
Wu and Zenke. eLife 2021;10:e71263. DOI: https://doi.org/10.7554/eLife.71263  1 of 43

Nonlinear transient amplification in 
recurrent neural networks with short- 
term plasticity
Yue Kris Wu1,2,3,4, Friedemann Zenke1,2*

1Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; 2Faculty of 
Natural Sciences, University of Basel, Basel, Switzerland; 3Max Planck Institute for 
Brain Research, Frankfurt, Germany; 4School of Life Sciences, Technical University of 
Munich, Freising, Germany

Abstract To rapidly process information, neural circuits have to amplify specific activity patterns 
transiently. How the brain performs this nonlinear operation remains elusive. Hebbian assemblies are 
one possibility whereby strong recurrent excitatory connections boost neuronal activity. However, 
such Hebbian amplification is often associated with dynamical slowing of network dynamics, non- 
transient attractor states, and pathological run- away activity. Feedback inhibition can alleviate these 
effects but typically linearizes responses and reduces amplification gain. Here, we study nonlinear 
transient amplification (NTA), a plausible alternative mechanism that reconciles strong recurrent 
excitation with rapid amplification while avoiding the above issues. NTA has two distinct temporal 
phases. Initially, positive feedback excitation selectively amplifies inputs that exceed a critical 
threshold. Subsequently, short- term plasticity quenches the run- away dynamics into an inhibition- 
stabilized network state. By characterizing NTA in supralinear network models, we establish that the 
resulting onset transients are stimulus selective and well- suited for speedy information processing. 
Further, we find that excitatory- inhibitory co- tuning widens the parameter regime in which NTA is 
possible in the absence of persistent activity. In summary, NTA provides a parsimonious explanation 
for how excitatory- inhibitory co- tuning and short- term plasticity collaborate in recurrent networks to 
achieve transient amplification.

Editor's evaluation
Many brain circuits, particularly those found in mammalian sensory cortices, need to respond rapidly 
to stimuli while at the same time avoiding pathological, runaway excitation. Over several years, 
many theoretical studies have attempted to explain how cortical circuits achieve these goals through 
interactions between inhibitory and excitatory cells. This study adds to this literature by showing 
how synaptic short- term depression can stabilise strong positive feedback in a circuit under a variety 
of plausible scenarios, allowing strong, rapid and stimulus- specific responses.

Introduction
Perception in the brain is reliable and strikingly fast. Recognizing a familiar face or locating an animal 
in a picture only takes a split second (Thorpe et al., 1996). This pace of processing is truly remarkable 
since it involves several recurrently connected brain areas each of which has to selectively amplify or 
suppress specific signals before propagating them further. This processing is mediated through circuits 
with several intriguing properties. First, excitatory- inhibitory (EI) currents into individual neurons are 
commonly correlated in time and co- tuned in stimulus space (Wehr and Zador, 2003; Froemke et al., 
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2007; Okun and Lampl, 2008; Hennequin et al., 2017; Rupprecht and Friedrich, 2018; Znamenskiy 
et al., 2018). Second, neural responses to stimulation are shaped through diverse forms of short- term 
plasticity (STP) (Tsodyks and Markram, 1997; Markram et al., 1998; Zucker and Regehr, 2002; Pala 
and Petersen, 2015). Finally, mounting evidence suggests that amplification rests on neuronal ensem-
bles with strong recurrent excitation (Marshel et al., 2019; Peron et al., 2020), whereby excitatory 
neurons with similar tuning preferentially form reciprocal connections (Ko et al., 2011; Cossell et al., 
2015). Such predominantly symmetric connectivity between excitatory cells is consistent with the notion 
of Hebbian cell assemblies (Hebb, 1949), which are considered an essential component of neural circuits 
and the putative basis of associative memory (Harris, 2005; Josselyn and Tonegawa, 2020). Compu-
tationally, Hebbian cell assemblies can amplify specific activity patterns through positive feedback, also 
referred to as Hebbian amplification. Based on these principles, several studies have shown that Hebbian 
amplification can drive persistent activity that outlasts a preceding stimulus (Hopfield, 1982; Amit and 
Brunel, 1997; Yakovlev et al., 1998; Wong and Wang, 2006; Zenke et al., 2015; Gillary et al., 2017), 
comparable to selective delay activity observed in the prefrontal cortex when animals are engaged in 
working memory tasks (Funahashi et al., 1989; Romo et al., 1999).

However, in most brain areas, evoked responses are transient and sensory neurons typically exhibit 
pronounced stimulus onset responses, after which the circuit dynamics settle into a low- activity 
steady- state even when the stimulus is still present (DeWeese et  al., 2003; Mazor and Laurent, 
2005; Bolding and Franks, 2018). Preventing run- away excitation and multi- stable attractor dynamics 
in recurrent networks requires powerful and often finely tuned feedback inhibition resulting in EI 
balance (Amit and Brunel, 1997; Compte et al., 2000; Litwin- Kumar and Doiron, 2012; Ponce- 
Alvarez et al., 2013; Mazzucato et al., 2019), However, strong feedback inhibition tends to linearize 
steady- state activity (van Vreeswijk and Sompolinsky, 1996; Baker et al., 2020). Murphy and Miller, 
2009 proposed balanced amplification which reconciles transient amplification with strong recurrent 
excitation by tightly balancing recurrent excitation with strong feedback inhibition (Goldman, 2009; 
Hennequin et al., 2012; Hennequin et al., 2014; Bondanelli and Ostojic, 2020; Gillett et al., 2020). 
Importantly, balanced amplification was formulated for linear network models of excitatory and inhib-
itory neurons. Due to linearity, it intrinsically lacks the ability to nonlinearly amplify stimuli which limits 
its capabilities for pattern completion and pattern separation. Further, how balanced amplification 
relates to nonlinear neuronal activation functions and nonlinear synaptic transmission as, for instance, 
mediated by STP (Tsodyks and Markram, 1997; Markram et al., 1998; Zucker and Regehr, 2002; 
Pala and Petersen, 2015), remains elusive. This begs the question of whether there are alterna-
tive nonlinear amplification mechanisms and how they relate to existing theories of recurrent neural 
network processing.

Here, we address this question by studying an alternative mechanism for the emergence of tran-
sient dynamics that relies on recurrent excitation, supralinear neuronal activation functions, and STP. 
Specifically, we build on the notion of ensemble synchronization in recurrent networks with STP (Loebel 
and Tsodyks, 2002; Loebel et al., 2007) and study this phenomenon in analytically tractable network 
models with rectified quadratic activation functions (Ahmadian et  al., 2013; Rubin et  al., 2015; 
Hennequin et al., 2018; Kraynyukova and Tchumatchenko, 2018) and STP. We first characterize the 
conditions under which individual neuronal ensembles with supralinear activation functions and recur-
rent excitatory connectivity succumb to explosive run- away activity in response to external stimulation. 
We then show how STP effectively mitigates this instability by re- stabilizing ensemble dynamics in an 
inhibition- stabilized network (ISN) state, but only after generating a pronounced stimulus- triggered 
onset transient. We call this mechanism NTA and show that it yields selective onset responses that 
carry more relevant stimulus information than the subsequent steady- state. Finally, we characterize 
the functional benefits of inhibitory co- tuning, a feature that is widely observed in the brain (Wehr and 
Zador, 2003; Froemke et al., 2007; Okun and Lampl, 2008; Rupprecht and Friedrich, 2018) and 
readily emerges in computational models endowed with activity- dependent plasticity of inhibitory 
synapses (Vogels et al., 2011). We find that co- tuning prevents persistent attractor states but does 
not preclude NTA from occurring. Importantly, NTA purports that, following transient amplification, 
neuronal ensembles settle into a stable ISN state, consistent with recent studies suggesting that inhi-
bition stabilization is a ubiquitous feature of cortical networks (Sanzeni et al., 2020). In summary, our 
work indicates that NTA is ideally suited to amplify stimuli rapidly through the interaction of strong 
recurrent excitation with STP.

https://doi.org/10.7554/eLife.71263
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Results
To understand the emergence of transient responses in recurrent neural networks, we studied rate- 
based population models with a supralinear, power law input- output function (Figure  1A and B; 
Ahmadian et al., 2013; Hennequin et al., 2018), which captures essential aspects of neuronal acti-
vation (Priebe et al., 2004), while also being analytically tractable. We first considered an isolated 
neuronal ensemble consisting of one excitatory (E) and one inhibitory (I) population (Figure 1A).

