that is 1/474 (Kuncheva, 2004).

An advantage of this approach is that it handles the

missing data associated with clinical cohorts across

multiple biological sources. To make a prediction for

new patients, predicted probabilities can be obtained,

for the available blocks, using the model coefficients in

Table S5 (which are based on the full data in the

respective block) and a final classification can be pro-

duced by inputting these probabilities into the Geo-

metric Pooling formula above.

2.6.3. Performance assessment

Predictions are made using the Integrated Geometric

Pooling (IGP) model and LOOCV predicted probabili-

ties for all 158 patients, even if the absence of informa-

tion for a given patient from one or more blocks

means there are no predictions from the corresponding

input biomarker model(s) (Fig. S1). The cross-tabula-

tion of known disease type against the IGP model’s

predictions is given in Table S2: 74.68% of patients

are classified correctly. However, due to the ordinal

multiclass nature of the disease type definition, off-

diagonal corners should be considered more serious

misclassifications than other off-diagonal entries; for

Table 1. Variables retained in biomarker panel

Data set

No.

variables

No.

retained Biomarker panels

Clinical data 4 4 bxGS, Age, PSA, DRE

DNA methylation 17 4 GSTP1, CTNNA2., MAGPIE.1, LXN

Transcripts 1 12 4 miR.663a., miR.20a.5p, miR.221.3p, miR.143.3p

Transcripts 2 25 9 miR.330, miR.222, miR.101, miR.16.1, ALCAM, FAM49B, IGFBP3, AMACR, SFRP4

Proteomics 91 27 DYVSQFEGSALGK and LLDNWDSVTSTFSK (APA1), EPCVESLVSQYFQTVTDYGK (APOA2),

IDQNVEELK(APOA4), NPNLPPETVDSLK (APOD), WVQTLSEQVQEELLSSQVTQELR and

VQAAVGTSAAPVPSDNH (APOE), DLLLPWPDLR and VAAGAFQGLR (LRG1),

ITCAEEGWSPTPK and TGDIVEFVCK (CFHR2), SDLAVPSELALLK and AAIPSALDTNSSK

(LGALS3BP), SVLGQLGITK (SERPINA1), ADLSGITGAR (SERPINA3), NEDSLVfVQTDK (A2M),

DFDFVPPVVR (C3), TEHYEEQIEAFK (C9), ELGCGCAASGTPSGILYEPPAEK (CD5L),

EDSLEAGLPLQVR (CHGA), TTLSGAPCQPWASEATYR (F12), YGIDWASGR (FCN3),

LAAIAESGVER (PSMB6), ETLLQDFR (AMBP), WEAERPVYVQRP (AZGP1), NVPLPVIAELPPK

(IGHM), EAVPEPVLLSR (TGFB1)

Glycosylation 50 13 A2[3]G1S[3]1, A2G2S[3]1, A1, A2BG2S[3,6]2, A4F1G3S3, M6 D3, A2BG2S[6]1, A2[6]BG1,

A4G4S[3,3,3,3]4, FA2BG2, A3G3S[3,3,6]3, FA2[6]BG1, FA2G2S[3,6]2

Table includes within each dataset the number of variables measured, the number retained by the stepwise selection procedure, and the

final biomarker panels used by the individual logistic regression models. For the Proteomics variables, the peptide sequence is included with

the gene name in brackets. See Table S3 for further details on function and relevance to PCa.

Table 2. Patient numbers within each dataset

Data set

No. patients (%)

Indolent Significant Aggressive Total

Clinical data 46 (29.11) 56 (35.44) 56 (35.44) 158

DNA methylation 23 (21.90) 43 (40.95) 39 (37.14) 105

Transcripts 1 20 (21.98) 39 (42.86) 32 (35.16) 91

Transcripts 2 21 (18.26) 48 (41.74) 46 (40.00) 115

Proteomics 34 (29.31) 35 (30.17) 47 (40.52) 116

Glycosylation 41 (35.04) 41 (27.35) 44 (37.61) 117

Full information 10 (21.74) 17 (36.96) 19 (41.30) 46

Table shows the breakdown of sample sizes and indolent, signifi-

cant and aggressive disease type prevalence across the partially

overlapping datasets; the clinical cohort, each of the five datasets

and the subset of patients with full clinical and biomarker informa-

tion.
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instance, labelling an aggressive patient as although

they were indolent should be treated as a more serious

error than labelling their cancer significant. The classi-

fication problem must first be dichotomised into three

‘One vs. All’ binary problems – from indolent vs. not

indolent, to aggressive vs. not aggressive at the other

extreme – before familiar performance metrics can be

calculated.

