
Neoplasia 37 (2023) 100882 

Contents lists available at ScienceDirect 

Neoplasia 

journal homepage: www.elsevier.com/locate/neo 

The pan-cancer landscape of abnormal DNA methylation and intratumor 

microorganisms 

Ping Zhou 

a , b , c , d , 1 , Simon L. Lu 

e , 1 , Liang Chang 

a , b , c , d , 1 , Baoying Liao 

a , b , c , d , Ming Cheng 

a , b , c , d , 

Xiaolin Xu 

a , b , c , d , Xin Sui a , b , c , d , Fenting Liu 

a , b , c , d , Mingshu Zhang 

a , b , c , d , Yinxue Wang 

a , b , c , d , 

Rui Yang 

a , b , c , d , Rong Li a , b , c , d , ∗ , Heng Pan 

a , b , c , d , ∗ , Chao Zhang 

f , ∗ 

a Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China 
b National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China 
c Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China 
d Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China 
e Boston University, Boston, MA, USA 
f Department of Medicine, Boston University School of Medicine, Boston, MA, USA 

a r t i c l e i n f o 

Keywords: 

Intratumor Microorganisms 

TCGA 

Methylation 

Microenvironment 

a b s t r a c t 

Microorganisms play very important roles in carcinogenesis, tumor progression, and resistance upon treatment. 

Due to the challenge of accurately acquiring samples and quantifying low-biomass tissue microorganisms, most 

studies have focused on the effect of gut microorganisms on cancer treatments, especially the efficacy of im- 

munotherapy. Although recent publications reveal the potential interactions between intratumor microorganisms 

and the immune microenvironment, whether and to what extent the intratumor microorganism could affect pro- 

gression and treatment outcome remain controversial. This study is aiming to evaluate the associations among 

intratumor microorganisms, DNA methylation cancer driver genes, immune response, and clinical outcomes from 

a pan-cancer perspective, using 6,876 TCGA samples across 21 cancer types. We revealed that tumor microorgan- 

ism dysbiosis is closely associated with the abnormal tumor methylome and/or tumor microenvironment, which 

might serve to enhance the proliferation ability and fitness for the therapy of tumors. These findings shed the 

light on a better understanding of the interactions between tumor cells and carcinogens during and after tumor 

formation, as well as microorganism-associated methylation alterations that could further serve as biomarkers 

for clinical outcome assessment. 
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Cancer is the second most common cause of death and the main bar-

ier to prolonged life expectancy globally, with a strikingly increased

ncidence in past decades [1 , 2] . As cancer was considered a disease

rimarily caused by abnormalities in the human genome, most studies

o date have approached the topic of carcinogenesis from the human-

entered perspectives, such as somatic mutations [3] . Furthermore,

apid development in high-throughput sequencing, computational bi-

logy, and tumor immunology have deepened our understanding of

ancer genesis [4–6] . Particularly, recent studies have highlighted that

icroorganisms play a key role in cancer pathogenesis. For example,

ost-microbe interactions were identified as an important factor in the

ormation, diagnosis, prognosis, and treatment of cancer [7 , 8] . Addi-
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ionally, multiple bacteria and viruses are ubiquitous in tumors and

ara-carcinoma tissues, which can directly affect the tumor microen-

ironment, exerting impacts on tumor recurrence and drug resistance

9–11] . The contributions of these microorganisms to the physiological

tability of the human body are known to be significant. Their metage-

omic genes are involved in a variety of metabolic and immune regula-

ion pathways including anti-tumor immune surveillance [12–16] . The

alance between host and microbiota is considered one of the precondi-

ions for maintaining a healthy physiological state of the human body,

nd a perturbation might result in cancer development. 

Several microorganisms have been proven to be the direct causal

athogen of cancer, while others indirectly initiate cancers by affect-

ng the immune status and metabolites of the host. Recent studies

ave shown that such microorganism-induced immune responses can
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lso affect the host methylome. For instance, colorectal cancer (CRC)-

elated dysbiosis induces methylation changes of host genes directly,

nd the corresponding cumulative methylation index alongside associ-

ted bacteria might be potential biomarkers for CRC [17] . Together,

pigenetic changes are an important way for microorganisms to reg-

late the transcriptional program in tumor cells and thus promote

rowth. 

