
foods

Article

Detection of Enteric Viruses and Core Microbiome Analysis in
Artisanal Colonial Salami-Type Dry-Fermented Sausages from
Santa Catarina, Brazil

Roberto Degenhardt 1,2, Doris Sobral Marques Souza 1,3, Leidiane A. Acordi Menezes 1,4,
Gilberto Vinícius de Melo Pereira 5, David Rodríguez-Lázaro 6,7 , Gislaine Fongaro 3

and Juliano De Dea Lindner 1,*

����������
�������

Citation: Degenhardt, R.; Sobral

Marques Souza, D.; Acordi Menezes,

L.A.; de Melo Pereira, G.V.;

Rodríguez-Lázaro, D.; Fongaro, G.;

De Dea Lindner, J. Detection of

Enteric Viruses and Core Microbiome

Analysis in Artisanal Colonial

Salami-Type Dry-Fermented

Sausages from Santa Catarina, Brazil.

Foods 2021, 10, 1957. https://

doi.org/10.3390/foods10081957

Academic Editor: Arun K. Bhunia

Received: 16 July 2021

Accepted: 18 August 2021

Published: 22 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Food Technology and Bioprocess Research Group, Department of Food Science and Technology,
Federal University of Santa Catarina (UFSC), Florianópolis 88034-000, SC, Brazil;
roberto.degenhardt@gmail.com (R.D.); doris.sobral@gmail.com (D.S.M.S.);
leidianeacordi@gmail.com (L.A.A.M.)

2 Biological and Health Sciences Department, West of Santa Catarina State University (UNOESC),
Joaçaba 89600-000, SC, Brazil

3 Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology,
Federal University of Santa Catarina (UFSC), Florianópolis 88034-000, SC, Brazil; gislainefongaro@gmail.com

4 Neoprospecta Microbiome Technologies, Sapiens Park, Florianópolis 88056-000, SC, Brazil
5 Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR),

Curitiba 80060-000, PR, Brazil; gilbertovinicius@gmail.com
6 Microbiology Division, Faculty of Sciences, University of Burgos, 9070 Burgos, Spain; drlazaro@ubu.es
7 Center for Emerging Pathogens and Global Health, University of Burgos, 9070 Burgos, Spain
* Correspondence: juliano.lindner@ufsc.br

Abstract: Microbial fermentation plays an important role in the manufacturing of artisanal sausages
and can have major effects on product quality and safety. We used metagenomics and culture-
dependent methods to study the presence of Hepatitis E virus (HEV) and Rotavirus-A (RV-A),
and fungal and bacterial communities, in artisanal Colonial salami-type dry-fermented sausages
in Santa Catarina state, Brazil. Lactic acid bacteria (LAB) and yeast dominated the microbiome.
Latilactobacillus sakei and Debaryomyces hansenii were ubiquitous and the most abundant species. The
DNA of some foodborne pathogens was found in very low concentrations although viable cells of
most of these species were undetectable by cultivation methods. The characteristics of the raw mate-
rial and hygiene of the artisanal sausage manufacturing process resulted in high loads of beneficial
microorganisms and the absence of HEV and RV-A viruses as determined by RT-qPCR assays. In
conclusion, high LAB load in sausages was more relevant to preventing pathogen growth than the
ripening time and/or physicochemical characteristics. However, the presence of Clostridium spp.
and other pathogens in some samples must be taken into account for the development of future
preservation methods; appropriate LAB starter cultures and health surveillance are required in the
production process to prevent foodborne outbreaks.

Keywords: swine and pork production chain; Hepatitis E virus; Rotavirus-A; metagenomic analysis;
food safety

1. Introduction

Fermented sausages (dry and semi-dry) make up a substantial proportion of pork
produced and consumed in western Santa Catarina State. This is in part a consequence
of the European origin and cultural characteristics of the population in this region in the
south of Brazil. Several small and medium-scale production companies are dedicated to
the transformation of pork meat, employing artisanal production techniques including
natural fermentation. However, these production practices can allow the survival and mul-

Foods 2021, 10, 1957. https://doi.org/10.3390/foods10081957 https://www.mdpi.com/journal/foods

https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-8795-854X
https://orcid.org/0000-0001-5596-3320
https://orcid.org/0000-0002-6191-8910
https://doi.org/10.3390/foods10081957
https://doi.org/10.3390/foods10081957
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/foods10081957
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods10081957?type=check_update&version=2


Foods 2021, 10, 1957 2 of 13

tiplication of spoilage and pathogenic microorganisms if hygiene and sanitary conditions
and process parameters are not strictly controlled.