After dichotomising, three crucial elements of per-

formance assessment can be considered in combina-

tion, in each binary scenario: Discriminant Ability (via

Receiver Operating Characteristic (ROC) Curve Anal-

ysis and AUC scores), Calibration (via Calibration

Curve Analysis) and Clinical Benefit (via Decision

Curve Analysis). Our previous studies have identified

the need to examine Calibration and Clinical Benefit,

rather than just ROC Curve Analysis (Boyce et al.,

2013). These strategies apply to the IGP model just as

they do to the individual models.

AUCs can be computed in each of the dichotomised

scenarios, and a variety of ways to summarise overall

multiclass discriminant ability, such as the Multiple

AUC and Ordinal C-Index (ORC) (Fawcett, 2006;

Van Calster et al., 2012). The former is a prevalence

weighted average of the One vs. All AUCs, while the

latter is an unweighted average of the pairwise One vs.

One AUCs.

Calibration Curves visualise the degree of concor-

dance between predicted probabilities and actual prob-

abilities. A perfect model is represented by the 45° line
(Boyce et al., 2013; Steyerberg, 2009). Decision Curves

show net benefit according to the model for each dis-

ease type as the threshold is varied, vis-�a-vis the strate-

gies of treating either all or no patients of that type as

though they were of that type. A model with clinical

utility would be above the horizontal Treat-None line

and to the right of the downward-sloping Treat-All

line (Boyce et al., 2013; Vickers and Elkin, 2006).

All work was performed using the statistical soft-

ware package R, version 3.1.3 (R Core Team, R Foun-

dation for Statistical Computing, Vienna, Austria)

using the packages glmnet, plyr, pROC and ROCR

(Friedman et al., 2010; Robin et al., 2011).

2.7. Gene ontology enrichment analysis

The list of features in Table S3 was subjected to gene

ontology enrichment analysis to identify biological

processes with reference to the progression of PCa

using PANTHER (PANTHERDB.org/tools/compare-

toreflist.jsp). As P-value estimates in Gene Ontology

enrichment analysis may be prone to some error, we

focused on those associations with P-values less than

0.01 and displaying a great than tenfold enrichment

and interpret the findings with some caution but

reviewed in the context of the biology identified from

other papers.

3. Results

3.1. Multi-omics data integration and model

resulted in biomarker panel that showed

significant improvement over current clinical

standard data in distinguishing indolent from

aggressive PCa

Using meticulously collected, in accordance with the

TRIPOD guideline, biomaterials from patients with

well annotated and rigorously documented clinical

data (Table S1), we undertook detailed omic analysis

to measure the expression of panels of biomarkers.

These included DNA methylation, coding and noncod-

ing transcripts, proteins and glycan biomarkers. The

resulting extensive and unique dataset comprising

patient clinical data and data from the five omic bio-

marker panels measured in tissue and serum samples

from a cohort of 158 patients was analysed by a range

of existing and novel statistical approaches.

The ROC curves with associated One vs. All AUC

values for these binary scenarios according to the indi-

vidual clinical and biomarker panel models are given

in Fig. 1 (also see Fig. S2). The individual models per-

formed well with regard to distinguishing indolent

from nonindolent and aggressive from nonaggressive

patients. Classification difficulty arises when distin-

guishing between the significant and nonsignificant

group; in particular, the AUC for the clinical model of

0.471 indicated low ability to distinguish significant

patients.

Although the AUC values from individual panels

(Fig. 1) are in line with previous publications, results

of the IGP model (Fig. 2) support the hypothesis that

multivariate models built from different omic data

sources across different biomaterial lead to superior

accuracy for prediction over single features.

The IGP model demonstrates excellent discriminant

ability, with improvements in the overall discriminant

metrics and AUCs for the binary scenarios. The model

also demonstrates excellent calibration, across the full

range of threshold probabilities for each scenario.

Likewise, the model also demonstrates positive net

clinical benefit across the range of threshold probabili-

ties (Fig. 2D).

ROC curves from our model compare favourably to

those produced by the clinical data alone, in Fig. 1.

Further improvements over the current clinical
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standard – in terms of sensitivity and specificity, and

AUCs – are demonstrated in Table 3, wherein the

lower limits of the IGP model’s 95% confidence inter-

vals for the AUC, Multi AUC and ORC metrics are

greater than the upper limits of those belonging to the

clinical model. This indicates statistically significant

improvements, which also holds true at the 99% confi-

dence level and represents a novel and central finding

of this study. Sensitivity and specificity were calculated

at the optimal thresholds, achieved at the point of the

corresponding ROC curve closest to the theoretical

perfect classifier.