The dynamics of this network are given by

 
τE

drE
dt

= −rE +
[
JEErE − JEIrI + gE

]αE

+
,
  

(1)

 
τI

drI
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= −rI +
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JIErE − JIIrI + gI

]αI

+
,
  

(2)

where  rE  and  rI   are the firing rates of the excitatory and inhibitory population,  τE  and  τI   represent 
the corresponding time constants,  JXY   denotes the synaptic strength from the population  Y   to the 
population  X  , where   X, Y ∈ {E, I} ,  gE  and  gI   are the external inputs to the respective populations. 
Finally,  αE  and  αI  , the exponents of the respective input- output functions, are fixed at two unless 
mentioned otherwise. For ease of notation, we further define the weight matrix  J  of the compound 
system as follows:

 

J =


JEE −JEI

JIE −JII


 .

  
(3)

Figure 1. Neuronal ensembles nonlinearly amplify inputs above a critical threshold. (A) Schematic of the recurrent ensemble model consisting of 
an excitatory (blue) and an inhibitory population (red). (B) Supralinear input- output function given by a rectified power law with exponent  α = 2 . 
(C) Firing rates of the excitatory (blue) and inhibitory population (red) in response to external stimulation during the interval from 2 to 4  s (gray bar). 
The stimulation was implemented by temporarily increasing the input  gE . (D) Phase portrait of the system before stimulation (left; C orange) and 
during stimulation (right; C green). (E) Characteristic function  F(z)  for varying input strength  gE . Note that the function loses its zero crossings, which 
correspond to fixed points of the system for increasing external input. (F) Heat map showing the evoked firing rate of the excitatory population for 
different parameter combinations  JEE  and  gE . The gray region corresponds to the parameter regime with unstable dynamics.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Unstable ensemble dynamics can be triggered by additional stimulation in supralinear networks with negative determinant even 
in the presence of substantial feedforward inhibition.

https://doi.org/10.7554/eLife.71263
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We were specifically interested in networks with strong recurrent excitation that can generate 
positive feedback dynamics in response to external inputs  gE . Therefore, we studied networks with

 det(J) = −JEEJII + JIEJEI < 0 .  (4)

In contrast, networks in which recurrent excitation is met by strong feedback inhibition such that 

 det(J) > 0  are unable to generate positive feedback dynamics provided that inhibition is fast enough 
(Ahmadian et  al., 2013). Importantly, we assumed that most inhibition originates from recurrent 
connections (Franks et al., 2011; Large et al., 2016) and, hence, we kept the input to the inhibitory 
population  gI   fixed unless mentioned otherwise.

Nonlinear amplification of inputs above a critical threshold
We initialized the network in a stable low- activity state in the absence of external stimulation, consis-
tent with spontaneous activity in cortical networks (Figure 1C). However, an input  gE  of sufficient 
strength, destabilized the network (Figure 1C). Importantly, this behavior is distinct from linear network 
models in which the network stability is independent of inputs (Materials and methods). The transition 
from stable to unstable dynamics can be understood by examining the phase portrait of the system 
(Figure 1D). Before stimulation, the system has a stable and an unstable fixed point (Figure 1D, left). 
However, both fixed points disappear for an input  gE  above a critical stimulus strength (Figure 1D, 
right).

To further understand the system’s bifurcation structure, we consider the characteristic function

 
F(z) = JEE

[
z
]αE

+
− JEI

[
det(J) · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
EI JIIgE + gI

]αI

+
− z + gE ,

  
(5)

where  z  denotes the total current into the excitatory population and  det(J)  represents the deter-
minant of the weight matrix (Kraynyukova and Tchumatchenko, 2018; Materials and methods). The 
characteristic function reduces the original two- dimensional system to one dimension, whereby the 
zero crossings of the characteristic function correspond to the fixed points of the original system (Eq. 
(1)- (2)). We use this correspondence to visualize how the fixed points of the system change with the 
input  gE . Increasing  gE  shifts  F(z)  upwards, which eventually leads to all zero crossings disappearing 
and the ensuing unstable dynamics (Figure 1E; Materials and methods). Importantly, for any weight 
matrix  J  with negative determinant, there exists a critical input  gE  at which all fixed points disappear 
(Materials and methods). While for weak recurrent E- to- E connection strength  JEE , the transition from 
stable dynamics to unstable is gradual, in that it happens at higher firing rates (Figure 1F), it becomes 
more abrupt for stronger  JEE . Thus, our analysis demonstrates that individual neuronal ensembles 
with negative determinant  det(J)  nonlinearly amplify inputs above a critical threshold by switching 
from initially stable to unstable dynamics.

Short-term plasticity, but not spike-frequency adaptation, can re-
stabilize ensemble dynamics
Since unstable dynamics are not observed in neurobiology, we wondered whether neuronal spike 
frequency adaptation (SFA) or STP could re- stabilize the ensemble dynamics while keeping the 
nonlinear amplification character of the system. Specifically, we considered SFA of excitatory neurons, 
E- to- E short- term depression (STD), and E- to- I short- term facilitation (STF). We focused on these 
particular mechanisms because they are ubiquitously observed in the brain. Most pyramidal cells 
exhibit SFA (Barkai and Hasselmo, 1994) and most synapses show some form of STP (Markram 
et al., 1998; Zucker and Regehr, 2002; Pala and Petersen, 2015). Moreover, the time scales of 
these mechanisms are well- matched to typical timescales of perception, ranging from milliseconds to 
seconds (Tsodyks and Markram, 1997; Fairhall et al., 2001; Pozzorini et al., 2013).

When we simulated our model with SFA (Eqs. (21)–(23)), we observed different network behav-
iors depending on the adaptation strength. When adaptation strength was weak, SFA was unable to 
stabilize run- away excitation (Figure 2A; Materials and methods). Increasing the adaptation strength 
eventually prevented run- away excitation, but to give way to oscillatory ensemble activity (Figure 2—
figure supplement 1). Finally, we confirmed analytically that SFA cannot stabilize excitatory run- away 
dynamics at a stable fixed point (Materials and methods). In particular, while the input is present, 
strong SFA creates a stable limit cycle with associated oscillatory ensemble activity (Figure 2—figure 

