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/e adaptive algorithm satisfies the present needs on technology for diagnosis biosignals as lung sound signals (LSSs) and accurate
techniques for the separation of heart sound signals (HSSs) and other background noise from LSS./is study investigates an improved
adaptive noise cancellation (ANC) based on normalized last-mean-square (NLMS) algorithm. /e parameters of ANC-NLMS al-
gorithm are the filter length (Lj) parameter, which is determined in 2n sequence of 2, 4, 8, 16, . . . , 2048, and the step size (μn), which is
automatically randomly identified using variable μn (VSS) optimization. Initially, the algorithm is subjected experimentally to identify
the optimal μn range that works with 11 Lj values as a specific case. /is case is used to study the improved performance of the
proposedmethod based on the signal-to-noise ratio andmean square error.Moreover, the performance is evaluated four times for four
μn values, each of whichwith all Lj to obtain the output SNRout matrix (4×11)./e improvement level is estimated and compared with
the SNRin prior to the application of the proposed algorithm and after SNRouts. /e proposed method achieves high-performance
ANC-NLMS algorithm by optimizing VSS when it is close to zero at determining Lj, at which the algorithm shows the capability to
separate HSS from LSS. Furthermore, the SNRout of normal LSS starts to improve at Lj of 64 and Lj limit of 1024. /e SNRout of
abnormal LSS starts from a Lj value of 512 to more than 2048 for all determined μn. Results revealed that the SNRout of the abnormal
LSS is small (negative value), whereas that in the normal LSS is large (reaches a positive value). Finally, the designed ANC-NLMS
algorithm can separate HSS from LSS./is algorithm can also achieve a good performance by optimizing VSS at the determined 11 Lj

values. Additionally, the steps of the proposed method and the obtained SNRout may be used to classify LSS by using a computer.

1. Introduction

Lung sound signals (LSSs) exhibit nonperiodicity and low
frequency; these signals also contain symptoms of many
diseases and interfere with frequency components (50–
2500Hz) with heart sound signal (HSS) frequency in the range
of 20–600Hz [1]. Furthermore, the interference between LSS
and HSS is high due to the nearby positions and physiological
recording points of the two signal sources. /erefore, the
keeping symptoms on LSS overlap and the increase in diffi-
culty of separatingHSS and other noise fromLSS./ey require
modern and highly accurate tools for filtering and separation.
/e adaptive filter (AF) satisfies the LSS purification re-
quirements, and it is an effective tool used to filter LSS from

other interference signals or noises. /e adaptive noise can-
celler (ANC) used in this study is a type of AF.

Many works have widely investigated the filtering and
separation of LSS by using the ANC or the adaptive line
enhancement (ALE) with the last-mean-square (LMS) and
normalized last-mean-square (NLMS) algorithms [2–7].
NLMS algorithm can be used to separate HSS from LSS [3, 4]
because it can deal with two signals recorded in real time. In
general, previous studies have focused on the main pa-
rameters of AF, including the filter length (L), constant step
size (μn), filter type (such as ALE or ANC), and algorithm
(such as NLMS or LMS) to obtain improved AF perfor-
mance. However, these parameters and combination of
techniques have been used with several limitations.

Hindawi
Journal of Healthcare Engineering
Volume 2018, Article ID 9732762, 10 pages
https://doi.org/10.1155/2018/9732762

mailto:noman_qaed@yahoo.com
http://orcid.org/0000-0002-2532-7443
https://doi.org/10.1155/2018/9732762


/e effect and estimating performance of the designed
method were studied using power spectrum density (PSD),
which is based on monitoring the concentration of an av-
erage power frequency. /e PSD graphic shows the com-
parison before and after signal separation [4–6]. A few
studies have also investigated the effects of separating dif-
ferent biosignals from noises, such as LSS, ECG, and
myoelectric signals, on the signal-to-noise ratio (SNR) at
specified requirement outputs [3, 8–11].

/e present study evaluates the estimation performance of
ANC based on NLMS algorithm to separate HSS from con-
taminated LSS on the SNR and the behavior of mean square
error (MSE). Moreover, the improvement in performance level
is studied under four values of the optimal variable μn (VSS)
and 11 determined Lj values in the following 2n sequence:
j � 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048. /erefore, the
performance for one separation is processed 44 times
(4μn ×11), that is, the SNR is calculated to obtain 4×11 matrix
of the output SNRout values. Such combination of the proposed
algorithm overcomes the limitations of previous studies in
addition to the following: the use of NLMS algorithm instead of
LMS algorithmbecause LMS algorithm cannot be adoptedwith
two long signals and the use of ANC instead of ALE. /e VSS
initially is studied to identify the optimal range that can work
with 11 Lj./e level of performance improvement is estimated
by comparing the SNR before and after applying the proposed
method. /e proposed method is carried out and processed
using a code programon theMATLABplatform./e proposed
method can deal with large data, process repeatedly according
to the number of the Lj values, and calculate the SNRout values.