There is a great diversity of dry-fermented sausages produced in the world. Different
raw meat types, formulations, additives, processes, casing, and drying periods are used [1].
Colonial sausages produced in Santa Catarina State are characterized by low acidity and
high moisture content when they are offered for sale, but they continue the ripening process
outdoors in the market, gradually losing moisture [2]. These uncontrolled conditions can
lead to a risk for the multiplication of undesirable microorganisms.

The production of artisanal sausages involve fermentation by the indigenous micro-
biota of meat (composed mainly by lactic acid bacteria—LAB) producing organic acids, and
consequently a decrease in the pH that allows preservation of the product. Lactobacillus,
Pediococcus, Enterococcus, and Leuconostoc are believed to be the principal genera involved
in sausage fermentation [3,4], and diverse LAB are found in food products according to the
manufacturing practices used. The preservation ability of LAB is based on competition
for nutrients and the production of antimicrobial metabolites, hydrogen peroxide and
bacteriocins. The selective influence of diverse factors (e.g., pH, redox potential, water
activity (aw), temperature, relative humidity, oxygen availability) in fermented sausage
will contribute to determining the microbial consortium present.

The microbial communities in fermented sausage play significant roles in the flavor,
texture, quality, and safety of sausages [5,6]. Understanding the ecology of fermented
sausages is clearly key to understanding the physical and chemical changes that occur
during fermentation and ripening [7]. High-throughput sequencing of the microbiota
from salami-type dry-fermented sausages of different origins indicates that LAB and
coagulase-negative cocci, including both micrococci and coagulase-negative staphylococci
(CNS) are the predominant groups in spontaneously fermented artisanal sausages [8].
Debaryomyces, Penicillium, and Aspergillus are the yeast and mold genera most commonly
found [6,9–11]. Studies involving metagenomics for this type of fermented product are
scarce in Brazil, and therefore, the ecology of Brazilian artisanal dry-fermented sausages
needs further investigation.

Hepatitis E virus (HEV) and Rotavirus—A (RV-A) belong to the human enteric viruses
group. They are non-enveloped and icosahedral viruses, and are very persistent in the
environment [12]. HEV has a positive-sense single-stranded RNA and RV-A a double-
stranded and segmented RNA (11 segments) that facilitates reassortment events among
species [12]. Both are zoonotic viruses that infect many animal species as well as humans.
They are mainly transmitted by the fecal-oral route, although HEV is also transmitted
parenterally (rare), or by the ingestion of contaminated meat from viremic animals [12,13].

HEV and RV-A infect domestic pigs, which serve as reservoirs, and are emerging
risks for human infection [13,14]. These viruses are excreted at high concentrations in
animal stools (mainly from swine) so animal waste can contaminate water supplies, and
when used in crops may contaminate food. Indeed, they persist as infectious particles in
the environment, e.g., water and sewage, for several weeks at lower than body tempera-
tures [13,15–17]. HEV circulation has already been reported in humans and domestic swine
in Brazil [17–19].

The present study aimed to detect and quantify HEV and RV-A in artisanal Colonial
salami-type dry-fermented sausages. We also analyzed the presence of fermenting, spoiling,
and pathogenic microorganisms in the sausages. Both culture-dependent and -independent
(metagenomic) approaches were used.

2. Materials and Methods
2.1. Colonial Salami-Type Dry-Fermented Sausage Production

Colonial salami-type dry-fermented sausages were collected from 13 production sites
(Table 1) under the state inspection system (SIE) in the Vale do Rio do Peixe zone, Santa
Catarina state, Brazil (ca. 27◦10′ S; 51◦30′ W). The sausages were prepared using the same
manufacturing process in all sites. Pigs were slaughtered and the carcasses underwent
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temperature equalization for up to 24 h in cooling chambers to establish rigor mortis. The
carcasses were exposed and shanks and palettes were used to prepare the sausages. The
meat was comminuted in a meat grinder and seasoned with NaCl, curing agent (NO2),
and spices.

Table 1. Origin of Colonial salami-type dry-fermented sausages in Santa Catarina State, ripening time and physical-chemical
characteristics.