https://doi.org/10.7554/eLife.71263
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Figure 2. Short- term plasticity, but not spike- frequency adaptation, re- stabilizes ensemble dynamics. (A) Firing rates of the excitatory (blue) and 
inhibitory population (red) in the presence of spike- frequency adaptation (SFA). During stimulation (gray bar) additional input is injected into the 
excitatory population. The inset shows a cartoon of how SFA affects spiking neuronal dynamics in response to a step current input. (B) Left: Same as 
(A) but in the presence of E- to- E short- term depression (STD). Right: Same as left but inactivating inhibition in the period marked in purple. (C) 3D plot 
of the excitatory activity  rE , inhibitory activity  rI  , and the STD variable  x  of the network in B left. The orange and green points mark the fixed points 
before/after and during stimulation. (D) Characteristic function  F(z)  in networks with E- to- E STD. Different brightness levels correspond to different time 
points in B left. (E) Same as (B) but in the presence of E- to- I short- term facilitation (STF). (F) Inhibition- stabilized network (ISN) index, which corresponds 
to the largest real part of the eigenvalues of the Jacobian matrix of the E- E subnetwork with STD, as a function of time for the network with E- to- E STD 
in B left. For values above zero (dashed line), the ensemble is an ISN. (G) Analytical solution of non- ISN (magenta), ISN (green), paradoxical, and non- 
paradoxical regions for different parameter combinations  JEE  and the STD variable  x . The solid line separates the non- ISN and ISN regions, whereas 
the dashed line separates the non- paradoxical and paradoxical regions. (H) The normalized firing rates of the excitatory (blue) and inhibitory population 
(red) when injecting additional excitatory current into the inhibitory population before stimulation (left; orange bar in B), and during stimulation (right; 
green bar in B). Initially, the ensemble is in the non- ISN regime and injecting excitatory current into the inhibitory population increases its firing rate. 
During stimulation, however, the ensemble is an ISN. In this case, excitatory current injection into the inhibitory population results in a reduction of its 
firing rate, also known as the paradoxical effect.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Ensemble dynamics in supralinear networks with strong SFA.

Figure supplement 2. Dependence of peak amplitude and fixed point activity on input gE and E- to- E connection strength JEE.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.71263
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supplement 1; Materials and methods), which was also shown in previous modeling studies (van 
Vreeswijk and Hansel, 2001), but is not typically observed in sensory systems (DeWeese et al., 2003; 
Rupprecht and Friedrich, 2018).

Next, we considered STP, which is capable of saturating the effective neuronal input- output func-
tion (Mongillo et al., 2012; Zenke et al., 2015; Eqs. (37)–(39), Eqs. (41)–(43)). We first analyzed 
the stimulus- evoked network dynamics when we added STD to the recurrent E- to- E connections. 
Strong depression of synaptic efficacy resulted in a brief onset transient after which the ensemble 
dynamics quickly settled into a stimulus- evoked steady- state with slightly higher activity than the 
baseline (Figure 2B, left). After stimulus removal, the ensemble activity returned back to its baseline 
level (Figure 2B, left; Figure 2C). Notably, the ensemble dynamics settled at a stable steady state with 
a much higher firing rate, when inhibition was inactivated during stimulus presentation (Figure 2B, 
right). This shows that STP is capable of creating a stable high- activity fixed point, which is fundamen-
tally different from the SFA dynamics discussed above. This difference in ensemble dynamics can be 
readily understood by analyzing the stability of the three- dimensional dynamical system (Materials 
and methods). We can gain a more intuitive understanding by considering self- consistent solutions 
of the characteristic function  F(z) . Initially, the ensemble is at the stable low activity fixed point. But 
the stimulus causes this fixed point to disappear, thus giving way to positive feedback which creates 
the leading edge of the onset transient (Figure 2B). However, because E- to- E synaptic transmission 
is rapidly reduced by STD, the curvature of  F(z)  changes and a stable fixed point is created, thereby 
allowing excitatory run- away dynamics to terminate and the ensemble dynamics settle into a steady- 
state at low activity levels (Figure 2D). We found that E- to- I STF leads to similar dynamics (Figure 2E, 
left; Appendix 1) with the only difference that this configuration requires inhibition for network stability 
(Figure 2E, right), whereas E- to- E STD stabilizes activity even without inhibition, albeit at physiolog-
ically implausibly high activity levels. Importantly, the re- stabilization through either form of STP did 
not impair an ensemble’s ability to amplify stimuli during the initial onset phase.

Crucially, transient amplification in supralinear networks with STP occurs above a critical threshold 
(Figure  2—figure supplement 2), and requires recurrent excitation  JEE  to be sufficiently strong 
(Figure 2—figure supplement 2C, D). To quantify the amplification ability of these networks, we 
calculated the ratio of the evoked peak firing rate to the input strength, henceforth called the ‘Ampli-
fication index’. We found that amplification in STP- stabilized supralinear networks can be orders of 
magnitude larger than in linear networks with equivalent weights and comparable stabilized supra-
linear networks (SSNs) without STP (Figure 2—figure supplement 3). We stress that the resulting 
firing rates are parameter- dependent (Figure  2—figure supplement 4) and their absolute value 
can be high due to the high temporal precision of the onset peak and its short duration. In experi-
ments, such high rates manifest themselves as precisely time- locked spikes with millisecond resolution 
(DeWeese et al., 2003; Wehr and Zador, 2003; Bolding and Franks, 2018; Gjoni et al., 2018).

Recent studies suggest that cortical networks operate as inhibition- stabilized networks (ISNs) 
(Sanzeni et al., 2020; Sadeh and Clopath, 2021), in which the excitatory network is unstable in the 
absence of feedback inhibition (Tsodyks et al., 1997; Ozeki et al., 2009). To that end, we investi-
gated how ensemble re- stabilization relates to the network operating regime at baseline and during 
stimulation. Whether a network is an ISN or not is mathematically determined by the real part of the 

Figure supplement 3. Comparisons of amplification ability between NTA and linear networks, and between NTA and SSNs.

Figure supplement 4. Dependence of peak amplitude and fixed point activity on STP parameters.

Figure supplement 5. Networks initially in the ISN regime can exhibit strong NTA.

Figure supplement 6. ISN index and paradoxical effect test for networks with E- to- I STF.

Figure supplement 7. Inhibition stabilization does not imply paradoxical response in networks with E- to- E STD.

Figure supplement 8. Transition from non- ISN to ISN indicating by frozen inhibition test.

Figure supplement 9. Similar qualitative behavior in rate- based models with maximal firing rate capped at 300 Hz.

Figure supplement 10. Similar qualitative behavior in spiking neural networks.

Figure supplement 11. Unstable dynamics can emerge in supralinear networks with positive determinant and slow inhibition.

Figure supplement 12. Networks with substantial feedforward inhibition can exhibit strong NTA.

Figure 2 continued

https://doi.org/10.7554/eLife.71263
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leading eigenvalue of the Jacobian of the excitatory- to- excitatory subnetwork (Tsodyks et al., 1997). 
We computed the leading eigenvalue in our model incorporating STP and referred to it as ‘ISN index’ 
(Materials and methods; Appendix 2). We found that in networks with STP the ISN index can switch 
sign from negative to positive during external stimulation, indicating that the ensemble can transition 
from a non- ISN to an ISN (Figure 2F). Notably, this behavior is distinct from linear network models in 
which the network operating regime is independent of the input (Materials and methods). Whether 
this switch between non- ISN to ISN occurred, however, was parameter dependent and we also found 
network configurations that were already in the ISN regime at baseline and remained ISNs during 
stimulation (Figure  2—figure supplement 5). Thus, re- stabilization was largely unaffected by the 
network state and consistent with experimentally observed ISN states (Sanzeni et al., 2020).

