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Editorial on the Research Topic

The Emerging Role of Artificial Intelligence in Dermatology

The use of artificial intelligence (AI) in dermatology is an emerging area of interest with
several applications highlighted in the special topic, including the differentiation of benign and
malignant pigmented lesions, improvement of diagnosis and management of psoriasis and other
inflammatory diseases, assessing ulcer specifications, and gene expression profiling Gomolin et al..
Over the past decades, there has been a significant focus in analyzing and classifying data from
skin lesions using machine learning (ML) models (1, 2). In this editorial, we highlight previous and
recent applications of AI and its use during the coronavirus disease 2019 (COVID-19) pandemic.

It was previously illustrated that AI is able to distinguish between benign nevi vs. melanoma
using individual pixels from dermatoscopic and non-dermatoscopic images (3–19). Jutzi et al.
further assessed the attitudes of patients toward AI and demonstrated that most respondents
supported the use of AI, particularly to help detect melanoma early at home. However, potential
errors, poor/inconsistent image quality and insufficient data protection of AI still pose important
barriers. Recently, ML and convolutional neural network (CNN) models that classify melanoma on
histopathological or clinical images demonstrated ability to achieve exceedingly high sensitivities
and diagnostic accuracies (20–24). ML models are also being trained using substantial data sets
including more racially diverse data, making AI more accessible for use in remote and resource-
limited healthcare settings (20, 25). There is also a rise in smartphone applications with classifying
the risk of photographed lesions or detecting malignant/premalignant lesions on histopathological
images (26, 27). One study assessed whether dermatoscopic or reflectance confocal microscopy
(RCM) findings correlated with histologic diagnoses ofmelanocytic lesions with peripheral globules
(28). They found that dermoscopy and RCM diagnosed 100% of melanomas and 84.21% of
dysplastic nevi accurately. Dysplastic nevi and melanocytic lesions differed significantly based on
the sizes and shapes of peripheral globules, and the signs of malignancy on RCM including pagetoid
cells, non-edged papillae, atypical junctional thickenings, and atypical cells at the dermal-epidermal
junction. A top-ranked computer algorithm has also been shown to classify images of melanomas,
nevi, and seborrheic keratoses with a higher specificity than dermatologists (85.0 vs. 72.6%) (29).
Thus, AI has the potential to classify skin images of melanoma and its benign mimickers with
high accuracy.

However, despite the increased accuracy of diagnosing melanomas, clinicians or AI cannot
reliably predict the oncologic transformation of nevi (30). This is due to the static nature of the
nevi on clinical presentation, and the lack of data to train AI on the evolution of certainmelanocytic
nevi including dysplastic or spitzoid nevi. Further research is required to understand how AI can
identify the progression of dysplastic nevi.
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Gomolin et al. and Schäfer et al. both highlighted the use
of AI in ulcer assessment. Schäfer et al. demonstrated that
predictive values including low household income, older age,
and comorbidities were associated with higher risks for diabetic
foot ulcer (DFU) and amputation. However, ML models did not
achieve reliable results when predicting the prognosis of DFUs or
amputations using the predictive values. The authors highlighted
the development of models that can detect wound progression of
DFUs using predictive values as next steps Schäfer et al.. Recently,
CNNmodels have emerged categorizing wound images based on
their etiology (31) and are being implemented in smartphone
application to detect DFU wounds with high inter- and intra-
observer reliabilities compared to traditional measurements (32).
Notably, the combination of clinical laboratory (e.g., glomerular
filtration rate) data from health records and image features of
patients withDFUs by aMLmodel predicted the healing of DFUs,
with reliable accuracies (33). Polarized hyperspectral imaging and
ML technology has also recently shown to be a potential avenue
to characterize detailed pathological complications of ulcers (34).

Similarly, a review by Du et al. illustrated that ML has the
potential to predict the clinical outcomes and prognosis of several
dermatoses. Larger sample sizes of data enable ML algorithms
to produce accurate outputs; however, this may be a limitation
since national and international collaborations between registries
are required to acquire large dermatologic data sets. The authors
underscore the need for prospective clinical trials to validate
the use of ML models to predict outcomes. Recently, a ML
model accurately predicted the Dermatology Quality of Life
Index for patients with psoriasis withdrawing from risankizumab
(35), while similar ML technology was used to build a highly
accurate biomarker predicting the progression of alopecia areata
to alopecia totalis or alopecia universalis (36). A multicenter
prospective open label pilot study was recently conducted
treating psoriasis patients with secukinumab. A predictive model
was developed using clinical attributes of patients, achieving
an accuracy of 91.88% in predicting responders and non-
responders (37).