Sample City Ripening
(Days) Casing pH Moisture

(%) NaCl (%) WPS (%) aw

L01 Piratuba 40 N 5.50 30.02 4.30 12.50 0.891
L02 Herval Velho 16 S 6.30 50.53 3.70 6.80 0.950
L03 Jaborá 1 S 6.10 51.14 3.17 5.80 0.957
L04 Concórdia 7 S 5.10 30.20 6.15 16.90 0.829
L05 Luzerna 2 N 5.80 50.22 4.20 7.70 0.943
L06 Videira 9 N 5.50 41.03 4.32 9.50 0.927
L07 Salto Veloso 12 N 6.40 40.85 4.75 10.40 0.917
L08 Salto Veloso 6 N 5.60 38.10 3.01 7.30 0.946
L09 Tangará 6 N 6.00 56.69 4.18 6.90 0.949
L10 Caçador 16 N 6.00 28.48 5.04 15.00 0.857
L11 Videira 2 N 6.00 43.22 4.49 9.40 0.928
L12 Iomerê 10 N 5.70 39.02 4.92 11.20 0.908
L13 Lacerdópolis 7 S 5.40 39.06 4.41 10.10 0.920

WPS: water phase salt; aw: water activity; N: natural; S: synthetic.

The production of these sausages does not involve addition of commercial starter
cultures for pan-curing. The fermentation is due to the natural microbiota of the meat and
environment. After homogenization in a mixer, the meat is extruded into a natural bovine
or a synthetic cellulose casing. The sausages are placed in a smoker where the drying is
started, and the curing is completed under smoking. After smoking, the sausages are ready
for sale. Thereafter, drying took place in the market, subject to the environmental conditions
of the market stall site. The 13 sausage samples used had drying times of between one and
40 days, with half of the samples having been dried for more than seven days.

2.2. Physical-Chemical Evaluation

The physical-chemical characteristics of the sausages (Table 1) were determined using
the official methods of the Ministry of Agriculture, Livestock and Supply (MAPA) [20]. The
pH was determined using a potentiometer (Quimis, model Q400A, Diadema, SP, Brazil).
The moisture content was determined by a gravimetric method, placing the samples in a
drying oven (SP Labor, model SP-100/150, SP, Brazil) at 105 ◦C for 24 h [21]. The NaCl
content was determined by the mercury metric method [20]. The aw was determined
by grinding the samples and placing them into a digital hygrometer at 25 ◦C (Aqualab
Model-Series 3 TE, Decagon Devices Inc., Pullman, USA). Water phase salt (WPS) was
calculated from the values of NaCl and moisture content, according to Koral and Köse [22],
using the following equation:

WPS% = (NaCl%/(NaCl% + moisture%)) × 100

2.3. Microbiological Analyses

The samples were tested for several microbial groups: total coliforms (TC), thermotol-
erant coliforms (TTC), coagulase-positive staphylococci (CPS), sulfite-reducing clostridia
(SRC), LAB, Enterococci, Salmonella and Listeria monocytogenes. TC were counted by spread
plating on Violet Red Bile Lactose agar (VRBL, Oxoid Limited, Hampshire, United King-
dom), incubated aerobically at 37 ◦C for 24 h [23]; TTC by pour plating on double-layered
VRBL agar, incubated aerobically at 44 ◦C for 24 h; CPS by spread plating on Baird-Parker
agar (BPA, Neogen, Lansing, MI, USA), incubated aerobically at 35 ◦C for 24–48 h [24]; SRC
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by pour plating on Iron Sulfite agar (ISA, Neogen), incubated anaerobically at 37 ◦C for
24–48 h [25]; LAB by pour plating on De Man, Rogosa and Sharpe agar (MRS, Neogen), incu-
bated anaerobically at 30 ◦C for 72 h [26]; Enterococci by spread plating on m-Enterococcus
agar (Neogen), incubated anaerobically at 35 ± 2 ◦C for 24–48 h; Salmonella by incubating
a 25 g pre-enrichment sample in buffered peptone water (BPW, Neogen) at 34–38 ◦C for
18 h, selective enrichment by adding 0.1 mL of the BPW to modified semi-solid Rappaport-
Vassiliadis medium (MSRV, Neogen) at 41.5 ± 1 ◦C for 24 h and 1 mL of BPW to Muller-
Kauffmann Tetrathionate-Novobiocin broth (MKTTn, Neogen) at 37 ± 1 ◦C for 24 h,
plating-out in xylose lysine deoxycholate agar (XLD, Neogen) at 37 ◦C for 24 h and bril-
liant green agar (BGA, Neogen) at 37 ◦C for 24 h, with confirmation by biochemical and
serological testing [27]; Listeria spp. by incubating a 25 g pre-enrichment sample in demi
Fraser broth (DF, Neogen) at 30 ◦C for 24 h, selective enrichment by incubating 0.1 mL
of the DF in Fraser broth (Neogen) at 35 ± 1 ◦C for 24–48 h, then plating-out on Listeria
agar (ALOA, Laborclin, Pinhais, Paraná, Brazil) at 37 ◦C for 24 h, with confirmation by
biochemical testing [28].