Theoretical studies have shown that one defining characteristic of ISNs in static excitatory and 
inhibitory networks is that injecting excitatory (inhibitory) current into inhibitory neurons decreases 
(increases) inhibitory firing rates, which is also known as the paradoxical effect (Tsodyks et al., 1997; 
Miller and Palmigiano, 2020). Yet, it is unclear whether in networks with STP, inhibitory stabiliza-
tion implies paradoxical response and vice versa. We therefore analyzed the condition of being an 
ISN and the condition of having paradoxical response in networks with STP (Materials and methods; 
Appendix 2; Appendix 3). Interestingly, we found that in networks with E- to- E STD, the paradox-
ical effect implies inhibitory stabilization, whereas inhibitory stabilization does not necessarily imply 
paradoxical response (Figure 2G; Materials and methods), suggesting that having paradoxical effect 
is a sufficient but not necessary condition for being an ISN. In contrast, in networks with E- to- I STF, 
inhibitory stabilization and paradoxical effect imply each other (Appendix 2; Appendix 3). Therefore, 
paradoxical effect can be exploited as a proxy for inhibition stabilization for networks with STP we 
considered here. By injecting excitatory current into the inhibitory population, we found that the 
network did not exhibit the paradoxical effect before stimulation (Figure 2H, left; Figure 2—figure 
supplement 6). In contrast, injecting excitatory inputs into the inhibitory population during stimula-
tion reduced their activity (Figure 2H, right; Figure 2—figure supplement 6). As demonstrated in our 
analysis, non- paradoxical response does not imply non- ISN (Figure 2—figure supplement 7; Mate-
rials and methods). We therefore examined the inhibition stabilization property of the ensemble by 
probing the ensemble behavior when a small transient perturbation to excitatory population activity 
is introduced while inhibition is frozen before stimulation and during stimulation. Before stimulation, 
the firing rate of the excitatory population slightly increases and then returns to its baseline after the 
transient perturbation (Figure 2—figure supplement 8). During stimulation, however, the transient 
perturbation leads to a transient explosion of the excitatory firing rate (Figure 2—figure supplement 
8). These results further confirm that the ensemble shown in our example is initially a non- ISN before 
stimulation and can transition to an ISN with stimulation. By elevating the input level at the baseline in 
the model, the ensemble can be initially an ISN (Figure 2—figure supplement 5), resembling recent 
studies revealing that cortical circuits in the mouse V1 operate as ISNs in the absence of sensory stim-
ulation (Sanzeni et al., 2020).

Despite the fact that the supralinear input- output function of our framework captures some aspects 
of intracellular recordings (Priebe et al., 2004), it is unbounded and thus allows infinitely high firing 
rates. This is in contrast to neurobiology where firing rates are bounded due to neuronal refractory 
effects. While this assumption permitted us to analytically study the system and therefore to gain a 
deeper understanding of the underlying ensemble dynamics, we wondered whether our main conclu-
sions were also valid when we limited the maximum firing rates. To that end, we carried out the same 
simulations while capping the firing rate at 300  Hz. In the absence of additional SFA or STP mecha-
nisms, the firing rate saturation introduced a stable high- activity state in the ensemble dynamics which 
replaced the unstable dynamics in the uncapped model. As above, the ensemble entered this high- 
activity steady- state when stimulated with an external input above a critical threshold and exhibited 
persistent activity after stimulus removal (Figure 2—figure supplement 9). While weak SFA did not 
change this behavior, strong SFA resulted in oscillatory behavior during stimulation consistent with 
previous analytical work (Figure 2—figure supplement 9, van Vreeswijk and Hansel, 2001), but did 
not in stable steady- states commonly observed in biological circuits. In the presence of E- to- E STD 
or E- to- I STF, however, the ensemble exhibited transient evoked activity at stimulation onset that was 
comparable to the uncapped case. Importantly, the ensemble did not show persistent activity after 
the stimulation (Figure 2—figure supplement 9). Finally, we confirmed that all of these findings were 

https://doi.org/10.7554/eLife.71263
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qualitatively similar in a realistic spiking neural network model (Figure 2—figure supplement 10; 
Materials and methods).

In summary, we found that neuronal ensembles can rapidly, nonlinearly, and transiently amplify 
inputs by briefly switching from stable to unstable dynamics before being re- stabilized through STP 
mechanisms. We call this mechanism nonlinear transient amplification (NTA) which, in contrast to 
balanced amplification (Murphy and Miller, 2009; Hennequin et al., 2012), arises from population 
dynamics with supralinear neuronal activation functions interacting with STP. While we acknowledge 
that there may be other nonlinear transient amplification mechanisms, in this article we restrict our 
analysis to the definition above. NTA is characterized by a large onset response, a subsequent ISN 
steady- state while the stimulus persists, and a return to a unique baseline activity state after the 
stimulus is removed. Thus, NTA is ideally suited to rapidly and nonlinearly amplify sensory inputs 
through recurrent excitation, like reported experimentally (Ko et  al., 2011; Cossell et  al., 2015), 
while avoiding persistent activity.

Figure 3. Co- tuned inhibition broadens the parameter regime of NTA in the absence of persistent activity. (A) 
Schematic of two neuronal ensembles with global inhibition (left) and with co- tuned inhibition (right). (B) Firing 
rate dynamics of bi/multi- stable ensemble dynamics (left) and uni- stable (right). In both cases, additional excitatory 
inputs are injected into excitatory ensemble E1 during the period marked in gray. (C) Analytical solution of uni- 
and bi/multi- stability regions for global inhibition (left) and co- tuned inhibition (right). Co- tuning results in a larger 
parameter regime of uni- stability. The triangles correspond to the two examples in B.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Ensembles with co- tuned inhibition exhibit weaker — but still strong — NTA in comparison 
to ensembles with global inhibition.

https://doi.org/10.7554/eLife.71263
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Co-tuned inhibition broadens the parameter regime of NTA in the 
absence of persistent activity
Up to now, we have focused on a single neuronal ensemble. However, to process information in the 
brain, several ensembles with different stimulus selectivity presumably coexist and interact in the same 
circuit. This coexistence creates potential problems. It can lead to multi- stable persistent attractor 
dynamics, which are not commonly observed and could have adverse effects on the processing of 
subsequent stimuli. One solution to this issue could be EI co- tuning, which arises in network models 
with plastic inhibitory synapses (Vogels et al., 2011) and has been observed experimentally in several 
sensory systems (Wehr and Zador, 2003; Froemke et al., 2007; Okun and Lampl, 2008; Rupprecht 
and Friedrich, 2018).

To characterize the conditions under which neuronal ensembles nonlinearly amplify stimuli without 
persistent activity, we analyzed the case of two interacting ensembles. More specifically, we consid-
ered networks with two excitatory ensembles and distinguished between global and co- tuned inhi-
bition (Figure 3A). In the case of global inhibition, one inhibitory population non- specifically inhibits 
both excitatory populations (Figure 3A, left). In contrast, in networks with co- tuned inhibition, each 
ensemble is formed by a dedicated pair of an excitatory and an inhibitory population which can have 
cross- over connections, for instance, due to overlapping ensembles (Figure 3A, right).

Global inhibition supports winner- take- all competition and is therefore often associated with multi- 
stable attractor dynamics (Wong and Wang, 2006; Mongillo et al., 2008). We first illustrated this 
effect in a network model with global inhibition. When the recurrent excitatory connections within 
each ensemble were sufficiently strong, small amounts of noise in the initial condition led to one of 
the ensembles spontaneously activating at elevated firing rates, while the other ensemble’s activity 
remained low (Figure 3B, left). A specific external stimulation could trigger a switch from one state 
to the other in which the other ensemble was active at a high firing rate. Importantly, this change 
persisted even after the stimulus had been removed, a hallmark of multi- stable dynamics. In contrast, 
uni- stable systems have a global symmetric state in which both ensembles have the same activity in 
the absence of stimulation. While the stimulated ensemble showed elevated firing rates in response to 
the stimulus, its activity returned to the baseline level after the stimulus is removed (Figure 3B, right), 
consistent with experimental observations (DeWeese et al., 2003; Rupprecht and Friedrich, 2018; 
Bolding and Franks, 2018). Note that the only difference between these two models is that  JEE  is 
larger in the multi- stable example than in the uni- stable one.