Cancer cells are characterized by a disrupted DNA methylation

rofile including site-specific hypermethylation and genome-wide hy-

omethylation [18 , 19] . The genome-wide analysis of DNA methylome

nd transcriptome has contributed to the identification of novel molec-

lar subtypes within canonical subgroups [20 , 21] . Of note, DNA methy-

ation has been reported to improve disease classification and is associ-

ted with microbiota composition [22] . Accurate identifications of tu-

or subtypes will not only improve the construction of preclinical mod-

ls but also accelerate the development of personalized treatment [23] .

n addition, epigenetic therapy has the chance to convert a tumor cell

rom an immune repressive status (immune cold) to an immune per-

issive status (immune hot) via regulating various factors of the tu-

or microenvironment that normally prevent the therapeutic effect of

mmune-checkpoint inhibition [24] . 

Public microbiome projects such as the Human Microbiome Project

nd the Metagenomics of the Human Intestinal Tract have provided

remendous insights into the diversity and function of human flora

25 , 26] . However, these databases are dominated by tissue swab and

tool samples that do not necessarily reflect the microbial composition

f local tissues [27] . The high content of human DNA in local tissue sam-

les interferes the microbial identification and increases the challenge of

ccurately distinguishing microbiome fragments from tissue ones. Our

revious study has presented a systematic framework of microbiome

rofiling directly from endoscopic biopsies by whole genome sequenc-

ng (WGS), allowing for the identification of the microbiome composi-

ion from primary tissues as well as the study of causative relationships

etween the microbiome and disease [28] . 

In our study, we utilized RNA-seq, WGS, and Infinium HumanMethy-

ation450 BeadChip data in TCGA Pan-Cancer analysis project to char-

cterize the microorganisms and methylomes of tumor samples. Two

ajor clusters were identified based on tumor microorganism com-

unities. Varied microorganism composition patterns were observed

mong different tumor types. Microorganism dysbiosis was speculated

o be associated with abnormal DNA methylation and immune microen-

ironment in tumor cells. Patient samples of the cervical squamous

ell carcinoma and endocervical adenocarcinoma (CESC) with differ-

nt human papillomavirus (HPV) abundances showed distinct over-

ll survival (OS) and the favorable outcome of patients with high

PV abundance might be associated with the promoter hypomethy-

ation of specific genes such as HKDC1 . This study aimed to pro-

ide an additional data source of intratumor microorganism struc-

ures and the landscape of DNA methylation cancer driver genes for

1 cancer types in TCGA data, laying a foundation for further analy-

is of the relationship between intratumor microorganisms and tumor

pigenetics. 

ethods 

tudy overview and data collection 

To characterize the microorganisms and methylomes of tumor sam-

les, we collected RNA-seq, WGS, and Infinium HumanMethylation450

eadChip data in TCGA Pan-Cancer analysis project [29] . Microorgan-

sms of 17,625 tumor samples were identified from RNA-seq or WGS

ata using several state-of-the-art methods [5 , 27 , 30] . To infer DNA

ethylation cancer driver genes, 9,664 methylation array data of 33 tu-

or types were obtained from TCGA Pan-Cancer analysis project [29] .

ethSig [19] was used to detect DNA methylation cancer driver genes

or each cancer type individually, which requires at least RNA-seq of
2 
 normal samples, methylation array data of 2 normal samples, and

ethylation array data of 40 tumor samples from the same cancer type.

