
RESEARCH ARTICLE

Fractional integral-like processing in retinal

cones reduces noise and improves adaptation

Antal MartineczID
¤*, Mihoko Niitsuma

Department of Precision Mechanics, Chuo University, Tokyo, Japan

¤ Current address: Department of Pharmacy, University of Tromsø, Tromsø, Norway

* antal.martinecz@uit.no

Abstract

In the human retina, rod and cone cells detect incoming light with a molecule called rhodop-

sin. After rhodopsin molecules are activated (by photon impact), these molecules activate

the rest of the signalling process for a brief period of time until they are deactivated by a mul-

tistage process. First, active rhodopsin is phosphorylated multiple times. Following this, they

are further inhibited by the binding of molecules called arrestins. Finally, they decay into

opsins. The time required for each of these stages becomes progressively longer, and each

stage further reduces the activity of rhodopsin. However, while this deactivation process

itself is well researched, the roles of the above stages in signal (and image) processing are

poorly understood. In this paper, we will show that the activity of rhodopsin molecules during

the deactivation process can be described as the fractional integration of an incoming signal.

Furthermore, we show how this affects an image; specifically, the effect of fractional integra-

tion in video and signal processing and how it reduces noise and the improves adaptability

under different lighting conditions. Our experimental results provide a better understanding

of vertebrate and human vision, and why the rods and cones of the retina differ from the light

detectors in cameras.

Introduction

As humans rely heavily on visual perception, research on human vision is currently receiving

particularly strong interest. Thus, the rods and cones of the retina became among the most

well researched cells in human physiology. However, despite the rich literature and constant

progress in this field, human vision is still not understood in its entirety owing to its overall

complexity [1–5]. This fact is well illustrated by the different scales of interactions that are

required to produce a signal in the retina: (i) molecular processes within the photoreceptor

cells [6–8]; (ii) the various roles of the photoreceptor cells [9, 10]; (iii) their interactions with

other cells before the signal leaves the retina [11–13].

In this paper, we focus on the first step of the signal forming process of rods and cones: the

activation and deactivation of rhodopsin. These proteins enter their active state upon impact

with a photon, which in turn activates the rest of the signalling cascade until they are deacti-

vated by a multistage process. Each stage of the deactivation process greatly reduces their
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activity; however, the time required to complete each step progressively increases, resulting in

the temporary accumulation of partially deactivated rhodopsin molecules that still show some

residual activity. It is currently unclear whether (and how) these residual activities affect the

signal produced by the cell.

During a previous conference, we reported (as preliminary results) that the structure of this

process has the potential to approximate the mathematical operations of fractional integration.

[14]. Furthermore, we have also shown that the phosphorylation process can approximate this

kind of behaviour, based on the commonly used models of the cones [15–17].

Fractional integrals generalise traditional Riemann integrals by allowing integration of

non-integer times (e.g. half-integrals). Fractional calculus, which also encompasses fractional

integrals, has many interesting real-world applications in various fields, such as robotics [18],

modelling ground water pollution [19], modelling drug diffusion in the human body [20],

modelling the dynamics of neurons [21], and modelling protein dynamics [22]. Moreover,

fractional calculus has been gaining traction in, and proved to be a useful tool for, our topic of

interest: image and signal processing [23–25].

In this paper, we investigate whether the multi-stage deactivation process of rhodopsin and

related residual activities offer any signal processing benefits, and how it affects signals in gen-

eral. In our previous work, we used the model presented in [15] to show that this process has

the potential to approximate fractional integral-like behaviour. To investigate the effect of the

deactivation process, we have expanded this model with the activity of arrestin bound rhodop-

sin, as it was not previously included.

In addition, we show that the activity of rhodopsin still approximates fractional integration

after the addition of the arrestin binding process to the cone model. Furthermore, the addition

of the arrestin binding process model expands the frequency range of the approximation. Our

main purpose for including these results is to demonstrate that residual activities can accumu-

late in signalling processes; therefore, they should not be neglected. Finally, as the activity itself

can be described as fractional integration, its effects can be predicted without explicitly model-

ling the process.

Materials and methods

Mathematical model

Active rhodopsin is constantly deactivated by the following process: first, rhodopsin is phos-

phorylated 5-7 times in rapid succession; following this, it is inhibited by arrestin before finally

decaying into opsins within the next few seconds [26–29]. Phosphorylation rates exponentially

decrease with each successive phosphorylation: γi� γ � 0.9i, where γ, is the rate of the first

phosphorylation [15]. However, the rate of arrestin binding linearly increases with each phos-

phorylation: βi� i � 0.5, where βi, is the rate of arrestin binding to rhodopsin phosphorylated i
times. This process is described and modelled in detail in [15–17], which we used as a founda-

tion for our model (Eqs 1a–1d). We extended the model by adding the stage where rhodopsin

is inhibited by arrestin, and retains only a fraction of its original activity (Eq 1e) [10, 30–33].

With each phosphorylation, rhodopsin is inhibited by 50% [15], and the binding of arrestin

further inhibits activity by a = 50–90% [30–32].