Symmetric baseline activity is most consistent with activity observed in sensory areas. Hence, we 
sought to understand which inhibitory connectivity would be most conducive to maintain it. To that 
end, we analytically identified the uni- stability conditions, which are determined by the leading eigen-
value of the Jacobian matrix of the system, for networks with varying degrees of EI co- tuning (Mate-
rials and methods). We found that a broader parameter regime underlies uni- stability in networks with 
co- tuned inhibition than global inhibition (Figure 3C). Notably, this conclusion is general and extends 
to networks with an arbitrary number of ensembles (Materials and methods). In comparison to the 
ensemble with global inhibition, the ensemble with co- tuned inhibition exhibits weaker — but still 
strong — NTA (Figure 3—figure supplement 1). Thus, co- tuned inhibition broadens the parameter 
regime in which NTA is possible while simultaneously avoiding persistent attractor dynamics.

NTA provides better pattern completion than fixed points while 
retaining stimulus selectivity
Neural circuits are capable of generating stereotypical activity patterns in response to partial cues and 
forming distinct representations in response to different stimuli (Carrillo- Reid et al., 2016; Marshel 
et al., 2019; Bolding et al., 2020; Vinje and Gallant, 2000; Cayco- Gajic and Silver, 2019). To test 
whether NTA achieves pattern completion while retaining stimulus selectivity, we analyzed the tran-
sient onset activity in our models and compared it to the fixed point activity.

To investigate pattern completion and stimulus selectivity in our model, we considered a co- tuned 
network with E- to- E STD and two distinct excitatory ensembles  E1  and  E2 . We gave additional input 

 gE1  to a Subset 1, consisting of 75% of the neurons in ensemble  E1  (Figure 4A). We then measured 
the evoked activity in the remaining 25% of the excitatory neurons in  E1  to quantify pattern comple-
tion. To assess stimulus selectivity, we injected additional input  gE1  into the entire  E1  ensemble during 
the second stimulation phase (Figure 4A) while measuring the activity of  E2 . We found that neurons 

https://doi.org/10.7554/eLife.71263
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in Subset 2, which did not receive additional input, showed large onset responses, their steady- state 
activity was largely suppressed (Figure 4B). Despite the fact that inputs to  E1  caused increased tran-
sient onset responses in  E2 , the amount of increase was orders of magnitude smaller than in  E1  
(Figure 4B). To quantify pattern completion, we defined the

 
Association index = 1 + rE12−rE11

rE12 +rE11
.
  (6)

Here,  rE11  and  rE12  correspond to the subpopulation activities of  E1 , respectively. By definition, 
the Association index ranges from zero to one, with larger values indicating stronger associativity. In 
addition, to quantify the selectivity between  E1  and  E2 , we considered a symmetric binary classifier 
(Figure 4A, inset) and measured the distance to the decision boundary (Materials and methods). Note 
that the Association index was computed during Phase one and the distance to the decision boundary 
during Phase two in this simulation paradigm (Figure 4B).

With these definitions, we ran simulations with different input strengths  gE1 . We found that the 
onset peaks showed stronger association than the fixed point activity (Figure  4C). Note that the 
Association index at the fixed point remained zero, a direct consequence of  rE12  being suppressed to 
zero. Furthermore, we found that the distance between the transient onset response and the decision 
boundary was always greater than for the fixed point activity (Figure 4D) showing that onset responses 
retain stimulus selectivity. While the fixed point activity of the unstimulated co- tuned neurons is zero 
in the given example, stimulating a subset of neurons in one ensemble can lead to an increase in 

Figure 4. NTA yields stronger pattern completion than fixed points while retaining stimulus selectivity. (A) Schematic of the network setup used to 
probe pattern completion and stimulus selectivity. To assess the effect on pattern completion, 75% of the neurons (Subset 1) in ensemble E1 received 
additional input gE1 during Phase one (2–4 s), while we recorded the firing rate of the remaining 25% (Subset 2) in the excitatory ensemble E1. To 
evaluate the impact on stimulus selectivity, all neurons in E1 received additional inputs gE1 in Phase two (6–8 s) while the firing rate of E2 was measured. 
A downstream neuron’s ability to discriminate between E1 or E2 being active depends on whether their activity is well separated by a symmetric 
decision boundary (inset). (B) Examples of firing rates of Subset 2 of E1 (left, blue) and E2 (right, green) with E- to- E STD. (C) Association index as a 
function of input gE1 for the onset peak amplitude (magenta solid line) and fixed point activity (gray dashed line) for E- to- E STD. (D) Distance to the 
decision boundary (see panel A, inset) as a function of input gE1 for the onset peak amplitude (magenta solid line) and fixed point activity (gray dashed 
line) for E- to- E STD. (E and F) Same as C and D but as a function of β, which controls the inner- and inter- ensemble connection strength.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Change in steady state activity for unstimulated co- tuned neurons in the rate- based model.

Figure supplement 2. Quantification of pattern completion and stimulus selectivity in networks with E- to- I STF.

https://doi.org/10.7554/eLife.71263
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the fixed point activity of the unstimulated neurons in the same ensemble under certain conditions 
(Figure 4—figure supplement 1; Appendix 4), which is consistent with pattern completion experi-
ments (Carrillo- Reid et al., 2016; Marshel et al., 2019) showing that unstimulated neurons from the 
same ensemble can remain active throughout the whole stimulation period.

To investigate how the recurrent excitatory connectivity affects both pattern completion and stim-
ulus selectivity, we introduced the parameter  β  which controls recurrent excitatory tuning by trading off 
within- ensemble E- to- E strength  JEE  relative to the inter- ensemble strength  J

′

EE  (Figure 4A) such that 

 JEE = βJtot  and  J
′

EE = (1 − β)Jtot . These definitions ensure that the total weight  Jtot = JEE + J
′

EE  remains 
constant for any choice of  β . Notably, the overall recurrent excitation strength within an ensemble  JEE  
increases with increasing  β . When  β  is larger than 0.5, the excitatory connection strength within the 
ensemble  JEE  exceeds the one between ensembles  J

′

EE .
We found that pattern completion ability monotonically increases with  β  with a pronounced onset 

for  β > 0.6  where NTA takes hold (Figure 4E). Moreover, in this regime the two stimulus representa-
tions are well separated (Figure 4F) which ensures stimulus selectivity also during onset transients. 
Together, these findings recapitulate the point that recurrent excitatory tuning is a key determinant of 
network dynamics. Finally, we confirmed that our findings were also valid in networks with E- to- I STF 
(Figure 4—figure supplement 2), which is commonly observed in the brain (Markram et al., 1998; 
Zucker and Regehr, 2002; Pala and Petersen, 2015). In summary, NTA’s transient onset responses 
maintain stimulus selectivity and result in overall better pattern completion than fixed point activity.

Figure 5. NTA provides stronger amplification and pattern separation in morphing experiments than fixed point activity. (A) Schematic of the morphing 
stimulation paradigm. The fraction of the additional inputs into the two excitatory ensembles is controlled by the parameter p. (B) Peak amplitude of 
E1 (blue) and E2 (green) as a function of p for E- to- E STD. Brightness levels represent different recurrent E- to- E connection strengths JEE . (C) Same as in 
B but for fixed point activity. (D) Distance to the decision boundary as a function of p for the peak onset response (magenta solid line) and fixed point 
activity (gray dashed line) for E- to- E STD in a network with J’IE = 0.4. (E) Same as D but with different E- to- I connection strengths J’IE across ensembles 
for a network with JEE = 1.2.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Quantification of pattern separation in morphing experiments using a normalized measure.

Figure supplement 2. Quantification of pattern separation in morphing experiments for networks with E- to- I STF.

https://doi.org/10.7554/eLife.71263
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NTA provides higher amplification and pattern separation in morphing 
experiments
So far, we only considered input to one ensemble. To examine how representations in our model are 
affected by ambiguous inputs to several ensembles, we performed additional morphing experiments 
(Freedman et al., 2001; Niessing and Friedrich, 2010). To that end, we introduced the parameter  p  
which interpolates between two input stimuli which target  E1  and  E2  respectively. When  p  is zero, all 
additional input is injected into  E1 . For  p  equal to one, all additional input is injected into  E2 . Finally, 

 p  equal to 0.5 corresponds to the symmetric case in which  E1  and  E2  receive the same amount of 
additional input (Figure 5A).