The improvement over the current clinical standard

is clearly visible in the misclassification cobweb

(Fig. 3) representing a novel approach to display these

data. Given that the best model would be as close as

possible to the red centre, the smaller area covered by

the green polygon indicates that the IGP model per-

forms not only better than chance performance, but is

also a significant improvement over the clinical model.

There is a marked improvement in classification accu-

racy over the clinical model for patients observed to

be either significant or aggressive being predicted to be

indolent.

Crucially, the IGP model produces a probabilistic

classification for all patients using the available blocks

and overcomes the problem of missing data which rep-

resents another important finding of the paper and a

tool for future studies. We have also illustrated that

our geometric pooling methodology for model aggre-

gation demonstrates significant performance improve-

ment against analysing biomarkers – or indeed even

blocks of biomarkers – in isolation with a Multi AUC

value of 0.913 and ORC value of 0.939 (Table 3). This

represents a significant improvement on the corre-

sponding value for individual clinical and biomarker

block models demonstrated in Fig. 1, thereby proving

our initial concept that integrating multiple biomarkers

from different biological sources can better risk-stratify

PCa patients. Future research will endeavour to fur-

ther refine the biomarker panel into a more reduced

set of variables that still suffices to distinguish indo-

lent, significant and aggressive disease. Preliminary

analyses in this regard are shown in Table S6, detailing

the results in terms of Multi AUC and ORC obtained

by passing different subsets of blocks, pertaining to

clinical, serum-related and tissue-related variables, and

their combination, through the geometric pooling for-

mula. This table demonstrates that serum alone and

serum combined with the clinical variables have the

best prediction among the reduced models, with 40

and 44 variables, respectively, which represent the

most easily measurable markers to implement as they

are based on blood samples, compared to the sampling

error associated with biopsy tissue samples.

3.2. Gene ontology enrichment analysis showed

that biological processes involved in PCa

progression are mainly related to stress,

metabolic processes and immune response

The table of enriched gene ontology terms is shown in

Table S4; the gene ontology terms were filtered to have

a minimum of five genes in each entry and a P-value

of less than 0.01. The enrichment analysis showed bio-

logical processes including response to stress, meta-

bolic processes and immune responses. Table S3

includes the gene/protein name, UniProt identifier, a

short description of function for each of the DNA

methylation genes, mRNA and peptides found in the

panel and a column of their role in PCa and its pro-

gression. The suggested associations appear consistent

with the literature as discussed in the next section.

4. Discussion

Single omic biomarker panels for the identification of

indolent and aggressive PCa do exist but have limited

Table 3. Final Multi AUC and ORC values for the clinical and integrated geometric pooling model

Type Specificity Sensitivity AUCs Multi AUC ORC

Clinical Model

Indolent 0.92 (0.85, 0.97) 0.55 (0.43, 0.66) 0.78 (0.70, 0.85) 0.67 (0.62, 0.72) 0.72 (0.67, 0.78)

Significant 0.67 (0.58, 0.75) 0.45 (0.27, 0.64) 0.47 (0.37, 0.57)

Aggressive 0.79 (0.70, 0.86) 0.62 (0.48, 0.75) 0.78 (0.70, 0.86)

Integrated Geometric Pooling Model

Indolent 0.92 (0.84, 0.96) 0.84 (0.70, 0.93) 0.95 (0.91, 0.98) 0.91 (0.89, 0.94) 0.94 (0.91, 0.96)

Significant 0.82 (0.73, 0.89) 0.67 (0.53, 0.79) 0.87 (0.82, 0.92)

Aggressive 0.87 (0.79, 0.93) 0.75 (0.62, 0.86) 0.93 (0.89, 0.97)

The table describes the performance comparison of the clinical model against the IGP model, using various numeric metrics, with 95% Con-

fidence Intervals in parentheses.
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accuracy. These include the potential of DNA methy-

lation patterns specifically the DNA hypermethylation

MicroArray signature based on 46 genes which indi-

cates poorer survival (Goh et al., 2014). Our previous

research yielded 17 differentially methylated regions

for validation as potential prognostic markers in this

study (A. Perry, unpublished data). Blume-Jensen

et al. (2015) identified an eight biomarker proteomic

assay for intact tissue biopsies predictive of a favour-

able prostate pathology with an AUC value of 0.68.