The equations of the model for 6 phosphorylations are as follows:

_r0 ¼ inputðtÞ � g0r0 ð1aÞ

_r1 ¼ g0r0 � ðg1 þ b1Þr1 ð1bÞ
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_r2 ¼ g1r1 � ðg2 þ b2Þr2

..

. ð1cÞ

_r6 ¼ g5r5 � b6r6 ð1dÞ

_rarr ¼
X6

i¼0

biri � 0:3rarr; ð1eÞ

where ri is the number of rhodopsin molecules with levels of phosphorylation and rarr is the

number of rhodopsin molecules bound by arrestin. The total activity of the rhodopsin is the

output of the model, as follows:

outputðtÞ ¼
X6

i¼0

2� iri þ 2� 6 � a � rarr ð2Þ

The arrestin binding rates for the intermediate phosphorylation steps are of little signifi-

cance, as the phosphorylation rates are a magnitude faster. Therefore, as previously reported in

[14], the system of equations can be simplified without affecting the output. Fig 1 shows that

the impulse responses were approximately the same before and after simplification. As these

are linear systems of equations, estimating the impulse response was sufficient for

approximation.

The simplified equations are as follows:

_r0 ¼ inputðtÞ � g5r0 ð3aÞ

_r6 ¼ g5r0 � b6r6 ð3bÞ

_rarr ¼ b6r6 � 0:3rarr; ð3cÞ

In this case the output is:

outputðtÞ ¼ r0 þ 2� 6r6 þ 2� 6a � rarr ð4Þ

Fig 1. Impulse responses of full (panel A, Eqs 1 and 2) and simplified model (panel B, Eqs 3 and 4). The thin lines are the

contributions of the individual equations to the output (black curves).

https://doi.org/10.1371/journal.pone.0205099.g001
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Fractional integrals

Definition

Fractional integrals require multiple definitions, approximations, and numerical methods to

solve [34–39]. Here, we used the Riemann-Liouville definition expressed with a convolution

operation [40] as the definition, which shows the impulse response of the operation. In this

paper, we show how this impulse response was approximated by the deactivation of rhodopsin

in response to a single impulse of light.

Iaf ðtÞ ¼ f ðtÞ 
 ð
1

GðaÞ
ta� 1Þ: ð5Þ

The above equation is a linear operation with an impulse response of 1

GðaÞ
ta� 1, where Γ(α) is

the gamma function and the generalisation of the factorials.

Approximation

As mentioned above, linear operations and systems are fully defined by their impulse

responses. A system whose impulse response approximates the impulse response of a fractional

integral will also approximate the fractional integral itself. Similar to results reported in [14]

and [21], we have shown that connected feedback loops with logarithmically decreasing poles

(Eqs 6–9) can be used to approximate fractional integrals, and the sum of their weighted

responses approximates the response of the fractional integrals. (see Fig 2).

With differential equations:

_x0 ¼ f ðtÞ � cx0 ð6Þ

_x1 ¼ cx0 � c2x1 ð7Þ

_x2 ¼ c2x1 � c3x2;

..

. ð8Þ

Fig 2. Approximation (solid black curve, Eqs 6–9) of a half integral’s (I0.5) impulse response: t−0.5 (dashed line) on

the log–log plot. The grey lines represent each feedback loop’s contribution to the output.

https://doi.org/10.1371/journal.pone.0205099.g002
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where the output is:

Iaf ðtÞ ¼
X

i

ðcið1� aÞxiÞ; ð9Þ

and 0< c< 1 is the spacing of the feedback loops; for example, c = 1/10.

Bode Plots

Bode plots fully define a system by plotting the relationship between the input’s frequency and

the output’s phase and amplification in linear systems. These plots can be used to identify frac-

tional integrals, as a fractional integral Iα has a constant phase shift at −90α degrees and an

amplification of −20α dB/dec [41].

See examples on the approximation (Eqs 6–9) in Fig 3.

Results and discussion

Activity of rhodopsins approximate a fractional integral

We plotted all the Bode plots (Fig 4) of the model (Eqs 3 and 4) with all the different combina-

tions along with the published parameter ranges of the activation and deactivation rates

Fig 3. Bode plots of approximations to fractional integrals: I0.15, I0.3, I0.45, I0.6, I0.75, I0.9 (Eqs 6–9).

https://doi.org/10.1371/journal.pone.0205099.g003

Fig 4. Bode-plots of rhodopsin’s activity with the different combinations of parameters found in the literature (number of phosphorylations,

phosphorylation rate, inhibition by arrestin). In most of these cases, the phase-shift plots plateaued between the frequencies of 0.3-30Hz;

therefore, we approximated fractional integrals within that range.

https://doi.org/10.1371/journal.pone.0205099.g004
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(Table 1). As with Fig 3, the phase plots plateaued at −90α degrees; specifically, between −9

and −27 degrees. Therefore, the rhodopsin’s activity approximated a fractional integration

between the orders of 0.1–0.3.