Yeasts and molds were counted by spread plating on dichloran glycerol agar (DG18,
Neogen) containing chloramphenicol (0.1 g/L) and incubating at 25 ◦C for 5–7 days [29].
Macroscopic observation was used to distinguish between yeasts and molds among the
colonies growing on the plates.

2.4. Viral Detection by RT-qPCR

Virus was detected by mechanical disruption of tissues followed by silica-membrane
RNA extraction, as described by García et al. [14] and Rodríguez-Lázaro et al. [30]. Briefly,
25 g samples of sausage (Table 1) were collected, chopped using a sterile scalpel blade and
homogenized; aliquots of 0.25 g were taken from the samples, and they were inoculated
with ~105 PFU (Plaque Forming Units) of MNV-1 (Murine Norovirus-1) as sample process
control virus (SPCV). Each sample (including SPCV) was homogenized in 1 mL of lysis
buffer RLT (Qiagen, Hilden, Germany) containing 0.14M β-mercapto-ethanol in a tissue
homogenizer, and incubated for 5 min at room temperature. The samples were then
centrifuged at 10,000× g for 20 min at 4 ◦C and the supernatants (800 µL) were transferred
to new tubes for nucleic acid extraction with the RNeasy® Mini kit (Qiagen, Germany),
following the manufacturer’s protocols. The resulting nucleic acid samples were subjected
to RT-qPCR, both undiluted and diluted tenfold to reduce the inhibitory effects of any
contaminants in the samples.

The TaqMan technique was used for RT-qPCR, as previously described by Baert
et al. [31] for MNV-1 as SPCV, Jothikumar et al. [32] for HEV and [33] for RV-A. All amplifi-
cations were performed in a StepOne Plus® Real-Time PCR System (Applied Biosystems,
Waltham, MA, USA), and each sample was analyzed in triplicate. Ultrapure water was
used as the non-template control for each assay.

2.5. Metagenomic Analyses

DNA was extracted from samples with the DNeasy Power Soil Pro kit (Qiagen,
Germany), following the manufacturer’s instructions. Total DNA extracted was used as the
template for Next Generation Sequencing (NGS), on the Illumina MiSeq platform (Illumina
Inc., San Diego, CA, USA).

The microbiome of the samples was studied by high throughput sequencing for
bacterial taxonomic identification based on conserved and variable regions V3/V4 of
the 16S rRNA gene with primers 341F (CCTACGGGRSGCAGCAG) and 806R (GGAC-
TACHVGGGTWTCTAAT) [34,35]. Extracted DNA was subjected to PCR using a previously
described protocol [36] developed by Neo-prospecta Microbiome Technologies (Florianop-
olis, Brazil). The first PCR used sequences based on Illumina’s TruSeq adapters, which
allows a second PCR with primers with indexed sequences. PCRs were carried out in trip-
licate using Taq Platinum (Invitrogen, Waltham, MA, EUA) with the following conditions:
PCR1—95 ◦C/5 min, 25 cycles (95 ◦C/45 s, 55 ◦C/30 s, 72 ◦C/45 s) and final extension
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72 ◦C/2 min; PCR2—95 ◦C/5 min, 10 cycles (95 ◦C/45 s, 66 ◦C/30 s, 72 ◦C/45 s) and final
extension 72 ◦C/2 min.

The community of filamentous fungi and yeasts was studied by amplifying the ITS1
region using ITS1F (GAACCWGCGGARGGATCA) and ITS2R (GCTGCGTTCTTCATC-
GATGC) primers [37], and the same conditions for PCR1. For PCR2, the conditions were:
95 ◦C/5 min, 15 cycles (95 ◦C/45 s, 66 ◦C/30 s, 72 ◦C/45 s) and final extension 72 ◦C/2 min.
The final reaction products were purified using a protocol developed by Neoprospecta
involving magnetic beads. The samples were grouped in libraries quantified by Real-Time
PCR using KAPA Library Quantification (KAPA Biosystems, Woburn, MA, USA). Library
pools were sequenced in a MiSeq sequencer system (Illumina Inc., USA) using V2- 300 cycle
kit, in a paired-end run, without normalization of libraries. The raw data (DNA sequences
in fastq files) were analyzed through bioinformatics workflow considering accumulated
error in the sequencing to be at most 1%. To identify the species of microorganisms present
in the samples, the DNA sequences obtained were compared with a proprietary database
containing well-characterized DNA sequences.