Results revealed the ability of the designed ANC-NLMS
algorithm to separate HSS from LSS successfully and showed
the increasing performance with increasing Lj value. /e
improved SNR of the normal and abnormal LSSs is par-
ticularly achieved at the Lj range of 64–1024 and 512–2048,
respectively, at the determined μn. /e comparison of SNRin
with the obtained matrix of the SNRout aids in exploring the
existence of distinguishable characteristics between normal
and abnormal LSSs, which can be used in computerized LSS
classification.

2. Materials and Methods

2.1. Materials. Required signals of heart and lung sounds
used for experiments are obtained from the laboratory of the
Biomedical Engineering Department at University of Sci-
ence and Technology, Yemen. LSS and HSS are recorded
using two-channel electronic stethoscopes and stored in wav
format [4]. Both signals are recorded with sampling fre-
quency of 44100Hz. HSS recording is carried out on the
down anterior region of the chest./eHSS used in this study
is normal, which consists of the first heart sound (S1) and
murmurs (shown in Figure 1).

/e lung sound auscultation is performed on the left
down posterior and right anterior regions of the chest. /e
lung sounds considered in this study are described in Table 1.

2.2. ANC Algorithm Architecture. /e present study in-
vestigates on the performance of the combination of ANC

with NLMS to separate HSS from LSS. /e NLMS is more
stable than the LMS in terms of dealing with more than one
signal in real-time applications; the NLMS algorithm also
displays higher and faster rate of convergence than that of
LMS [12]. According to the stated abilities, NLMS algorithm
is used in this case study. /e original input of ANC is used
for contaminated LSS, and the reference input is used for the
noise HSS. Figure 2 illustrates the main components of
ANC-NLMS algorithm architecture.

/e inputs of ANC-NLMS represent two wave files, each
of which is recorded by an individual channel. /e original
signal Xi(n) is contaminated by the reference signal hi(n)
during the recording process.

/e original input signal Xi(n) can be described as
follows:

Xi(n) � di(n) + hi0(n), (1)

where di(n) is the desired pure lung sound (LSS), hi0(n) is
the interfered HSS in Xi(n) that represents noise, and i is
a corresponding order number of the signal.

(i) /e reference input signal, that is, hi(n), is assumed
almost correlated with hi0(n).

/e filter output Yi(n) is defined as follows:

Yi(n) � 􏽘

L−1

k�0
wk(n)∗X(n− k)

� w
T
(n)x(n) (estimate of d(n)),

(2)

where Lj is the filter length, and j is the value determined
from the 2n sequence of 2, 4, 8, 16, 32, 64, 128, 256, 512,1024,
2048, at which the designed algorithm performance is ex-
amined. Additionally, k is a number of iteration,x(n) �[x(n)·

x(n− 1) . . . x(n− L− 1)]T is the input vector of time delayed
input values, and w(n) � [w0(n) · w1(n− 1) . . . wL−1(n)]T

is the weight vector at the time n that can be minimized, as
shown in

‖w(n)‖
2

� ‖w(n + 1) · · · w(n)‖
2
. (3)

(ii) /e μn value for the input vector is calculated as
follows:
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Figure 1: Heart sound signal.
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μn �
α

β + Xn

����
����
2, (4)

where β is a small positive constant used to avoid division by
zero when the input vector Xn is zero. /us, the problem on
obtaining a gradient noise amplification in tap weights is
solved. Furthermore, α is the adaptation positive constant
that is commonly less than 1 (0< α< 1) [12, 13].

2.3. NLMS Optimization. NLMS optimization is a principal
method for minimal disturbance presented in [13], where
the error signal ei(n) is defined as the difference between the
desired signal and the filter output in (2). Hence, the error is
minimized in magnitude and rearranged as follows:

ei(n) � di(n)−Yi(n) � di(n)−w
T
(n + 1)x(n). (5)

/e NLMS algorithm recursion obtains the constrained
optimization criterion. /e tap weight is as follows:

w(n + 1) � w(n) + α
x(n)

β + x(n)2
× e(n). (6)

NLMS algorithm is an indication of the minimal dis-
turbance among iterations [13, 14]. Table 2 summarizes the
NLMS algorithm.