Studies by Cima et al. (2011) have identified a five

serum glycoprotein biomarkers signatures for predict-

ing tissue PTEN status and diagnosis and grading that

predicted patients with a Gleason score < 7 or > 7

with an AUC value of 0.78. A urine proteomic peptide

panel assessed by targeted proteomics identified pro-

teins to predict pT3 disease before radical prostatec-

tomy with an AUC of 0.74 compared to PSA alone of

0.66 (Kim et al., 2016). Additional studies by our

group have identified a serum protein panel predictive

of increased stage of PCa with AUC 0.74 (Fan et al.,

2011). We further undertook unbiased protein

discovery proteomic experiments to identify 59 candi-

date serum proteins for evaluation which were supple-

mented with five proteins from the literature (S.R.

Pennington, unpublished data) assessed by MRM in

the current study. The ability to use miRNA and

mRNA targets to distinguish indolent vs. aggressive

disease has also received attention (Pickl et al., 2014).

A 12-gene tissue expression signature has previously

been described in association with aggressive histology

in PCa distinguishing low-grade from high-grade

tumours (Agell et al., 2012). For the transcriptomic

analysis of the current study, we identified a 33-gene

panel compiled by a comprehensive meta-analysis of

the literature. This list was refined using a bioinfor-

matic computational target validation approach, incor-

porating data from a pilot global miRNA expression

analysis performed by our collaborators in the Har-

vard School of Public Health. We have also investi-

gated whether differential glycosylation patterns could

distinguish between PCa and benign prostate hyper-

plasia (Saldova et al., 2011) using the high-throughput

N-glycan analysis techniques which demonstrated

Predicted: Indolent 
 Observed: Significant 

Predicted: Aggressive 
 Observed: Significant

Predicted: Aggressive 
 Observed: Indolent

Predicted: Significant 
 Observed: Indolent

Predicted: Significant 
 Observed: Aggressive

Predicted: Indolent 
 Observed: Aggressive

0 0.1 0.2 0.3 0.4 0.5

Fig. 3. Misclassification Cobweb generated using the misclassification ratios of the confusion ratio matrix, which is the column-normalised

version of the confusion matrix depicting misclassification errors for each of the six (|T|2 � |T|) types of classification error that can be made

for this |T| = 3-class problem, depicted by three 6-sided polygons, which maps the misclassification rates of the confusion ratio matrices

resulting from (a) random assignment, whereby a patient is equally likely to be indolent, significant or aggressive, with probability 1/|T| = 1/3

(dotted orange); (b) the clinical model (purple); and (c) the IGP model (green).
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increases in both core-fucosylated biantennary glycans

and a2-3-linked sialic acids in the serum N-glycome

(Royle et al., 2008).

In our current study, we hypothesised that multi-

variate models built from different omic data (DNA

methylation, coding and noncoding transcripts, pro-

teins and glycosylation) across different biomaterials

(tissue, serum) would lead to superior accuracy for

PCa aggressiveness prediction over singular disease

features justified by the fact that PCa is a heteroge-

neous disease. Our goal was to appropriately risk-stra-

tify patients and more accurately predict patients with

indolent or aggressive disease.

Integrating biomarkers of these different data types

as blocks in an aggregated multiblock classifier were

shown to add value over analysing them in isolation.

This addresses the need for effective predictive inte-

grated multivariate biomarker models in PCa which

has been done at the genomic level in breast cancer

(Seoane et al., 2014). Although the indolent, significant

and aggressive disease types are reasonably balanced

in terms of the prior prevalences (or relative frequen-

cies) across the full patient cohort, full overlap across

the various data blocks could not be achieved, mean-

ing that one or more blocks are missing for some

patients and that the prior prevalences within each

block are unequal. The geometric pooling methodol-

ogy used here overcomes the problem of missing infor-

mation blocks by basing the risk stratification on the

full range of available patient information.

Alternative methods for pooling biomarker panels

include the Bayesian method proposed by Ankerst

et al. (2012) were considered because they relax the

independence assumption used in the geometric pooling

approach. However, this approach makes distributional

assumptions within each biomarker panel which did

not hold for the panels in our study. Seoane et al.

(2014) used a number of biomarkers to improve the

prediction of breast cancer prognosis using a multiple

kernel support vector machine approach which requires

all biomarker panels to be available for each subject.

The approach taken in the current study facilitated

integrating the classification models developed for each

individual biomarkers and enabled classification for

subjects where biomarker blocks were missing. Thus,

predictions were feasible for all subjects in the study.

The classification of patients into indolent, signifi-

cant and aggressive disease types required the use of

classification performance measures that account for

the fact that the subjects fall into three classes and that

the classes are ordinal in nature. The ORC appropri-

ately accounts for the multiclass and ordinal nature of

PCa stratification. The interpretation of ORC in terms

of an average of the AUC values for the pairwise clas-

sifications yields a measure that can be similarly inter-

preted as AUC is for binary classification problems.