First, we investigated how the recurrent excitatory connection strength within each ensemble  JEE  
affects the onset peak amplitude and fixed point activity. We found that the peak amplitudes depend 
strongly on  JEE , whereas the fixed point activity was only weakly dependent on  JEE  (Figure 5B and C). 
When we disconnected the ensembles by completely eliminating all recurrent excitatory connections, 
activity was noticeably decreased (Figure 5B and C). This illustrates, that recurrent excitation does 
play an important role in selectively amplifying specific stimuli similar to experimental observations 
(Marshel et al., 2019; Peron et al., 2020), but that amplification is highest at the onset.

Further, we examined the impact of competition through lateral inhibition as a function of the E- to- I 
inter- ensemble strength  J

′

IE  (Materials and methods). As above, we quantified its impact by measuring 
the representational distance to the decision boundary for the transient onset responses and fixed 
point activity. We found that regardless of the specific STP mechanism, the distance was larger for the 
onset responses than for the fixed point activity, consistent with the notion that the onset dynamics 
separate stimulus identity reliably (Figure 5D and E). Since the absolute activity levels between onset 
and fixed point differed substantially, we further computed the relative pattern Separation index 

 (rE2 − rE1)/(rE1 + rE2)  and found that the onset transient provides better pattern separation ability 
for ambiguous stimuli with  p  close to 0.5 (Figure 5—figure supplement 1) provided that the E- to- I 
connection strength across ensembles  J

′

IE  is strong enough. All the while separability for the onset 
transient was slightly decreased for distinct inputs with  p ∈ {0, 1}  in comparison to the fixed point. In 
contrast, fixed points clearly separated such pure stimuli while providing weaker pattern separation 
for ambiguous input combinations. Importantly, these findings qualitatively held for networks with 
NTA mediated by E- to- I STF (Figure 5—figure supplement 2). Thus, NTA provides stronger amplifi-
cation and pattern separation than fixed point activity in response to ambiguous stimuli.

NTA in spiking neural networks
Thus far, our analysis relied on power law neuronal input- output functions in the interest of analytical 
tractability. To test whether our findings also qualitatively apply to more realistic network models, we 
built a spiking neural network consisting of randomly connected 800 excitatory and 200 inhibitory 
neurons, in which the E- to- E synaptic connections were subject to STD (Materials and methods). Here, 
we defined five overlapping ensembles, each corresponding to 200 randomly selected excitatory 
neurons. During an initial simulation phase (0–22 s), we consecutively stimulated each ensemble by 
giving additional input to their excitatory neurons, whereas the input to other neurons remained 
unchanged (Figure 6A). In addition, we also tested pattern completion by stimulating only 75% (Subset 
1) of the neurons belonging to Ensemble 5 (22–24   s; Figure 6A). We quantified each ensemble’s 
activity by calculating the population firing rate of the ensemble (Materials and methods). As in the 
case of the rate- based model, the neuronal ensembles in the spiking model generated pronounced 
transient onset responses. We then measured the difference of peak ensemble activity and fixed point 
activity between the stimulated ensemble and the remaining unstimulated ensembles (Materials and 
methods). As for the rate- based networks, this difference was consistently larger for the onset peak 
than for the fixed point (Figure 6B and C). Thus, transient onset responses allow better stimulus sepa-
ration than fixed points also in spiking neural network models.

Finally, to visualize the neural activity, we projected the binned spiking activity during the first 10  s 
of our simulation onto its first two principal components. Notably, the PC trajectory does not exhibit a 
pronounced rotational component (Figure 6D) as activity is confined to one specific ensemble, consis-
tent with experiments (Marshel et al., 2019). Furthermore, we computed the fifth ensemble’s activity 
for Subset 1 and 2 during the time interval 16–26  s. In agreement with our rate models, neurons in 
Subset 2 which did not receive additional inputs showed a strong response at the onset (Figure 6E), 

https://doi.org/10.7554/eLife.71263
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but not at the fixed point, suggesting that the strongest pattern completion occurs during the initial 
amplification phase. Finally, we also observed higher- than- baseline fixed point activity in unstimulated 
neurons of Subset 2 in spiking neural networks (Figure 6—figure supplement 1). Thus, the key char-
acteristics of NTA are preserved across rate- based and more realistic spiking neural network models.

Discussion
In this study, we demonstrated that neuronal ensemble models with recurrent excitation and suit-
able forms of STP exhibit nonlinear transient amplification (NTA), a putative mechanism underlying 
selective amplification in recurrent circuits. NTA combines a supralinear neuronal transfer function, 
recurrent excitation between neurons with similar tuning, and pronounced STP. Using analytical and 
numerical methods, we showed that NTA generates rapid transient onset responses during which 
optimal stimulus separation occurs rather than at steady- states. Additionally, we showed that co- tuned 
inhibition is conducive to prevent the emergence of persistent activity, which could otherwise inter-
fere with processing subsequent stimuli. In contrast to balanced amplification (Murphy and Miller, 
2009), NTA is an intrinsically nonlinear mechanism for which only stimuli above a critical threshold are 

Figure 6. Spiking neural network simulations qualitatively reproduce NTA dynamics of rate models. (A) Spiking activity of excitatory (blue) and inhibitory 
(red) neurons in a spiking neural network. From 2 to 20 s, Ensembles 1–5 individually received additional input for 2 s each (colored bars). From 22 to 24 
s, 75% of Ensemble 5 neurons (Subset 1) received additional input, whereas the rest 25% of Ensemble 5 neurons (Subset 2) did not receive additional 
input. The symbols at the top designate the different simulation phases of baseline activity, the onset transients, and the fixed point activity. Different 
colors correspond to the distinct stimulation periods. (B) Ensemble activity (colors). (C) Difference in ensemble activity between the stimulated ensemble 
with the remaining ensembles for the transient onset peak and the fixed point. Points correspond to the different stimulation periods. (D) Spiking 
activity during the interval 0–10 s represented in the PCA basis spanned by the first two principal components which captured approximately 40% of the 
total variance. The colored lines represent the PC trajectories of the first two stimuli shown in A and B. Triangles, points and crosses correspond to the 
onset peak, fixed point, and baseline activity, respectively. (E) Ensemble activity of Subset 1 (purple) and Subset 2 (gray) of Ensemble 5 from 16 to 26 s. 
Onset peaks are marked by triangles.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Change in steady state activity for unstimulated co- tuned neurons in spiking neural networks.

https://doi.org/10.7554/eLife.71263
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amplified effectively. While the precise threshold value is parameter- dependent, it can be arbitrarily 
low provided the excitatory recurrent connections are sufficiently strong (Figure  1F). Importantly, 
such a critical activation threshold offers a possible explanation for sensory perception experiments 
which show similar threshold behavior (Marshel et al., 2019; Peron et al., 2020). Following transient 
amplification, ensemble dynamics are inhibition- stabilized, which renders our model compatible with 
existing work on SSNs (Ahmadian et al., 2013; Rubin et al., 2015; Hennequin et al., 2018; Kray-
nyukova and Tchumatchenko, 2018; Echeveste et al., 2020). Thus, NTA provides a parsimonious 
explanation for why sensory systems may rely upon neuronal ensembles with recurrent excitation in 
combination with EI co- tuning, and pronounced STP dynamics.