Sequencing data for each sample were processed with the Quantitative Insights into
Microbial Ecology (Qiime) software package [38]. The sequencing output was analyzed
by a read quality filter; reads with an average Phred score < 20 were removed and then
100% identical reads were clustered. Clusters with fewer than five reads were excluded
from further analysis, to remove putative chimeric sequences. The remaining good-quality
sequences were further clustered at 97% similarity to define operational taxonomic units
(OTU). OTUs were classified by comparison with a custom 16S rRNA/ITS1 database
(NEORefDB, Neoprospecta). Sequences with at least 99% identity to the reference database
were taxonomically assigned. Each OTU was given an arbitrary unit corresponding to the
relative abundance (r.a.) calculated as the number of reads pertaining to each species as a
percentage of the total number of sequences read for each sample. Species with a r.a. below
1% were grouped in the category “others”. The r.a. values were compared between OTUs
using heatmaps prepared on Qiime.

2.6. Statistical Analyses

Differences in virus parameters between samples collected from different sites and
seasons were analyzed by nonparametric analysis of variance (Kruskal–Wallis) performed
with Statistic 7.0. Pearson correlation and linear regression tests, ANOVA, and Student’s
t-tests were performed using GraphPad Prism 5.0 (USA). Differences were considered
statistically significant at a p-value ≤ 0.05.

3. Results and Discussion
3.1. Physical-Chemical Characteristics

Selected physical-chemical characteristics (pH, moisture, NaCl, WPS and aw) of the
sausage samples are summarized in Table 1. The sausages can be classified into two
subgroups according to the criteria of Brazilian legislation [39]: (i) dry sausages, with
moisture ≤ 40% and aw ≤ 0.92, and (ii) semi-dry sausages, for which these parameters
are not stipulated. A particular feature of these locally produced sausages is that they
are offered for sale as semi-dry sausages and, due to the environmental conditions, they
start to present dry sausage characteristics as the ripening continues. The dry sausages
(L01, L04, L07, L10, L12) had undergone seven or more days of ripening, whereas the
semi-dry sausages (L02, L03, L05, L06, L08, L09, and L11) had undergone up to six, except
for samples L02 and L06; these two sausages had been maintained under refrigeration at
the site of sale, reducing dehydration.

All the samples presented pH between 5.1 and 6.4 (Table 1), characteristic of the
sausages produced in the region. This weak acidity is also characteristic of Italian sausages,
produced in the Mediterranean region only with pork meat. Low pH and aw are the
two main obstacles to spoilage and the development of pathogenic microorganisms in
fermented sausages [40]. If these factors are weak, as is the case in our samples due to the
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relatively high pH of the samples (≥5.1), the association between aw and the competitive
microbiota (mainly LAB) becomes very important to the safety of the product. The WPS is
not frequently used to assess the potential for multiplication of spoilage and/or pathogenic
microorganisms in meat sausages in Brazil, but it is a potentially valuable indicator for
small producers, due to its relationship with water activity.

The minimum salt concentration in the samples was 3.01 (sample L08) and the maxi-
mum was 6.15 (sample L04). The upper limit of sensorial consumer acceptability for salt in
cured meats is 3.5% to 5.0% with 1.5% to 2.0% being optimal. The salt concentration was
therefore acceptable in the samples, except for sample L04. The higher concentration of salt
in this case appears to be a consequence of excessive drying: the moisture content was only
30.2%. In artisanal cured products, salt is still the main resource used for conservation, and
this is the main reason for the high salt content in these sausages, mostly between 3.7% and
5.04% (Table 1). These values are compatible with those required for the preservation of
sausages and related products [41].

3.2. Viral Detection

The samples of artisanal Colonial salami-type dry-fermented sausages from different
production sites (Table 1) were tested by RT-qPCR for HEV and RV-A. Neither virus was
detected in any of the sausage samples, and the mean viral extraction efficiency (measured
as SPCV -MNV-1 recovery) was 30%.