2.4. NLMS μn. /e μn parameter should be optimized to
ensure the reliability of the designed algorithm [15] at 11 Lj

values (determined previously) as a case study. /e optimal
μn is obtained through the following steps. First, most ideal
VSS is randomly searched. Results from the first step are
used in the second step. Such results include the imple-
mentation and automation of the algorithmwork. Both steps
are described in further detail in the following paragraphs.

(i) First step: random search for the most ideal
possible μn

μn presents two main parameters, namely, α and β,
which can affect the overall performance of the al-
gorithm. /is aspect is the motivation for the VSS

approaches, that is, two parameters (α and β) will be
controlled to satisfy the required performance. /e
experiments are carried out with consideration of the
following:

(a) /e adaptation constant α is changed within the
range of 0< α< 1, and the small positive constant
β is changed within the range 0.1–0.009 [12].

(b) /e VSS is studied within the range of 0-1 at the
determined Lj value.

(c) /e influence on the overall performance is
monitored on the minimization of MSE, SNRout
behavior, and algorithm output graphics.

(ii) Second step: auto-optimum VSS
/e proposed idea here is a modified method from
pseudorandom number generator μn for NLMS al-
gorithm [16]. /e main parameters α and β are
changed randomly into variable value from random
numbers of distribution from 0 to 1 at each iteration
time. μn is obtained within a fixed optimal range of
0≥ μn � 0.1, which is explored experimentally from
the first step. /e proposed idea is implemented, as
shown in Table 3; it achieves the optimum solution of
NLMS in Section 2.3.

2.5. Performance Analysis

2.5.1. MSE. MSE is a performance function of AF, and its
target is the low MSE value for it to achieve a proper per-
formance [13]. /erefore, the values and graph of this

Table 1: Lung sound data.

N Name Type of sound Status Recording position SNRin(db)

1 LSN1 Vesicular Normal Posterior: left, low −8.65
2 LSA2 Crackles Abnormal Posterior: left, middle −14.4
3 LSN3 Bronchial Normal Chest: right, up −3.93
4 LSA4 Wheeze Abnormal Posterior: left, middle −15.9
5 LSN5 Broncho-vesicular Normal Posterior: left up −7.78
6 LSA6 Crackles Abnormal Posterior: right, low −53.8

+

hi(n)

e(n) Output

ANC–NLMS
y(n)

Heart
sounds

–

Reference signal

∑Lung
sound

Original signal, Xi(n) = d(n) + h0(n)

Figure 2: ANC-NLMS algorithm architecture.

Table 2: Summary of the NLMS algorithm.

Input: Tap-weight vector, w(n),
Input vector, x(n), and desired output, d(n)

Output: Filter output, y(n), tap-weight vector update, w(n+ 1)
1. Filtering output signal: y(n) � wT(n)x(n)

2. Error estimation: e(n) � d(n)−y(n)

3. Tap weight and step size parameters adaptation: w(n + 1) � w(n) + α(x(n)/β + x(n)2) × e(n)
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quantity are essential to evaluate the performance of the AF.
/e formula for MSE is given by the following equation:

MSE(n) � E e
2
(n)􏽮 􏽯, (7)

where E[·] denotes the statistical expectation, and e is the
estimated error of AF. /e MSE is calculated for the evo-
lution of AF performance during searching for the optimal
VSS, as shown in Table 4.

2.5.2. SNR Evaluation. SNR is used as a metric to estimate
the performance of the proposed method, and it is defined as
the ratio of the amount of signal to the amount of noise [17].
In the present study, SNR is calculated before and after
applying the ANC-NLMS algorithm to compare their values
for the same signals at the determining condition. /e input
SNR (SNRin) of the recording signal is measured in am-
plitudes; thus, SNRin must be squared to be proportional to
power, as expressed in (8) [18, 19].

SNRin(dB) � 10 log 10
E Xi(n)􏼂 􏼃

2

E hi(n)􏼂 􏼃
2 , (8)

where Xi(n) is the original signal defined in (1) and con-
sidered the signal, hi(n) is the reference signal and considered
the noise, and i refers to the same number of pair signals.
Moreover, E(·) denotes operations in calculating the ex-
pectation calculation in the time domain. According to the
proposed method, (8) is suitable for SNR calculation because
hi(n) is correlated with existing noise (h0(n)) in Xi(n).