NA methylation cancer drivers were successfully inferred from 7,052

umor samples of 21 tumor types. In order to accurately evaluate the as-

ociations between DNA methylation and intratumor microorganisms,

,876 samples of 21 tumor types with DNA methylation cancer driver

nference and intratumor microorganism identification at the same time

ere selected for downstream analyses. 

dentification of intratumor microorganisms and downstream analyses 

We employed the microorganism identification pipelines from

wo recently published papers [5 , 27] . Kraken [31] , Kraken2 [32] ,

athSeq [33] , and Shogun [34] were used in the above pa-

ers for the microorganism profiling of TCGA samples. A to-

al of 59,974 microbial genomes were downloaded via RepoPhlan

 https://bitbucket.org/nsegata/repophlan ) and filtered according to

ublished criteria [5] . Potential lab contaminations were detected and

emoved based on published methods [5 , 27] . Principal coordinates

nalysis (PCoA) and hierarchical clustering analysis were applied to the

icroorganism profile for each cancer type based on Hellinger distance

easurement. ConsensusClusterPlus (version 1.54.0) was used to deter-

ine the optimized cluster counts and membership of each sample [35] .

n most cases, two major clusters were used for downstream associa-

ion analysis since a larger number of subgroups is not conducive to the

nference of DNA methylation cancer drivers in each subgroup, which

equires a sufficient number of tumor samples. Of note, further stratifi-

ation of each sub-cluster is feasible under the framework we provided

uch as in CESC when the sample size is sufficient and further stratifi-

ation is biologically relevant. 

To evaluate the biological and clinical relevance of the

icroorganism-derived major clusters, the cancer subtype infor-

ation of the same TCGA study was downloaded from cBioPortal

36 , 37] and compared with the major clusters. Only 8 out of 21 cancer

ypes have more than 2 cancer subtypes and a sufficient number of

verlapped samples ( > 100). The chi-square test was used to evaluate

he dependency or association between microorganism clusters and

nown cancer subtypes. 

nference of DNA methylation cancer driver genes and differentially 

ethylated promoters 

Promoter (defined as ± 2 kb windows centered on RefSeq transcrip-

ion start site) methylation was measured using the average methyla-

ion levels of all CpGs inside. Only promoters with at least 5 CpGs

ere included. MethSig, an in-house pipeline, was employed to in-

er DNA methylation cancer driver genes based on methylation array

ata [19] . DNA methylation cancer drivers are those DNA methylation

hanges that occur deterministically and drive the cancer phenotype.

his concept was defined to discriminate driver promoter hypermethy-

ation changes from the far larger number of stochastic DNA methyla-

ion changes without biological consequences (passenger DNA methyla-

ion changes). MethSig is a novel statistical inference framework that

ccounts for the varying stochastic hypermethylation rate across the

enome and between samples, providing accurate and reproducible in-

erence of methylation cancer drivers. For each tumor type, DNA methy-

ation cancer drivers were inferred in either all the samples (drivers) or

wo major subgroups defined by microorganisms (sub-drivers). Promot-

rs with a Benjamini-Hochberg false discovery rate (BH-FDR) Q value

ess than 0.05, inferred in all the samples, were defined as drivers. Sub-

rivers were defined as promoters that were drivers in either major

luster defined by local microorganisms (BH-FDR Q < 0.05) while not

rivers in all the samples. Differentially methylated promoters (DMPs)

etween two major microorganism-derived clusters were defined as a

inimum of 5% methylation difference and a BH-FDR Q less than 0.05

two-sided Mann-Whitney U test). 

https://bitbucket.org/nsegata/repophlan
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nrichment analysis of immune cell types in tumor samples 

To characterize the immunological landscape of tumor samples,

Cell [38] was applied to RNA-seq data to quantify different types of

mmune cells for each sample. Differentially enriched immune cell types

etween two microorganism-derived clusters were defined as a BH-FDR

 < 0.05 (two-sided Mann-Whitney U test). 

athway enrichment analysis and survival analysis 

We performed functional analysis on the given gene list with DAVID

39] (version v2022q3). Biological process GO terms, KEGG pathways,

nd Reactome pathways with an enrichment p-value less than 0.1 were

elected as overrepresented functions. Survival analysis was presented

y the Kaplan-Meier plot and the p-value was calculated by a log-rank

est. 