A recent study by Showalter et al. (38) shed light onto
the potential application of AI to inflammatory dermatology
conditions. Showalter et al. aimed to determine the histologic
and gene expression features of clinical improvement in early
diffuse cutaneous systemic sclerosis (dcSSc) by evaluating
skin biopsies from patients with dcSSc. They used support
vector machine learning using scleroderma gene expression
subset as classifiers and histology scores as inputs. In the
samples with the highest Modified Rodnan Skin Score,
alpha-smooth muscle actin (ASMA) was the highest and
CD34 was the lowest, and these markers were the strongest
predictors of gene expression subset. CD34 staining was the
highest in the normal subset and ASMA was highest in the
inflammatory subset. The CD34 and ASMA binarized scores
also identified a 47-gene fibroblast polarization signature
which decreased in patients with clinical improvement
compared to those with no improvement. Systemic sclerosis
histologic features have been shown to correlate with the
Modified Rodnan Skin Score; however, this recent study
highlights the potential to use dermal fibroblast polarization

between aSMA and CD34 to describe clinical improvement
for dcSSc.

Heckler et al. previously examined the effects of label noise
on the performance of CNN models when classifying skin
cancers. They found that ML models are highly sensitive to label
noise, highlighting the need for biopsy-verified images to train
models. Recently, a hybrid evolutionary optimization technique
based on two swarm intelligence algorithms was alternatively
proposed to overcome the premature local convergence of
single conventional clustering algorithms when detecting and
segmenting psoriasis lesions (39, 40). Global convergence of
algorithms has demonstrated superiority over conventional
clustering techniques (39, 40), revealing the potential to combine
multiple algorithms to overcome the biases and restrictions of
single models.

Importantly, the social distancing restrictions imposed by
the COVID-19 pandemic fostered digital transformations in
dermatology and sparked COVID-19-specific applications of AI
and technology. For instance, several cutaneous manifestations
are associated with COVID-19 including pernio-like and
vesicular lesions (41); CNN models are being developed to
detect these lesions in patients with Fitzpatrick I-VI skin, further
optimizing contact-free healthcare (42, 43).

During the pandemic, there has also been an increased
uptake of teledermatology worldwide to ensure patients and
healthcare providers have access to dermatologists (44–46).
Teledermatology enables patients from remote/rural areas and/or
underserved populations to obtain access, while reducing
wait times for dermatology referrals (47–49). Recently, ML
models have been developed to assess the quality of photos
submitted by patients to teledermatology consults—rejecting
low quality and retaining high quality photographs (50). ML
models are now being used to classify dermatology clinical
images in the electronic health records to optimize access to
these images for research purposes (51). Furthermore, recent
studies have demonstrated that dermoscopy improves the
diagnostic accuracy of teledermatology (52); thus, smartphone
microscope applications employing CNN are now increasingly
supplementing teledermatology consults (53). Furthermore,
because several dermatoses are usually initially seen by primary
care providers (PCP), an AI-based tool was developed to interpret
images and their associated medical histories, which improved
the diagnoses of dermatoses by PCPs in a teledermatology
setting (54).

Social media has also become an important component of
technology and dermatology during the COVID-19 pandemic.
The use of social media in dermatology increased over the recent
years and common uses for dermatologists include information
dissemination, knowledge sharing, and networking (55–57).
Thus, social media enables knowledge-exchange and interactivity
during the pandemic—when access to dermatologists may
be restricted.

Although there are several applications of AI in dermatology,
there are certain barriers preventing its uptake. With respect
to teledermatology, full-body skin examinations are difficult
to perform virtually, thus, clinically significant lesions may
be missed (58, 59). Several costs are also associated with
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the implementation of teledermatology (i.e., equipment
costs, technological competencies, and staff training),
while ensuring encryption to protect confidential medical
data (60–62). Teledermatology may also be unavailable
for individuals who do not have access to high quality
internet or telecommunication devices with high quality
cameras (63).

Several other barriers exist with regards to the implementation
of AI in clinical dermatology, which have been extensively
discussed by Gomolin et al. as well, including generalizability,
standardization, and interpretability (3, 64–67). To summarize,
several AI algorithms are trained using input data from limited
populations, thus they may not be effective in patients from
different settings or with unique phototypes. Universal quality
standards for images used to train AI or used for dermoscopy
are also lacking. Further, patients appreciate the traditional
encounter with the physician and the accountability that it
entails. Physicians alike, are resistant to accept that AI can

diagnose and manage dermatoses more reliably than them.

Finally, most original research studies in AI have not studied
the applications in large-scale clinical trials. More high-quality
clinical studies are needed to substantiate the use of AI
in dermatology.

In conclusion, significant advances have been made to
enable AI use in dermatology. Such advancements play essential
roles in detecting, diagnosing, classifying, and prognosticating
dermatoses. This field will continue to evolve with the
focus on improving the diagnostic accuracy of ML models,
determining the use of predictive models through prospective
trials, and developing smartphone applications to optimize
virtual healthcare.
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