The parameters used for plotting are:

• phosphorylation rates between 50 and 100 1/s with steps of 10 1/s,

• inhibition by the binding of arrestin, between 51% and 99% with the steps of 5%,

• number of phosphorylations: 5, 6 or 7.

Noise reduction and movement

The image produced by rhodopsin molecules can be imagined as a composition of images pro-

duced by cameras with different exposure times. Speaking mathematically, simple cameras

with different exposure times can be described as a feedback loop where the exposure time cor-

responds to the time constant of the loop; in our case, the time rhodopsin spends at each deac-

tivation step (see Fig 5).

In signal and image processing, feedback loops are low-pass filters; they suppress high fre-

quency components of the signals. Thus, they are often used to reduce measurement noise.

Table 1. Parameters for the rhodopsin’s deactivation process.

Parameter Approximate values References

Phosphorylation rates 60–90[1/s] [15, 28]

Inhibition per phosphorylation 50% [15, 28]

Number of phosphorylations 5–7 [15–17, 26]

Arrestin binding rates 2[1/s] [15, 28]

Inhibition by arrestin 50%–99% [30–32]

Decay rate into opsins 0.3[1/s] [10, 33]

https://doi.org/10.1371/journal.pone.0205099.t001

Fig 5. The contribution of the different stages of rhodopsin deactivation to the impulse response. The left side

depicts the responses (grey) and their sum (black) to a step input. The middle images show the responses to a video of

a moving image at each stage (from left to right). The right side shows the combined images.

https://doi.org/10.1371/journal.pone.0205099.g005
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Higher frequency components in video processing are either fast movements or noise; there-

fore, noise reduction comes with the compromise of losing detail in moving objects. In other

words, the faster the movement (higher frequency), the more detail is suppressed and blurred.

In noise reduction, fractional integration offers a compromise, as it is a combination of differ-

ent feedback loops and the high frequency components are kept but are slightly suppressed by

the other loops. As a result, the noise reduction and blur effects are more “gentle” than in the

case of feedback loops (see Fig 5). This is indicated in the bode-plots with the slope of −20α
dB/dec. For cones this is approximately −4 dB/dec); for the first order feedback loops this is

−20 dB/dec slope (Fig 4).

We speculate that, as human eyes fixate on objects of interest [42], this kind of processing

allows us to visually ignore some of the motion and noise we are not interested in at a given

moment. For example, during a snowfall, individual snowflakes do not necessarily disappear

from our vision, but are gently suppressed.

Adaptation

In [43], it was shown that adding a power law dynamic to an auditory-nerve and inner hair

cell model allowed the adaptive part of the model to adapt to a wider range of signals. More-

over, it showed a possible explanation as to how the neurons in the auditory nerve system can

adapt their responses according to input history.

In our case, fractional integrals add power law dynamics to the model, as their impulse

response follows power law dynamics. Thus, the response to sustained inputs can reach higher

levels than would be possible with only an exponential decay (see Fig 5). In addition, as pupils

contract in response to light, the possible magnitudes are restricted (under normal lighting

conditions). Therefore, power law dynamics provided by fractional integrals can allow the pro-

cess to reach higher levels of overall activity in response to sustained inputs that would other-

wise be impossible to achieve. This would allow the processes inside and outside cones to

adapt to (and differentiate between) lighting conditions and temporarily high input levels.

Conclusions and future directions

We have shown how rhodopsin’s ability to activate the rest of the signalling approximates a

fractional integral. Furthermore, we have shown how this affects the rest of the signalling pro-

cess; namely, it improves the cone cells’ abilities to adapt to different light conditions and

reduces noise in “measuring” the number of incoming photons.

Fractional components allow the fine-tuning of responses in proportional-integral-deriva-

tive (PID)-type controllers [44]. We hypothesise that this rhodopsin signalling behaviour con-

fers additional benefits when combined with the full cone model described in [15]. The full

cone model can be considered as a PD-type controller that follows a signal with an overshoot.

Fig 6 demonstrates the hypothetical cases where the model parameters are insufficient for

approximate fractional integration. Furthermore, the subsequent stages in the retina process

the signal and transform the it even further into a derivative of the original signal [45–47]. To

demonstrate why this is important, we have plotted three cases in addition to a simple feed-

back loop: (i) approximation, (ii) when the activity of phosphorylated rhodopsin is too low for

approximation, and (iii) where it is too high for an approximation. In this specific case, the

inclusion of fractional integrals in the model decreases this overshoot while still allowing a

rapid response. However, how this specifically affects the rest of the signalling process remains

unknown.

Research on image processing based on visual process (such as this paper or [45, 48–50])

help us understand how human vision works and its differences from the cameras and
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detectors used in computer vision. As a result, such research will allow us to improve and

develop image processing algorithms, and understand the limitations and advantages of not

current algorithms and our own vision.
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36. Yépez-Martı́nez H, Gómez-Aguilar JF, Sosa IO, Reyes JM, J TJ. The Feng’s first integral method

applied to the nonlinear mKdV space-time fractional partial differential equation. Revista Mexicana de

Fı́sica. 2016; 62(4):310–316.
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