esults 

ifferent tumor types have varied intratumor microorganism landscapes 

TCGA project provides a comprehensive genomic landscape for the

ost common human cancers. Due to the lack of a specifically designed

ssay to quantify intratumor microorganisms, associations among local

icroorganisms, microenvironments, and host genomics/epigenomics

ere not discussed in official TCGA publications from a pan-cancer per-

pective. Recent studies attempted to infer microorganism compositions

rom RNA-seq [5] , whole exome sequencing (WES) [27 , 30] , and WGS

5 , 27] data for a variety of TCGA cancer types ( Table S1 ). A systematic

nconsistency remains in the microorganism compositions identified by

ifferent studies due to varied data processing methods and different

equencing strategies. To avoid the bias introduced by methodologies

nd enable the evaluation of interactions between tumor microorgan-

sms and methylomes, 6,876 TCGA tumor samples from 21 tumor types

ith RNA-seq and DNA methylation array data were used ( Fig. 1 ). Raw

ounts of samples were downloaded, reported lab contaminants were
Fig. 1. Workflow of the data and 

3 
emoved [5] , and then relative microorganism abundances were calcu-

ated ( Fig. 1 ). 

Two major clusters determined by hierarchical clustering were

olored in PCoA plots, which reflect the microorganism community

tructure of each cancer type ( Fig. 2 A-D, Fig. S1). To explore the

iological and clinical relevance, we compared known cancer sub-

ypes to our microorganism-derived clusters. The associations can be

nly evaluated in 8 out of 21 tumor types (Table S2). Of note,

icroorganism-derived clusters are only significantly associated with

ancer subtypes in CESC and uterine corpus endometrial carcinoma

UCEC), indicating distinct contributions of the local microorgan-

sm community to tumor stratifications. In CESC, the C1 cluster is

ignificantly enriched in adenocarcinoma and the C2 cluster is en-

iched in squamous cell carcinoma ( Fig. 2 E, P = 0.004). In UCEC,

he C2 cluster is enriched in the subtypes with high copy numbers

UCEC_CN_High, Fig. 2 F, P = 1 × 10 − 5 ). The different pathological roles

f intratumor microorganisms in the above tumor types need further

xploration. 

Average relative abundance differences at the family level between

he two major clusters were presented ( Fig. 2 G). Overall, there are two

istinguished scenarios among different tumor types in TCGA data (Fig.

2). In the first one, two major clusters carried distinct profiles, and

ne cluster is predominated by 1 - 2 specific microorganisms which

ave a more than 20% relative abundance difference between the two

lusters. For example, the Papillomaviridae and Hepadnaviridae are over-

epresented in one group of patients in CESC or liver hepatocellular

arcinoma (LIHC), respectively (Fig. S2). According to a CDC report,

bout 80% - 90% of cervical cancers are related to HPV infection

40 , 41] , and hepatitis B virus (HBV) might be the leading cause of ap-

roximately 65% of liver cancer [42] . Identification of known carcino-

ens in cancer samples proves the reliability of microorganism detec-

ion from sequencing data of primary tissues. In another scenario, no

ingle family had more than 20% relative abundance differences be-

ween two clusters in most cancer types, while small consistent rela-

ive abundance shifts of multiple microorganisms between two clusters

emained (Fig. S2). These results confirmed the reliability of intratu-

or microorganism inference through tissue RNA-seq data and revealed
analysis used in this project. 
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Fig. 2. Different tumor types have varied intratumor microorganism landscapes. ( A-D ) Scatter plots showing principal coordinate analysis based on Hellinger 

distance of microorganism profiles among samples from ( A ) CESC, ( B ) LIHC, ( C ) KIRP, and ( D ) UCEC. ( E-F ) Segmentation plots showing the association between 

microorganism-derived major clusters and known cancer subtypes in ( E ) CESC and ( F ) UCEC. ( G ) A bubble plot showing microorganism composition differences 

between the top two major clusters at a family level. Bubble size is the relative difference between the top two major clusters, and color presents the -log10 p-adjust 

values of the t-test. 
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he varied microorganism composition patterns among different tumor

ypes. 