/e output SNRout value after applying ANC-NLMS is
given by the following equation:

SNRout µn·Lj( 􏼁
(dB) � 10 log 10

E Yi(n)􏼂 􏼃
2

E e0i (n)􏼂 􏼃
2 , (9)

where Yi(n) is the output (pure LSS) of ANC-NLMS and
considered the signal, and e0i (n) is the estimated error (noise
measurement) of ANC-NLMS and considered the noise. /e
higher output SNR (SNRout) than that of SNRin indicates the
pureness of the obtained LSS and success of the noise removal
and consequently improves the performance of ANC-NLMS.
/e improvement level is estimated as follows:

SNRimro.(dB) � SNRout − SNRin. (10)

2.5.3. Output Graphics. Visual graphics are used as metrics
in observing the change in input and output graphics. /ese
graphics will illustrate the input signals (original and ref-
erence) in two windows and two other windows for output
signals (pure LSS and estimated error). Accordingly, the
change can be easily observed.

/e experiment is carried out using MATLAB platform,
in which an algorithm code is designed to obtain the main
output signals, their graphic matrix (SNRout) (11) SNRin, and
other input parameters.

SNRout􏼂 􏼃
μn(1),ℓj�2

SNRout􏼂 􏼃
μn(1),ℓj�4

SNRout􏼂 􏼃
μn(1),ℓj�8

· · · SNRout􏼂 􏼃
μn(1),ℓj�2048

SNRout􏼂 􏼃
μn(2),ℓj�2

SNRout􏼂 􏼃
μn(2),ℓj�4

SNRout􏼂 􏼃
μn(2),ℓj�8

· · · SNRout􏼂 􏼃
μn(2),ℓj�2048

SNRout􏼂 􏼃
μn(3),ℓj�2

SNRout􏼂 􏼃
μn(3),ℓj�4

SNRout􏼂 􏼃
μn(3),ℓj�8

· · · SNRout􏼂 􏼃
μn(3),ℓj�2048

SNRout􏼂 􏼃
μn(4),ℓj�2

SNRout􏼂 􏼃
μn(4),ℓj�8

SNRout􏼂 􏼃
μn(4),ℓj�8

· · · SNRout􏼂 􏼃
μn(4),ℓj�2048

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

SNRout is used as one of metrics for the improvement of AF
performance during searching for the optimal VSS. /e
obtained SNR is shown in Table 5.

2.6. Experiment Procedures. /e experiment procedures are
summarized as follows:

(i) Create the coding program.
(ii) Unite the frequency sampling (8000Hz).
(iii) /e maximum duration of studied signal is 3.5 s,

that is, one completed breathing cycle, which is
equal to 28000 samples.

Table 3: Summary of optimum ANC-NLMS algorithm for HSS
cancellation.
For time index, n� 1, 2,. . ., L filter length L (number of iteration)
and j� [2, 4, 8,. . ., 2048]

Input

/e number of L value (j),
N (1, . . . , 4) the number of step size

Tap-weight vector, w(n),
Input vector, x(n)

Desired output, d(n)
Alpha� rand(1, N)
Beta� rand(1, N)

Output Filter output, y(n)
Tap-weight vector update, w(n+ 1)

1. Filtering y(n) � wT(n)x(n)

2. Error estimation e(n) � d(n)−y(n)

3. Step size
calculation

For i� 0 : L− 1
For j� 0: N− 1

m(j)�mu/(x(n)^2 + be)
If m(j)>mu max
m(j)�mu max
If m(j)<mu min
m(j)�mu min

End
End

4. Tap weight and
step size
parameters
adaptation

w(n + 1) � w(n) + μ(x(n)/β + x(n)2) × e(n)

Table 4: Calculated MSE during searching for the optimal VSS.

# µ
MSE

L� 4 16 64 128 256 1024
1 0.6 0.00003 Inf NaN NaN NaN NaN
2 0.2 0.00210 0.00679 NaN NaN NaN NaN
3 0.1 0.00329 0.00329 Inf NaN NaN NaN
4 0.09 0.00336 0.00590 2052.75 Inf NaN NaN
5 0.041 0.00347 0.00500 0.00490 0.00864 Inf NaN
6 0.011 0.00291 0.00155 0.00865 0.00423 0.00475 0.01501
7 0.009 0.00278 0.00028 0.00150 0.00371 0.00413 0.01327
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(iv) Experimentally identify the optimal μn range as
stated in Section 2.5.

(v) Procedure is performed with μ1 for each Lj value
(i.e., 11 times according to the j values) to calculate
and obtain the SNRout 11 times at each Lj value.

(vi) /e procedure is repeated similarly with each μn

value, that is, four values within the determined
optimal μn value, to obtain 44 total processing for
signal at (μn · Lj), where j� 2, 4, 8, 16, . . . , 2048.
/erefore, SNRout is calculated 44 times and updated
with each μni to obtain the matrix shown in (11).