To evaluate the findings in line with the biology and

literature around the individual features, model coeffi-

cients (Table S5) were calculated and examined which

relate a feature to the probability of a patient exhibit-

ing cancer of a specific indolent, significant or aggres-

sive disease type as follows: A positive coefficient for a

given biomarker for a given disease type can be inter-

preted as a unit change in that same biomarker leading

to a change in the same direction of the predicted

probability of a patient having cancer of that disease

type, whereas negative coefficients cause the predicted

probability to move in the opposite direction. A num-

ber of important validations of the features were thus

identified. For instance, coefficients for the two indi-

vidual peptides DYVSQFEGSALGK and

LLDNWDSVTSTFSK, of �1.33E-06 and �8.03E-07,

respectively, are consistent with Apolipoprotein A-1

inverse association with PCa risk (Van Hemelrijck

et al., 2011). The zinc-alpha-2-glycoprotein, which has

a model coefficient value of �1.79E-01 for aggressive

disease, has been shown to be included in a panel of

five proteins for the prediction of Gleason 7 or higher

(Cima et al., 2011). Of the proteins that had two pep-

tides identified the majority had coefficients in agree-

ment between the two peptides; for example,

Apolipoprotein E had coefficients of �6.23E-05 and

�9.73E-06 for significant disease VQAAVGT-

SAAPVPSDNH and WVQTLSEQVQEELLSSQVT-

QELR, respectively. However, complement factor

H-related protein 2 had coefficients of 1.17E+00
and �3.71E-02 with opposing signs for

ITCAEEGWSPTPK and TGDIVEFVCK, respec-

tively; this could be due to the presence of multiple

proteoforms, post-translational modifications, varia-

tions in proteolytic digestion efficiencies or inaccurate

quantification as has previously been described by

Kim et al. (2016) and would require additional study.

Similar results were found for the Transcripts 1 and

2 panel members – miR.20a.5p has positive coefficient

values of 2.58 and 2.20 for significant and aggressive

disease, respectively, which is in line with increased tis-

sue expressed with Gleason score 7–10 compared to 6

(Pesta et al., 2010; Qiang et al., 2014). Likewise,

miR101 has positive coefficient values of 0.64 and 3.62

for significant and aggressive disease and a target gene

for EZH2 which is a key transcription factor in PCa

progression (Lin et al., 2016).

Our previous glycosylation study observed signifi-

cant decreases in triantennary trigalactosylated glycans

(including A3G3 and A3G3S3) and tetra-antennary
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tetrasialylated outer-arm-fucosylated glycans, and

increases in tetra-antennary tetrasialylated structures in

men with Gleason score 7 prostate tumours compared

with Gleason score 5 cancers (Saldova et al., 2011). In

the current study, we identified 13 glycosylation peaks

two of which were included in the panel – tetra-

antennary tetrasialylated structures and A3G3S3 which

also have corresponding coefficient values.

Further evaluation of the panel was carried out

using PANTHER gene ontology enrichment analysis

which identified differentially expressed features

involved in response to stress, metabolic processes and

immune responses. These changes in the biological

processes of indolent and aggressive disease are

reflected in the biomarkers of the selected panel. Previ-

ous studies by Lu et al. (2016) have identified changes

in stress-related signalling pathways in lethal and non-

lethal PCa and suggest that these pathways may be

dysregulated in the tumours of men who progress to

aggressive and lethal disease. McArdle has also shown

the presence of a systemic inflammatory response pre-

dicts poor long-term outcome in localised PCa (McAr-

dle et al., 2010) and our own previous work has

identified immune response biological pathways in

aggressive disease (Fan et al., 2011).

5. Conclusions

This study is the first to integrate data across clinical

data and five omic platforms assessed in tissue and

serum which has given a single panel for the classifica-

tion of indolent and aggressive disease with a signifi-

cantly improved AUC as compared to clinical features

alone or the individual omic AUC values. This clearly

supports the hypothesis that the different features

across the different platforms and biomaterials adds

value to the predictive model. The study identified

novel statistical approaches to deal with missing data

and integrate these with the assessment of three perfor-

mance parameters beyond AUC’s which can be

applied to other diseases. We present evidence to sup-

port some members of the panel in the progression of

PCa from indolent to aggressive disease and identify

new biomarkers for further study. Further cohorts will

be required to validate and refine the biomarkers to a

panel that can be implemented into clinical practice as

the current panel is assessed across a number of omic

platforms and is not practical for clinical utility.
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