ethSig identifies distinct numbers of DNA methylation driver genes among 

ifferent cancer types 

Epigenetic landscape changes are a hallmark of cancer [43] and play

 crucial role in response to extracellular stimuli such as infection of

ocal microorganisms [44] . Linking local microorganism composition

atterns to tumor epigenetic landscape might result in an enhanced un-

erstanding of the role of local microorganisms in cancer initiation and

rogression. However, our ability to differentiate driver DNA methyla-

ion changes from passenger events is limited. Thus, it is challenging

o explore the functional association between microorganisms and key
4 
pigenomic abnormalities. MethSig, an in-house novel statistical frame-

ork, was designed to infer DNA methylation cancer drivers. Compared

ith benchmarked methods, MethSig delivers well-calibrated quantile-

uantile plots and more reproducible identification in independent can-

er cohorts ( Fig. 3 A). Importantly, in comparison with extant methods,

ethSig achieves higher sensitivity and specificity in the inference of

ikely DNA methylation drivers, defined as close association with gene

epression and clinical outcome ( Fig. 3 A). 

MethSig was applied to the same 6,876 tumor samples for microor-

anism discovery. Different cancer types had a varied prevalence of DNA

ethylation cancer driver genes, from 1.4% to 13.5% ( Fig. 3 B, BH-FDR

 < 0.05). Moreover, the significance of top DNA methylation drivers of

pecific tumor types was higher than others ( Fig. 3 C). Using thymoma

THYM) as an example, all the top 500 DNA methylation drivers had a
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Fig. 3. Different cancer types have distinct numbers of DNA methylation driver genes. (A) Simplified illustration of the benefits of the inference of DNA methylation 

drivers using MethSig. ( B ) A barplot showing the percentage of DNA methylation cancer drivers out of all the tested promoters across 21 cancer types. ( C ) A boxplot 

showing the significant levels of the top 500 DNA methylation driver genes across 21 cancer types. ( D ) A bubble plot showing the significance of the top 5 drivers 

derived from each cancer type across all tumors. 
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H-FDR Q value less than 0.005 while only the top 76 drivers in thy-

oid carcinoma (THCA) had the same degree of significance ( Fig. 3 C).

y comparing the top 5 DNA methylation drivers across all the tumor

ypes, we observed a plethora of methylation drivers that were highly

umor-specific, indicating heterogeneous landscapes of DNA methyla-

ion drivers among different tumor types ( Fig. 3 D). For example, a tu-

or suppressor gene (TSG), RBBP8 , was only identified as a driver gene

n the bladder urothelial carcinoma (BLCA) and the head and neck squa-

ous cell carcinoma (HNSC), whose hypermethylation will disrupt DNA

epair function [45] . In summary, most tumor types showed a distinct

andscape of DNA methylation drivers in comparison with each other,
5 
evealing a heterogenous methylome evolution among different cancer

ypes. 

icroorganism dysbiosis is associated with abnormal DNA methylation and 

mmune microenvironment in tumor cells 

To explore the association between local microorganisms and tumor

pigenetics, we identified DMPs between two major microorganism-

erived clusters for all cancer types. The numbers of statistically

ignificant DMPs are highly variable across different cancer types ( Table

3 ). Four cancer types with the most DMPs ( > 100) were further selected
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Fig. 4. Microorganism dysbiosis is associated with methylome and the immune microenvironment of tumor cells. ( A ) A barplot showing the number of DMPs between 

the two major microorganism-derived clusters in CESC, KIRP, LIHC, and UCEC. ( B ) An Upset plot showing the overlap of DMPs across multiple cancer types. ( C ) A 