(vii) /e experiment is carried out on MATLAB platform,
in which an algorithm code is designed to obtain the
main output signals and performance analysis tools.

3. Results

To obtain reliable results during all procedures, including the
searching for the optimal VSS, the number of samples and Lj

were considered because of their effects on the performance
of the designed algorithm.

Figure 3 shows the MSE of μn with a value of 0.06, which
displays faster convergence rate than those of others. Addi-
tionally, the AF became steady after approximately 200 it-
erations at steady state error of approximately −24 dB. /e
other MSE tools needed a long time to converge and be-
came steady after approximately 400 iterations at steady
state errors of approximately −26 dB for μn � 0.033 and
−25.5 dB for μn � 0.028 and 0.0085. /us, the steady state
errors were small.

Figure 4 illustrates the results for large VSS that results in
unstable performance and unsatisfied results. According to
the comparison between Figures 3 and 4, the performance
was good when VSS was small and close to zero. /e same
conclusion was observed in the changes in MSE and SNRout
values; they improved gradually with decreasing μn and
when they became close to zero, as shown in Tables 4 and 5.

Searching for the optimal VSS identified the VSS optimal
range of 0≥ μn � 0.1. /us, the designed algorithm lost its

Table 5: A sample of searching the optimal µn for the designed algorithm (SNRin �−7.78).

# µ
SNRout (dB)

L� 4 8 16 32 64 128 256 512 1024 2048
1 0.8 −5.3 −3.4 −1.8 −0.4 2.1 0.0 NaN NaN NaN NaN
2 0.6 −6.1 −4.1 −2.4 −0.9 1.4 0.0 NaN NaN NaN NaN
3 0.35 −8.0 −5.7 −3.8 −2.2 −0.1 3.0 0.0 NaN NaN NaN
4 0.26 −9.1 −6.6 −4.6 −2.9 −0.9 2.3 6.3 NaN NaN NaN
5 0.178 −10.7 −8.0 −5.7 −3.9 −2.0 1.1 5.5 7.5 NaN NaN
6 0.09 −13.5 −10.7 −8.1 −5.8 −3.9 −0.9 3.6 6.4 7.6 NaN
7 0.0797 −13.9 −11.1 −8.4 −6.2 −4.2 −1.2 3.3 6.2 7.5 0.0
8 0.0088 −24.5 −20.9 −17.6 −14.6 −11.8 −8.8 −5.0 −1.4 1.6 3.8
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Figure 3: MSE performance of the NLMS for various optimal μn values and when L� 64.
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stability when μn was used without the identified range, as
shown in Tables 4 and 5 and Figures 3 and 4.

Figures 5(a)–5(c) display that the maximum amplitude
of input signal (Figure 5(a)) is 0.18, the maximum amplitude
of the error signal is approximately 0.0015 (Figure 5(c)), and
themaximumamplitude of square error is 0.00004 (Figure 5(b)).
/is result showed an increase in the algorithm number of
computation windows and minimization of error, as well
as MSE, which is considered a function of NLMS perfor-
mance. /erefore, NLMS optimization achieved minimal
disturbance, and the designed algorithm accurately adapted
and converged to separate HSS from the original signal
(Section 2.3).

/e auto-optimal algorithm of identifying VSS has been
used to evaluate the separation of HSS from the original
signal that consists of contaminated LSS and HSS based on
SNR, as well as the performance of ANC and NLMS al-
gorithm combination.

Table 6 shows the SNRout values calculated from the AF
outputs for the abnormal LSS case. Results of the com-
parison of the SNRin values shown in Table 1 and the SNRout
values shown in Table 6 indicated that the SNRin values were
located from −14.4 dB to −53 dB in an abnormal case. /is
result suggested that the abnormal LSS included high
amount of noise, and the SNRout values changed according
to the Lj and determined VSS.

Figure 6 demonstrates the visual difference before and
after applying the proposed method at the determined pa-
rameters where the original signal (graphic 1, Figure 6(a))
showed higher frequency components than that of pure LSS
(graphic 3, Figure 6(c)). In addition to the improved level of
SNRout, these results indicated the separation of the noise
components from the desired LSS.

Table 7 shows the improved performance level of sep-
arating signals on normal LSS case by observing SNRout that

started from Lj � 64 and increased with increased Lj value.
/e improvement level based on SNRout also increased with
increased Lj value and obtained small change at different
VSS.

/e SNRin values of normal LSS ranged from −3.93 dB to
−7.78 dB (Table 1). /e SNRout values changed according to
the Lj and determined μn (Table 7).