Several theoretical studies approached the problem of transient amplification in recurrent neural 
network models. Loebel and Tsodyks, 2002 have described an NTA- like mechanism as a driver for 
powerful ensemble synchronization in rate- based networks and in spiking neural network models of 
auditory cortex (Loebel et al., 2007). Here, we generalized this work to both E- to- E STD and E- to- I STF 
and provide an in- depth characterization of its amplification capabilities, pattern completion proper-
ties, and the resulting network states with regard to their inhibition- stabilization properties. Moreover, 
we showed that SFA cannot provide similar network stabilization and explored how EI co- tuning inter-
acts with NTA. Finally, we contrasted NTA to alternative transient amplification mechanisms. Balanced 
amplification is a particularly well- studied transient amplification mechanism (Murphy and Miller, 
2009; Goldman, 2009; Hennequin et al., 2014; Bondanelli and Ostojic, 2020; Gillett et al., 2020; 
Christodoulou et al., 2021) that relies on non- normality of the connectivity matrix to selectively and 
rapidly amplify stimuli. Importantly, balanced amplification occurs in networks in which strong recur-
rent excitation is appropriately balanced by strong recurrent inhibition. It is capable of generating rich 
transient activity in linear network models (Hennequin et al., 2014), and selectively amplifies specific 
activity patterns, but without a specific activation threshold. In addition, in spiking neural networks, 
strong input can induce synchronous firing at the population level which is subsequently stabilized by 
strong feedback inhibition without the requirement for STP mechanisms (Stern et al., 2018). These 
properties contrast with NTA, which has a nonlinear activation threshold and intrinsically relies on 
STP to stabilize otherwise unstable run- away dynamics. Due to the switch of the network’s dynamical 
state, NTA’s amplification can be orders of magnitudes larger than balanced amplification (Figure 2—
figure supplement 3). Interestingly, after the transient amplification phase, ensemble dynamics settle 
in an inhibitory- stabilized state, which renders NTA compatible with previous work on SSNs but in 
the presence of STP. Finally, although NTA and balanced amplification rely on different amplification 
mechanisms, they are not mutually exclusive and could, in principle, co- exist in biological networks.

NTA’s requirement to generate positive feedback dynamics through recurrent excitation, motivated 
our focus on networks with  det(J) < 0 . As demonstrated in previous work (Ahmadian et al., 2013), 
supralinear networks with  det(J) > 0  and instantaneous inhibition ( τI/τE → 0 ) are always stable for any 
given input, they are thus unable to generate positive feedback dynamics. In addition, networks with 

 det(J) > 0  can exhibit a range of interesting behaviors, for example, oscillatory dynamics and persistent 
activity (Kraynyukova and Tchumatchenko, 2018). It is worth noting, however, that for delayed or 
slow inhibition, stimulation can still lead to unstable network dynamics in networks with  det(J) > 0 . 
Nevertheless, our simulations suggest that our main conclusions about the stabilization mechanisms 
still hold (Figure 2—figure supplement 11).

NTA shares some properties with the notion of network criticality in the brain, like synchronous 
activation of cell ensembles (Plenz and Thiagarajan, 2007) and STP which can tune networks to 
a critical state (Levina et al., 2007). However, in contrast to most models of criticality, in NTA an 
ensemble briefly transitions to supercritical dynamics in a controlled, stimulus- dependent manner 
rather than spontaneously. Yet, how the two paradigms are connected at a more fundamental level, is 
an intriguing question left for future work. Furthermore, recurrent co- tuned inhibition is essential for 
NTA to ensure uni- stability and selectivity through the suppression of ensembles with different tuning. 
This requirement is similar in flavor to semi- balanced networks characterized by excess inhibition to 
some excitatory ensembles while others are balanced (Baker et al., 2020). However, the theory of 
semi- balanced networks has, so far, only been applied to steady- state dynamics while ignoring tran-
sients and STP. EI co- tuning prominently features in several models and was shown to support network 
stability (Vogels et al., 2011; Hennequin et al., 2017; Znamenskiy et al., 2018), efficient coding 
(Denève and Machens, 2016), novelty detection (Schulz et al., 2021), changes in neuronal variability 
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(Hennequin et al., 2018; Rost et al., 2018), and correlation structure (Wu et al., 2020). Moreover, 
some studies have argued that EI balance and co- tuning could increase robustness to noise in the 
brain (Rubin et al., 2017). The present work mainly highlights its importance for preventing multi- 
stability and delay activity in circuits not requiring such long- timescale dynamics.

NTA is consistent with several experimental findings. First, our model recapitulates the key find-
ings of Shew et al., 2015 who showed ex vivo that strong sensory inputs cause a transient shift to 
a supercritical state, after which adaptive changes rapidly tune the network to criticality. Second, 
NTA requires strong recurrent excitatory connectivity between neurons with similar tuning, which 
has been reported in experiments (Ko et al., 2011; Cossell et al., 2015; Peron et al., 2020). Third, 
ensemble activation in our model depends on a critical stimulus strength in line with recent all- optical 
experiments in the visual cortex, which further link ensemble activation with a perceptual threshold 
(Marshel et al., 2019). Fourth, sensory networks are uni- stable in that they return to a non- selective 
activity state after the removal of the stimulus and usually do not show persistent activity (DeWeese 
et al., 2003; Mazor and Laurent, 2005; Rupprecht and Friedrich, 2018). Fifth, our work shows that 
NTA’s onset responses encode stimulus identity better than the fixed point activity, consistent with 
experiments in the locust antennal lobe (Mazor and Laurent, 2005) and research supporting that the 
brain relies on coactivity on short timescales to represent information (Stopfer et al., 1997; Engel 
et al., 2001; Harris et al., 2003; El- Gaby et al., 2021). Yet, it remains to be seen whether these 
findings are also coherent with data on the temporal evolution in other sensory systems. Finally, EI 
co- tuning, which is conducive for NTA, has been found ubiquitously in different sensory circuits (Wehr 
and Zador, 2003; Froemke et al., 2007; Okun and Lampl, 2008; Rupprecht and Friedrich, 2018; 
Znamenskiy et al., 2018).

In our model, we made several simplifying assumptions. For instance, we kept the input to inhib-
itory neurons fixed and only varied the input to the excitatory population. This step was motivated 
by experiments in the piriform cortex where the total inhibition is dominated by feedback inhibition 
(Franks et al., 2011). Nevertheless, significant feedforward inhibition was observed in other areas 
(Bissière et al., 2003; Cruikshank et al., 2007; Ji et al., 2016; Miska et al., 2018). While an in- depth 
comparison for different origins of inhibition was beyond the scope of the present study, we found 
that increasing the inputs to the excitatory population and inhibitory population by the same amount 
can still lead to NTA (Figure 1—figure supplement 1; Figure 2—figure supplement 12; Materials 
and methods), suggesting that our main findings can remain unaffected in the presence of substantial 
feedforward inhibition. In addition, we limited our analysis to only a few overlapping ensembles. It will 
be interesting future work to study NTA in the case of many interacting and potentially overlapping 
ensembles and to determine the maximum storage capacity above which performance degrades. 
Finally, we anticipate that temporal differences in excitatory and inhibitory synaptic transmission may 
be important to preserve NTA’s stimuli selectivity.