Venn diagram showing the overlap of DMP-enriched functions and pathways across multiple cancer types. ( D ) A bubble plot showing differences in the immune cell 

abundances between the top two major clusters defined by microorganisms. 
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o evaluate the potential DNA methylation alterations along with intra-

umor microorganism dysbiosis ( Fig. 4 A). Identified DMPs were further

nnotated to DNA methylation drivers and sub-drivers ( Fig. 4 A , Table

3 ). More than 60% of DMPs in CESC, kidney renal papillary cell car-

inoma (KIRP), and UCEC were drivers or sub-drivers, implying a close

ssociation between microorganism dysbiosis and tumor initiation. In

IHC, less than 10% of DMPs were drivers or sub-drivers, reflecting the

ndependent role of microorganisms in driving tumors through regu-

ating DNA methylation, which requires further exploration. An Upset

lot was generated for visualizing common DMPs across multiple can-

er types ( Fig. 4 B). It is not surprising to observe that most DMPs are

nique to a single cancer type. This observation indicated a heteroge-

eous degree of association between local microorganisms and tumor

ethylome, which is expected considering the varied microorganism

omposition and dominant family across cancer types. Nevertheless, we

till revealed that CESC shared 16, 27, and 28 common DMPs with KIRP,

IHC, and UCEC, respectively ( Fig. 4 B). To find the functional common-

lity, we performed the functional enrichment analysis of DMPs for each

ancer type. CESC, LIHC, and UCEC shared many common functions and

athways ( Fig. 4 C, Table S4 ), while DMPs in KIRP were enriched in a
6 
istinct set of pathways compared with other cancer types. We hypothe-

ized that the commonality of DMP-enriched pathways might be due to

he similarity of pathogens in CESC, LIHC, as well as UCEC since HPV

nd HBV infection are very prevalent in those three types of cancers.

n the contrast, the dominant microorganisms in KIRP are different and

hus targeted a different set of promoters. 

Besides abnormal tumor DNA methylation, the local microorganism

ysbiosis may also interact with the immune microenvironment of tu-

or cells directly. We employed xCell to infer the immunological land-

capes of 21 cancer types ( Fig. 4 D). Similarly, we observed heteroge-

eous changes in the abundance of immune cell types across different

ancer types. In HNSC, the abundance of a variety of immune cell types

as changed between clusters such as Th1 cells, Th2 cells, mast cells,

lasma cells, and Tregs, which were identified to be associated with

NSC prognosis. For instance, the abundance of mast cells can serve as

 prognostic predictor in HNSC [46] . In a plethora of cancer types in-

luding CESC, KIRP, and LIHC, whose methylomes were changed along

ith tumor microorganism shifts, we did not observe a significant abun-

ance difference in most of inferred immune cell types. 
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Thus, we speculated that tumor microorganism dysbiosis is associ-

ted with abnormal tumor methylome and/or tumor microenvironment,

nhancing the proliferation ability and fitness for the therapy of tumor

ells together. 

PV-associated DNA methylation and transcriptional changes in CESC 

Although persistent HPV infection is the leading cause of cervical

ancer, the viral load could be highly variable in different CESC sam-

les. According to the HPV abundance, we named three clusters HPV-H

high), HPV-M (medium), and HPV-L (low, Fig. 5 A-B). The significance

f different clinical outcomes across clusters was tested. Higher HPV

bundance was significantly associated with longer OS ( Fig. 5 C), indi-

ating HPV infection as a favorable predictor of OS in CESC. Even though

uch a favorable association has been reported in several carcinomas in-

luding HNSC [65] , the impact of HPV infection on the survival rate of

ESC was not carefully determined previously. 