HEV is more frequently detected in feces than serum and liver samples from infected
animals [42], but there is nevertheless a risk of foodborne hepatitis E infection from con-
sumption of pork products. Boxman et al. [43] found HEV RNA in 14.6% of pork sausages
collected from a Dutch market from 2017 to 2019, and HEV RNA was detected in 18.5% of
salami (n = 92) samples; sequence-based typing was successful for 33 samples, and all were
genotype 3c. Berto et al. [44] found HEV RNA in four samples of liver sausage in France,
and three of them had infectious particles of HEV as assessed by cell culture assay. Colson
et al. [45] found HEV RNA of genotype 3 in seven samples of raw figatelli purchased in
French supermarkets. However, HEV RNA was not detected in any of the 22 sausages
from different production sites analyzed in this work. This contrasts with Souza et al. [17],
who detected HEV in effluent after swine manure digestion by psychrophilic anaerobic
biodigesters (PABs) in Concórdia city, in Santa Catarina state. This demonstrates the circu-
lation of HEV in the pig-finishing farms in the zone where the Colonial sausage we studied
was produced.

Lowering pH during meat fermentation is believed to inhibit the growth of certain
pathogens. Wolff et al. [46] tested the pH resistance of a genotype 3 strain of HEV. Only
minimal inactivating effects were found at pH conditions common in sausages during
curing (4.5 to 6.5), simulated using D/L-lactic acid. High salt concentrations are also used
to preserve meat products and to inactivate foodborne pathogens. Wolff et al. [47] tested
the effects of NaCl, sodium nitrite, and sodium nitrate concentrations on the infectivity of
HEV. Conditions consistent with those in fermented sausages were simulated. Treatments
with up to 20% NaCl for 24 h at 23 ◦C, with and without the addition of 0.015% nitrite
or 0.03% nitrate, did not inactivate the virus, demonstrating that HEV is highly stable at
salt concentrations used to preserve raw meat products. Therefore, the acid pH and high
salinity of the products we tested were unlikely to be responsible for the absence of HEV.

Organs from naturally HEV-infected pigs were tested by García et al. [14] and the HEV
virus was not detected in loin samples: meat even from infected animals may therefore
be only a low risk for HEV transmission. The main ingredient used in the preparation
of Colonial salami is the loin, and this may explain the absence of HEV RNA from the
samples tested, despite evidence of the circulation of HEV in pig farms in the region [17].
Other organs would need to be analyzed to assess the HEV contamination of the pigs in
the region.

RV-A RNA was not detected in the Colonial sausage samples analyzed, evidencing the
good sanitary conditions during slaughter and sausages preparation. RV-A zoonotic trans-
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mission to humans usually occurs via direct contact with infected animals or fomites [15].
RV-A causes diarrheic diseases in swine and meat contamination could occur in the slaugh-
terhouse or during sausage preparation by handlers and fomites. RV-A is the most preva-
lent rotaviral cause of diarrhea in swine [48]. Other RV species that can infect pigs were
not investigated in this work.

3.3. Microbiological and Metagenomic Analyses

The combined culture-dependent and -independent approaches are best for analyses
of the microbiota of fermented foods [49]. Culture-dependent analysis showed high levels
of LAB and yeasts and the presence of enterococci and molds in all samples. There
were low or undetectable counts of undesirable microbiota, in accordance with Brazilian
standards (Table 2). In general, the samples showed similar cell count values that were
independent of the ripening time. Likewise, there was no correlation between ripening
time and microbiota in the metagenomic analyses. The pH in all samples was higher
than 5.0, indicating that LAB community was mostly bacteria with low acid production
capacity, resulting in low acidity fermented sausages. Although low acidity does not favor
the inhibition of undesirable microbiota, it enhances the water-retention capacity of meat
proteins, contributing to the maintenance of moisture during ripening [50]. The yeast
community is important for the development of flavor and inhibition of toxigenic molds.

Table 2. Microbial analyses of Colonial salami-type dry-fermented sausages.

Sample TC * TTC * CPS * SRC * LAB * Enterococci * Yeasts * Molds * Salmonella ** Listeria spp. **

L01 2.04 2.00 2.00 1.00 7.60 5.89 8.34 <2.00 A P
L02 <1.00 <1.00 <2.00 <1.00 6.91 4.29 6.64 7.00 A P
L03 1.70 1.70 <2.00 <1.00 8.32 3.11 3.11 7.30 A A
L04 3.89 3.81 <2.00 1.48 6.60 5.68 6.81 4.30 A A
L05 4.73 4.73 2.48 <1.00 7.84 5.78 8.30 7.48 A P
L06 2.26 <1.00 <2.00 <1.00 7.84 3.63 7.28 7.00 A A
L07 1.00 1.00 4.73 <1.00 7.86 6.20 6.81 7.30 A A
L08 <1.00 <1.00 <2.00 <1.00 7.91 3.67 6.78 7.00 A A
L09 2.08 1.60 2.90 <1.00 8.38 6.25 7.20 4.48 A A
L10 <1.00 <1.00 <2.00 <1.00 6.79 3.15 6.55 7.30 A A
L11 2.86 2.28 2.00 <1.00 6.75 4.70 7.47 7.30 A A
L12 2.00 2.00 2.30 <1.00 8.48 3.87 7.95 4.00 A P
L13 <1.00 <1.00 <2.00 1.00 7.96 2.30 6.83 <2.00 A P