Figure 7 exhibits the signal obtained by the designed
algorithm, with the visual difference between the original
signal (graphic 1, Figure 7(a)) and the pure LSS (graphic 3,
Figure 7(c)). In general, the frequency components were low
in the subjected original signal and decreased after applying
AF on the pure LSS (graphic 3, Figure 7(c)).

4. Discussions

/e optimized results of the designed algorithm determined
the optimal VSS range of 0≥ μn � 0.1; in this range, the AF
became highly stable with nonstationary biosignals, such
LSS, where the performance of the proposedmethod showed
the most ideal trade-off between convergence speed and low
steady error on the basis of the appropriately autoselected µ
[7, 15]. /is achievement approved the proper work of the
designed algorithm and its capability to separate signals by
identifying the VSS range on NLMS algorithm, which is in
agreement with the results of several works [20–22].

/e SNRout values improved progressively at determined
μn and Lj values for abnormal and normal lung sounds, as
shown in Tables 6 and 7, respectively. /e SNRout matrix
indicated that the performance level in the normal and
abnormal LSSs started improving from the Lj values of
64,128 and 256,512, respectively. Moreover, Lj�1024 can be
the upper limit at which the AFmay work stably with normal
LSS and obtain accurate outputs. AF can work at L more
than 2048 with abnormal LSS./is result can be due to that it

0 200 400 600 800 1000 1200
Number of iterations (n)

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

M
ea

n 
(e

rr
or

2 ) (
dB

)

Learning curve for MSE

mu = 0.1261
mu = 0.1161

Figure 4: MSE performance of NLMS for μn > 0.100 values and L� 64.
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consists of normal LSS for low-frequency components, and
the abnormal LSS consists of high-frequency components.

/e SNRout values revealed several distinct markers
between LSSs; the normal LSS shows high SNR values, that
is, the SNR value reaches close to 0 or the positive axis. By
contrast, the SNR values of the abnormal LSS are consid-
erably small in the negative axis. /erefore, these charac-
teristics may reveal clear difference that can differentiate

between both LSS types whether in terms of SNRin or SNRout
values.

/e performance estimation of ANC-NLMS algorithm
combination based on automatic identification of the op-
timal VSS validated the correctness of the proposed
method and its sequence steps in separating HSS from
LSS. Additionally, such estimation explored the distinct
features differentiating normal LSS from abnormal LSS,
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Figure 5: Comparison of the amplitude of AF original signal Xi(n) and obtained errors. (a) Original signal. (b) MSE of the NLMS in the
sample when μn � 0.09 and L� 128. (c). Output error of the NLMS.

Table 6: SNR after applying the designed algorithm for an abnormal LSS case.

LSS# µn

Lj values
2 4 8 16 32 64 128 256 512 1024 2048

SNRout (dB)

LSA2

0.111 −45.43 −38.31 −34.66 −16.16 −24.08 −19.57 −15.43 −15.09 −11.04 −5.06 −1.05
0.036 −45.43 −40.01 −32.09 −29.44 −13.39 −20.63 −16.99 −15.34 −3.65 −7.40 −2.16
0.022 −28.12 −40.01 −32.75 −29.44 −24.66 −18.93 −13.87 −10.41 −3.41 −2.84 −3.08
0.016 −45.43 −40.01 −19.56 −19.31 −24.66 −17.19 −16.99 −15.34 −11.04 −7.95 −3.95

LSA4

0.037 −35.28 −42.26 −40.03 −34.64 −16.15 −24.17 −17.89 −15.35 −14.04 −11.12 −3.80
0.028 −51.46 −45.66 −37.56 −34.64 −26.35 −24.40 −11.74 −13.11 −13.46 −11.12 −4.45
0.025 −51.46 −44.18 −39.50 −31.80 −29.32 −13.80 −19.17 −18.29 −14.04 −3.80 −4.79
0.010 −37.72 −41.70 −40.03 −34.64 −16.15 −23.30 −20.41 −18.29 −6.95 −7.40 −8.00

LSA6

0.100 −106.11 −101.49 −95.90 −83.13 −82.24 −79.34 −75.47 −56.85 −42.00 −43.41 −32.31
0.039 −101.38 −113.39 −89.27 −83.13 −86.10 −83.84 −65.40 −48.74 −41.56 −36.56 −40.06
0.037 −101.38 −115.35 −109.27 −103.13 −89.80 −87.29 −82.06 −58.56 −57.56 −47.07 −40.58
0.017 −102.41 −95.35 −95.59 −100.87 −80.84 −70.46 −64.75 −48.74 −57.63 −36.11 −46.87
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and these characteristic may be used as primary features to
classify LSS.