Promoter methylation and gene expression levels of tumor samples

ere compared with normal tissues, aiming to explore the potential

olecular differences. A group of perturbed genes in CESC tumor sam-

les including SYCP2 and PCDH10 were identified ( Fig. 5 D). SYCP2 is

ecently found to be involved in the initiation of HPV-related cancers

47] , especially significantly upregulated in cervical cancer and oropha-

yngeal squamous cell carcinoma [48–50] . This is consistent with our

bservations in TCGA CESC samples ( Fig. 5 D). In addition, the positive

ffect on SYCP2 gene expression [47 , 51] might be a result of promoter

ypomethylation associated with HPV infection ( Fig. 5 D). Our observa-

ion provides new insights into the potential regulatory mechanism of

PV infection on SYCP2 gene expression through methylation in tumori-

enesis of CESC. Another notable candidate PCDH10 could inhibit pro-

iferation, migration, and epithelial-to-mesenchymal transition of tumor

ells via the Wnt/ 𝛽-catenin signaling pathway [52] . As a TSG, PCDH10

as reported as hypermethylated or down-regulated in cervical, colorec-

al, and esophageal cancers [52–54] , which was also confirmed in the

CGA CESC cohort ( Fig. 5 D). However, there were no clear associations

etween promoter methylation levels of the above genes and clinical

utcomes, implying that the dysregulated methylation status was the

esidue of HPV infection during tumorigenesis with limited impacts on

umor progression upon treatment. 

Besides the above cancer drivers, a plethora DMPs, such as HKDC1

nd SEMA3E , are associated with survival differences across clusters.

p-regulation of HKDC1 can be triggered by the overexpression of HPV8

7 protein [66] , implying a potential regulatory linkage between HPV

nfection and HKDC1 gene expression. Moreover, HKDC1 has been re-

orted to be expressed in multiple cancers and proposed as a favor-

ble prognosis biomarker in intrahepatic cholangiocarcinoma [55 , 56] .

s a key regulator for cell-cell communication, cancer cell invasion and

etastasis, angiogenesis, as well as inflammation [57–60] , Sema3E was

eported to be highly expressed in metastatic cancer cells and is con-

idered a clinical marker for breast and ovarian cancer [57 , 58] . We ob-

erved greater SEMA3E promoter methylation levels in HPV-H CESC pa-

ients against remaining samples and corresponding expression repres-

ion in HPV-H versus HPV-M ( Fig. 5 E). Moreover, patients with higher

EMA3E promoter methylation levels had a favorable OS compared with

he remaining samples (P = 0.14), implying SEMA3E is an important

andidate target of HPV infection and through which HPV can affect

he progression of CESC. Further experimental validations are needed

o confirm our speculations. 

In conclusion, our results revealed new insights into the explanation

f how HPV could affect transcriptional disruption via the modification

f promoter methylation levels in tumor cells, thus contributing to the

romotion of tumorigenesis in cervical cancer. 

iscussion 

During the past decade, several studies revealed that gut microor-

anisms can affect cancer treatment, especially the efficacy of im-
7 
unotherapy [61 , 62] . Nonetheless, the associations among the intra-

umor microorganisms, immune microenvironment, and treatment out-

omes have been neglected due to the challenge of obtaining samples

nd quantifying low-biomass tissue microorganisms. In this study, we

valuated the survival differences between two major clusters of pa-

ients defined by the tumor microorganism community in 21 TCGA

ancer types. Around 30% - 40% of cancer types showed different OS

r progression-free survival with varied significance levels (Table S5).

lioblastoma multiforme (GBM), lung squamous cell carcinoma (LUSC),

ancreatic adenocarcinoma (PAAD), stomach adenocarcinoma (STAD),

nd UCEC have consistent trends in both survival measurements, im-

lying that different microorganism structures are not only associated

ith OS but also the treatment outcome. Associations between intratu-

or microorganism presence and clinical features in lung cancer have

een reported recently, which are consistent with our findings [63 , 64] .

urther work will be needed to reveal the mechanism of how intratumor

icroorganisms can affect the clinical outcomes of tumor patients. 