* cfu·log−1; ** Presence (P) or absence (A) in 25 g of sausage; TC: total coliforms; TTC: thermotolerant coliforms; CPS: coagulase-positive
staphylococci; SRC: sulfite-reducing clostridia; LAB: lactic acid bacteria.

The 16S amplicon target sequencing identified more than 60 species each with a r.a.
above 0.1% (Figure 1 shows the 31 species with over 1% r.a., in one or more samples).
Species with a very small number of reads (r.a. < 1%) were classified into the category
“others”.

LAB and CNS were the most abundant groups in our samples (Figure 1), consistent
with previous reports for dry sausages from Spain and Italy [6,8]. LAB was predominant in
11 of the 13 sausage samples: Latilactobacillus sakei was the most abundant taxon in samples
L01, L03, L05, L06, L08, L10, L12, and L13 (r.a. of 43.56%, 65.85%, 49.57%, 38.38%, 42.70%,
62.75%, 40.30%, and 92.14%, respectively); Latilactobacillus curvatus was predominant in
sample L02 (r.a. 60.31%); Lactococcus lactis in sample L04 (r.a. 33.33%), and Pediococcus
pentosaceus in sample L11 (r.a. 36.39%).
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Figure 1. Relative abundance (%) of bacterial species in artisanal Colonial salami-type dry-fermented sausages. Species
with a very small number of reads (relative abundance < 1%) were classified into the category “others”.

Most samples (Figure 1) contained three or four species with r.a. above 5%, although
in sample L13 Lb. sakei was massively predominant and the microbial community was not
very diverse. Lb. curvatus was found at r.a. of between 5% and 12% in samples L01, L07,
L09, and L12, Lactococcus lactis at between 9% and 14% in samples L05 and L12, Lactococcus
garvieae at around 13% in samples L08 and L011, Leuconostoc mesenteroides at 17% in L08,
Lactiplantibacillus plantarum at 7% in L02 and Weissella hellenica at 18% in L10. Lb. sakei, Lb.
curvatus and Lp. plantarum are the species of LAB commonly found in sausages with no
added starters. Other species of Weissella, Leuconostoc, Lactococcus, and Pediococcus were
also found, but as part of the subdominant microbiota in our samples. The fermentation in
these sausages is spontaneous, so the microorganisms detected come from the meat and
the surrounding environment [6].

The manufacturing process of artisanal Colonial salami-type dry-fermented sausages
from Santa Catarina includes spontaneous fermentation, cure and drying as conservation.
Thus, the obstacles to the development of spoilage and pathogenic microbiota are the
addition of preservatives (NaCl and sodium nitrite), pH, aw, and the competitive micro-
biota, mostly LAB. The protective effects of LAB are due in part to their production of
bacteriocins with antimicrobial activity against pathogens [51]. Hebert et al. [52] showed
that Lb. curvatus CRL705 isolated from Argentinean artisanal fermented sausage produces
bacteriocin with anti-listeria activity. Palavecino et al. [6] describe coagulase-negative
staphylococci (CNS) with antimicrobial activity. The presence of CNS (Staphylococcus sapro-
phyticus, Staphylococcus galinarum, and Staphylococcus equorum) in our samples (Figure 1)
may be one of the reasons for the absence of pathogens common in meat products, such as
Clostridium botulinum, Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli [53].

In general, the sausage samples (Table 2) that showed the best hygiene indicator results
(TC, TTC, CPS, SRC, and Salmonella) were drier (e.g., L10) and had longer ripening time (e.g.,
L02). This is in contrast to the observation for the high LAB semi-dry sausage subgroup,
which corroborates the metagenomic data (Figure 1). Listeria spp. were detected in 38.4%
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of the samples, but L. monocytogenes was not detected at a significant r.a. in any sample
(Figure 1). Listeria spp. are detected in many fermented sausages with low acidity and high
aw [54–56]. Listeria spp. counts determined by culture-dependent methods are generally
low in fermented sausages [57,58], and culture-dependent methods employ enrichment
and cell concentration steps. Therefore, the possibility of isolating a microorganism is
greater than for the metagenomic analysis when it is present at low r.a.