5. Conclusions

/is study investigated an effective method of ANC-NLMS
algorithm based on automatic identification of the optimal

VSS for 11 Lj values to separate HSS from LSS. /e per-
formance of the designed algorithm evaluated at determined
conditions showed good result by reducing and minimizing
the error gradually to zero after the convergence time.

/e effectiveness of the designed algorithm to separate
HSS from contaminated LSS estimated based on the SNRout
illustrated a progressive performance improvement level
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Figure 6: Input and output signal graphics of ANC-NLMS algorithm on an abnormal case (LSA6). Obtained graphics and SNRout � −40.58
at μn � 0.039 and L� 2048, where the input SNR is −53.86 dB.

Table 7: SNR after applying the designed algorithm on normal LSS.

LSS# µn

Lj values
2 4 8 16 32 64 128 256 512 1024 2048

SNRout (dB)

LSN1

0.064 −24.82 −16.36 −16.82 −13.63 −11.06 −8.52 −6.18 −2.24 0.83 3.76 17.64
0.021 −24.82 −20.59 −16.82 −13.63 −11.06 −6.51 −7.00 −2.24 2.86 3.58 12.39
0.017 −24.82 −20.59 −16.82 −8.11 −10.66 −8.18 −3.34 −0.93 3.52 3.73 11.25
0.010 −24.75 −20.59 −16.82 −11.11 −10.85 −9.20 −7.00 −2.24 3.46 3.58 8.83

LSN3

0.025 −20.90 −18.84 −16.76 −14.79 −13.37 −9.60 −9.49 −8.26 −3.23 −3.68 −0.63
0.011 −21.17 −16.92 −16.76 −13.31 −12.31 −12.28 −9.49 −2.63 −4.94 −3.68 −1.64
0.010 −21.17 −17.52 −16.76 −14.79 −13.42 −12.46 −4.64 −5.35 −5.81 −3.68 −1.42
0.009 −21.17 −18.84 −16.68 −14.79 −13.37 −11.90 −8.21 −2.68 −5.81 −3.68 −1.95

LSN5

0.026 −25.95 −24.07 −19.72 −17.32 −9.96 −10.56 −8.47 −4.76 −0.14 1.78 6.56
0.020 −24.56 −13.45 −19.11 −12.52 −12.21 −10.51 −8.47 −4.76 2.15 5.02 6.02
0.013 −27.94 −21.41 −18.37 −17.32 −14.24 −10.29 −8.47 −4.76 −0.78 1.78 4.88
0.010 −26.35 −19.43 −18.55 −17.32 −9.71 −8.15 −8.47 −4.76 −1.10 1.78 3.94
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with increasing Lj and significantly improved separation of
HSS from LSS.

/is SNRout explored a novel method to differentiate
between normal and abnormal LSSs. /is method may be
used as basis in developing computerized diagnosis and
automating LSS calcification.

/e proposed approach clarified the correctness of the
combined designed algorithm and achieved significant
performance. /e proposed method may be subject for
further study on LSS under different settings and durations.
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Conflicts of Interest

/e authors declare that they have no conflicts of interest.

References

[1] S. Reichert, R. Gass, C. Brandt et al., “Analysis of respiratory
sounds: state of the art,” Clinical Medicine Circulatory, Re-
spiratory and Pulmonary Medicine, vol. 2, pp. 45–58, 2008.

[2] R. K./enua and S. K. Agarwal, “Simulation and performance
analysis of adaptive filter in noise cancellation,” International
Journal of Engineering Science and Technology, vol. 9,
pp. 4373–4378, 2010.

[3] K. Sathesh and N. J. Muniraj, “Real time heart and lung sound
separation using adaptive line enhancer with NLMS,” Journal
of ;eoretical and Applied Information Technology, vol. 65,
no. 2, pp. 559–564, 2014.

[4] N. Q. Al Naggar and H. Ghazi, “Design two-channel in-
strument to record lung and heart sounds at the same time,
and separate them using ANC-NLMS algorithm,” In-
ternational Journal of Advanced Research in Electrical, Elec-
tronics and Instrumentation Engineering, vol. 4, no. 4,
pp. 2601–2609, 2015.

[5] T. Tsalaile and S. Sanei, “Separation of heart sound signal from
lung sound signal by adaptive line enhancement,” in Pro-
ceedings of the 15th European Signal Processing Conference,
vol. 15, pp. 1231–1235, Poznan, Poland, 2007.

[6] N. Q. Al-Naggar, “A new method of lung sounds filtering
using modulated least mean square adaptive noise cancella-
tion,” Journal of Biomedical Science and Engineering, vol. 6,
no. 9, pp. 869–876, 2013.