To better understand the interactions between intratumor microor-

anisms and cancer cells, we evaluated two principal axes along which

icroorganism dysbiosis can interact with tumors: tumor immune mi-

roenvironment and epigenome. Out of the 21 cancer types, 4 have

umerous DNA methylation cancer drivers with significant promoter

ethylation differences between two major clusters defined by microor-

anisms, while they did not show abundance changes in most major

mmune cell types ( Fig. 6 ). In contrast, 11 cancer types with signifi-

ant differences in at least three immune cell types do not carry any

MPs. Thus, we hypothesized that intratumor microorganisms might

e only associated with either abnormal immunological or epigenetic

athways. However, whether those mutual-exclusive alterations in the

mmune environment or methylome of tumor cells are direct effects of

icroorganism dysbiosis remains controversial and further experimen-

al validations are needed to confirm the causal relationship. It is also

nclear how tumor cells determine to undergo specific mechanisms to

egulate the proliferation with or without treatment in different cancer

ypes and whether those distinct patterns are due to the response to in-

ection or required to recruit specific bacteria or viruses to accelerate the

ysbiosis. Understanding the underlying mechanism will help provide

ovel insights into the treatment of cancers via monitoring or regulating

ocal microorganisms. 

Out of four cancer types with strong associations between microor-

anism structures and epigenetic alterations, CESC and LIHC are highly

elated to the infection of HPV and HBV, respectively. As known

athogens, those viruses account for more than 65% of all cancers. How-

ver, only a small proportion of samples in each cancer type carry a pre-

ominant level ( > 30%) of HPV or HBV (28.7% in CESC and 12.5% in

IHC). To evaluate the post-tumorigenesis function of these pathogens,

e further classified samples into three clusters according to relative

bundances. The pathogen-dominating cluster has a better survival rate

n both cancer types. Our findings of the DNA methylation alterations

long with dysbiosis have the potential to shed light on a deeper un-

erstanding of the interactions between tumor cells and carcinogens

fter tumor formation. Furthermore, carcinogen-derived methylation

hanges could serve as biomarkers for clinical outcome assessment.

ur observations also confirm that the major clusters derived from mi-

roorganism structures can be further stratified to match biologically

r clinically well-defined sub-clusters, deepening our understanding of

he associations between microorganism communities and tumor het-

rogeneities. 

In addition to the above findings, we also discovered some potential

alse identifications from published studies, due to the limitation of se-

uencing data, microorganism detection methods, and databases used

or identification. For example, partial samples in STAD and esophageal

arcinoma (ESCA) are dominated by Desulfobacteraceae sp , which uses

ulfur compounds as the main energy source and has a particularly

ow level in the human body. In addition, the Helicobacter pylori lev-

ls were found to be consistently low across all STAD samples, which is
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Fig. 5. HPV-associated DNA methylation and transcription changes in CESC. ( A ) A boxplot showing Papillomaviridae abundance of three major clusters in CESC: 

HPV-H (red), HPV-M (light blue), and HPV-L (dark blue). ( B ) Consensus clustering results of microorganism profile indicating three major clusters with different 

HPV fractions. ( C ) A Kaplan-Meier plot showing overall survival in CESC patients with a different abundance of HPV infection. ( D ) Boxplots showing promoter 

methylation levels and gene expression levels of SYCP2 and PCDH10 in normal samples as well as tumor samples with a different abundance of HPV infection. 

( E ) Boxplots showing promoter methylation levels and gene expression levels of HKDC1 and SEMA3E in normal samples as well as tumor samples with a different 

abundance of HPV infection. 
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Fig. 6. An alluvial diagram reveals the associations among microorganism composition shifts, methylation alterations, immune response changes, and survival 

differences between two major microorganism clusters across 21 TCGA cancer types. 
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nconsistent with previous studies [28] . We speculated that these incon-

istencies might be a result of the limitation in the filtering steps of the

urrent protocol where the human reads in the sequencing data may not

e removed adequately. Improvement of computational methods in mi-

roorganism identification is necessary to yield more accurate results.

pecifically designed experimental protocols for capturing, amplifying,

nd sequencing the microorganisms from tumor samples will serve to

mprove the identification accuracy and minimize the biases introduced

y batch effects, lab contaminations, and computational errors. Also,

acteria and viruses may affect distinct pathways during infections and

he pathogenesis role of microorganisms beyond HPV and HBV requires

urther and extensive evidence to support. 
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