In addition to LAB, species of the Micrococcaceae family, mainly belonging to the genus
Staphylococcus, are commonly found in artisanal sausages. S. saprophyticus, Staphylococcus
xylosus, S. equorum, and Staphylococcus carnosus are often predominant. Staphylococcus
succinus is also frequently observed in sub-dominant populations [7,59]. For samples L07
and L09 (Figure 1), the predominant microorganism was S. saprophyticus (r.a. 42.60% and
61.65%, respectively). This species was also found in samples L01, L06, L08, L10, and L12
(r.a. from 15% to 26%). S. succinus was found in sample L09 at an r.a. off 20%.

Brochothrix thermosphacta, Carnobacterium spp., clostridia, and Pseudomonas spp. are
among the bacteria most frequently causing spoilage of refrigerated pork meat [60]. Pseu-
domonas fragi (Figure 1) was found in samples L01, L03, L05, L06, and L011 with r.a. between
10% and 23%. Carnobacterium divergens (r.a. 1.87%) and Clostridium perfringens (r.a. 27.76%)
were found in sample L04, in which the abundance of lactobacilli was low. B. thermosphacta
was detected in samples (Figure 1) with a low abundance of lactobacilli (L03, L05, and
L11). However, for sample L09, S. saprophyticus was predominant, and although the r.a. of
lactobacilli were low, no sequences belonging to B. thermosphacta, C. divergens (r.a. 1.87%),
Pseudomonas spp. or clostridia were detected.

Taxonomical assignment of the yeasts (Figure 2) showed the dominance of Debary-
omyces hansenii in L02, L04, L06, L07, L09, L10, L11, and L12 (r.a. 63.49%, 44.25%, 82.44%,
80.01%, 65.71%, 35.20%, 28.92% and 10.85%, respectively) followed by Candida zeylanoides,
predominant in samples L01, L03, and L12 (r.a. 73.91%, 19.13%, and 58.23%, respectively),
Yarrowia galli predominant in L05 (r.a. 42.15%), and Kodamaea ohmeri in L08 (r.a. 53.31%).
D. hansenii, C. zeylanoides and Yarrowia lipolytica were found in all the samples, although
they were less abundant than the other yeast groups. Y. galli, Pichia kudriavzevii, K. ohmeri,
Candida parapsilosis and Candida tropicalis were also found with relevant r.a. in the sub-
dominant populations of the samples.

D. hansenii is the most common yeast in fermented sausages and contributes to two
important characteristics: production of volatile compounds during ripening, especially
esters, branched alcohols, and aldehydes [61,62], and bioprotective antifungal activity
against toxigenic penicillia [63]. Species belonging to the genera Candida, Yarrowia, and
Pichia are also frequently found [6,51,64].

Development of mold on the surface of the casings during ripening of fermented
sausages is common, and molds are present in the environment at the production and
ripening sites. Molds are important in the development of flavor, but some fungi of the
genera Aspergillus and Penicillium can produce undesirable mycotoxins [65]. For example,
a combination of high moisture, low temperature and the predominance of penicillia
has been found to be conducive to the production of penicillic acid, a carcinogen [66].
The filamentous fungus found at the highest abundance was Aspergillus cibarius in L02,
L11 and L12 (3.38%, 42.51%, and 35.30%, respectively) followed by Penicillium thymicola
(r.a. 8.78% in L12), and Geotrichum candidum (r.a. 4.90% in L04). Aspergillus and Penicillium
are the main genera found in fermented sausages, while Geotrichum is found with lower
frequency [6,51,67–69].
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Figure 2. Relative abundance (%) of fungal species in artisanal Colonial salami-type dry-fermented sausages. Species with a
very small number of reads (relative abundance < 1%) were classified into in the category “others”.

4. Conclusions

The present study suggests that LAB may provide a larger contribution to prevent
pathogen growth than ripening time and/or physicochemical characteristics (pH, moisture,
NaCl, and aw) in dry-fermented, low-acid artisanal Colonial sausages. Although we
provide some evidence for a protective role of LAB, and enteric zoonotic viruses (HEV
and RV-A) were not detected in the sausage samples, the presence of Cl. perfringens is an
indication of the need for sanitary improvements in the production process to prevent
foodborne outbreaks.
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