[7] R. Nersisson and M. M. Noel, “Hybrid nelder-mead search
based optimal least mean square algorithms for heart and lung
sound separation,” Engineering Science and Technology, an
International Journal, vol. 20, no. 3, pp. 1054–1065, 2017.

[8] S. Sebastian and S. Rathnakara, “Separation of heart sound
artifact from respiratory signals using singular spectrum based
advanced line enhancer,” International Journal on Advanced
Computer ;eory and Engineering, vol. 2, pp. 106–111, 2013.

[9] M. Molaie, S. Jafari, M. H. Moradi, J. C. Sprott, and
S. M. R. H. Golpayegani, “A chaotic viewpoint on noise re-
duction from respiratory sounds,” Biomedical Signal Pro-
cessing and Control, vol. 10, pp. 245–249, 2014.

0 1 2 3 4 5 6 7
–0.5

0

0.5
�e original LSS corrupted by HSS

(a)

0 1 2 3 4 5 6 7
–1

0

1
�e heart sound signal as reference

(b)

0 1 2 3 4 5 6 7
–1

0

1
�e lung sound a�er adaptive filter (Y)

(c)

0 1 2 3 4 5 6 7
–1

0

1
�e error

(d)

Figure 7: Input and output signal graphics of ANC-NLMS algorithm on a normal case (LSN1). /e obtained graphics and SNRout at
μn � 0.017, where the SNRin is −8.65 dB, and the SNRout is −3.34 dB at L� 128.

Journal of Healthcare Engineering 9



[10] O. El B’charri, R. Latif, K. Elmansouri, A. Abenaou, and
W. Jenkal, “ECG signal performance de-noising assessment
based on threshold tuning of dual-tree wavelet transform,”
Biomedical Engineering Online, vol. 16, no. 1, 2017.

[11] H. T. Ma and Y. T. Zhang, “Effects of the physiological pa-
rameters on the signal-to-noise ratio of single myoelectric
channel,” Journal of Neuroengineering and Rehabilitation,
vol. 4, no. 1, p. 29, 2007.

[12] K. Sathesh, N. J. R. Muniraj, A. V. Akshitha, B. K. Roy,
M. Induja, and M. D. A. Maharasi, “Design and imple-
mentation of real time electronic stethoscope with a method
for separating heart sound from lung sound using
TMS320C6713,” DSK Middle-East Journal of Scientific Re-
search, vol. 23, no. 8, pp. 1909–1920, 2015.

[13] B. Farhang-Boroujeny, Adaptive Filters ;eory and
Applications, University of Utah, Wiley & Sons, Somerset, NJ,
USA, 2nd edition, 2013.

[14] S. Zhao, “Performance analysis and enhancements of adaptive
algorithms and their applications of computer engineering,”
Doctor of Philosophy thesis, Nanyang Technological Uni-
versity, Singapore, 2009.

[15] S. S. Haykin, Adaptive Filter ;eory, Pearson Education, New
York, Ny, USA, 4th edition, 2008.

[16] S. Jimaa, “Convergence evaluation of a random step-size
NLMS adaptive algorithm in system identification and
channel equalization,” in Adaptive Filtering, InTech, London,
UK, 2011.

[17] J. L. Semmlow, Biosignal and Biomedical Image Processing:
MATLAB-Based Applications, Marcel Dekker, New York, NY,
USA, 2004.

[18] B. Y. Lu, “Unidirectional microphone based wireless recorder
for the respiration sound,” Journal of Bioengineering and
Biomedical Science, vol. 6, no. 3, p. 195, 2016.

[19] A. H. Said, “Design of a chopper amplifier for use in bio-
medical signal acquisition,” Master thesis, Department of
Electrical and Computer Engineering, Southern Illinois
University, Carbondale, IL, USA, 2010.

[20] R. M. A. Falcão, “Adaptive filtering algorithms for noise
cancellation,” Masters thesis, Faculdade de Engenharia da
Universidade do Porto, Porto, Portugal, 2012.

[21] S. A. Jimaa, N. Al Saeedi, S. Al-Araji, and R. M. Shubair,
“Performance evaluation of random step-size NLMS in
adaptive channel equalization,” in Proceedings of the 2008 1st
IFIP Wireless Days, Dubai, UAE, November 2008.

[22] K. Gomathi, V. Saravanan, and N. Santhiyakumari, “Variable
step size for improving convergence of FxLMS,” Procedia
Technology, vol. 25, pp. 420–426, 2016.

10 Journal of Healthcare Engineering