Our model makes several predictions. In contrast to balanced amplification, in which the network 
operating regime depends solely on the connectivity, an ensemble involved in NTA can transition from 
a non- ISN to an ISN state. Such a transition is consistent with noise variability observed in sensory 
cortices (Hennequin et al., 2018) and could be tested experimentally by probing the paradoxical 
effect under different stimulation conditions (Figure 2G–H; Figure 2—figure supplement 6). More-
over, NTA predicts that onset activity provides a better stimulus encoding and its activity is correlated 
with the fixed point activity. This signature is different from purely non- normal amplification mecha-
nisms which would involve a wave of neuronal activity across several distinct ensembles similar to a 
synfire chain (Abeles, 1991). The difference should be clearly discernible in data. Since NTA relies 
on recurrent excitation between ensemble neurons, it suggests normal dynamics in which distinct 
ensembles first activate and then inactivate. The resulting dynamics have weak rotational components 
(Figure 6D) as seen in some experiments (Marshel et al., 2019). Strong non- normal amplification, 
on the other hand, relies on sequential activation associated with pronounced rotational dynamics 
(Hennequin et al., 2014; Gillett et al., 2020), as for instance observed in motor areas (Churchland 
et al., 2012). Although both non- normal mechanisms and NTA are likely to co- exist in the brain, we 
speculate that strong NTA is best suited for, and thus most like to be found in, sensory systems.

In summary, we introduced a general theoretical framework of selective transient signal ampli-
fication in recurrent networks. Our approach derives from the minimal assumptions of a nonlinear 
neuronal transfer function, recurrent excitation within neuronal ensembles, and STP. Importantly, our 
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analysis revealed the functional benefits of STP and EI co- tuning, both pervasively found in sensory 
circuits. Finally, our work suggests that transient onset responses rather than steady- state activity are 
ideally suited for coactivity- based stimulus encoding and provides several testable predictions.

Materials and methods
Stability conditions for supralinear networks
The dynamics of a neuronal ensemble consisting of one excitatory and one inhibitory population with 
a supralinear, power law input- output function can be described as follows:

 
τE

drE
dt

= −rE +
[
JEErE − JEIrI + gE

]αE

+   
(7)

 
τI

drI
dt

= −rI +
[
JIErE − JIIrI + gI

]αI

+   
(8)

The Jacobian  M  of the system is given by
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To ensure that the system is stable, the product of  M ’s eigenvalues  λ1λ2 , which is equivalent to 
the determinant of  M , has to be positive. In addition, the sum of the two eigenvalues  λ1 + λ2 , which 
corresponds to  tr(M) , has to be negative. We therefore obtained the following two stability conditions
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Notably, the stability conditions depend on the firing rate of the excitatory population  rE  and the 
inhibitory population  rI  . Since firing rates are input- dependent, the stability of supralinear networks is 
input- dependent. In contrast, in linear networks in which  αE = αI = 1 , the conditions can be simplified 
to

 λ1λ2 = −τ−1
E τ−1

I (JEE − 1)(1 + JII) + τ−1
E τ−1

I JEIJIE > 0  (12)

 λ1 + λ2 = τ−1
E (JEE − 1) − τ−1

I (1 + JII) < 0  (13)

and are thus input- independent.

ISN index for supralinear networks
If an ensemble is unstable without feedback inhibition, then the ensemble is an ISN (Tsodyks et al., 
1997). To determine whether a given system is an ISN, we analyzed the stability of the E- E subnetwork, 
which is determined by the real part of the leading eigenvalue of the Jacobian of the E- E subnetwork. 
In the following, we call this leading eigenvalue the ‘ISN index’, which is defined as follows:

 ISN index = τ−1
E (JEEαEr

αE−1
αE

E − 1)  (14)

A positive ISN index indicates the system is an ISN. Otherwise, the system is non- ISN. For supra-
linear networks in which  αE > 1 , the ISN index depends on the firing rates, inputs can therefore switch 
the network from non- ISN to ISN. In contrast,  αE = 1  for linear networks which renders the ISN index 
firing rate independent.

Characteristic function
To investigate how network stability changes with input, we trace the steps of Kraynyukova and 
Tchumatchenko, 2018 and define the characteristic function  F(z)  as follows:

 
F(z) = JEE

[
z
]αE

+
− JEI

[
det(J) · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
EI JIIgE + gI

]αI

+
− z + gE  (15)
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where

 z = JEErE − JEIrI + gE  (16)

is the current into the excitatory population. The characteristic function simplifies the original two- 
dimensional system to a one- dimensional system, and the zero crossings of  F(z)  correspond to the 
fixed points of the original system. For  z ≥ 0 , we note:

 
dF(z)

dz
= JEEαEr

αE−1
αE

E − JEIαI

(
det(J) · J−1

EI αEr
αE−1
αE

E + J−1
EI JII

)
r
αI−1
αI

I − 1 = −τEτIλ1λ2  
(17)

Therefore, if the derivative of  F(z)  evaluated at one of its roots is positive, the corresponding fixed 
point is a saddle point. Note that as  rE  and  rI   increase, the term in parenthesis becomes dominant. To 
ensure that  λ1λ2  is negative also for large  rE  and  rI  , the determinant of the weight matrix  det(J)  has 
to be positive. Therefore,  det(J)  has a decisive impact on the curvature of  F(z) . In systems with nega-
tive determinant,  F(z)  bends upwards for large  z . In contrast,  F(z)  asymptotically bends downwards 
in systems with positive determinant. Hence, the high- activity steady- state of systems with negative 
determinant is unstable. In addition, we can simplify the above condition to the determinant of the 
weight matrix which is a necessary condition for network stability at any firing rate:

 det(J) = −JEEJII + JIEJEI > 0  (18)

To investigate how the network stability changes with input  gE , we examined how  F(z)  varies with 
changing input  gE  by calculating the derivative of  F(z)  with respect to  gE ,

 
dF(z)
dgE

= αIJII

[
det(J) · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
EI JIIgE + gI

]αI−1

+
+ 1

  
(19)

Since  
dF(z)
dgE   is positive, increasing  gE  always shifts  F(z)  upwards, eventually leading to the vanishing 

of all roots and, thus, unstable dynamics in supralinear networks with negative  det(J) . In scenarios in 
which feedforward input to the inhibitory population also changes, we have

 

dF(z)
dt

=∂F(z)
∂gE

dgE
dt

+ ∂F(z)
∂gI

dgI
dt

=
(
αIJII

[
det(J) · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
EI JIIgE + gI

]αI−1

+
+ 1

)
∆gE

− αIJEI

[
det(J) · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
EI JIIgE + gI

]αI−1

+
∆gI   

(20)

When the change in stimulation strength into the excitatory ( ∆gE ) and the inhibitory population 
( ∆gI  ) are the same,  

dF(z)
dt   is always positive provided  JII   is greater than  JEI  . Hence, depending on the 

value of  
JII
JEI  , stimulation can lead to unstable network dynamics even when the input to the inhibitory 

population increases more than to the excitatory population.

Spike-frequency adaptation (SFA)
We modeled SFA of excitatory neurons as an activity- dependent negative feedback current (Benda 
and Herz, 2003; Brette and Gerstner, 2005):

 
τE

drE
dt

= −rE +
[
JEErE − JEIrI + gE

]αE

+
− a

  
(21)

 
τI

drI
dt

= −rI +
[
JIErE − JIIrI + gI

]αI

+   
(22)

 
τa

da
dt

= −a + brE  
(23)

where  a  is the adaptation variable,  τa  is the adaptation time constant, and  b  is the adaptation 
strength.

Stability conditions in networks with SFA
The Jacobian  MSFA  of the system with SFA is given by
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MSFA =




τ−1
E (JEEαEr

αE−1
αE

E − 1) −τ−1
E JEIαEr

αE−1
αE

E −τ−1
E

τ−1
I JIEαIr

αI−1
αI

I −τ−1
I (1 + JIIαIr

αI−1
αI

I ) 0

τ−1
a b 0 −τ−1

a



  

(24)

The characteristic polynomial of the system with SFA can be written as follows (Horn and Johnson, 
1985):

 λ3 − tr(MSFA)λ2 + (A11 + A22 + A33)λ− det(MSFA) = 0  (25)

where  tr(MSFA)  and  det(MSFA)  are the trace and the determinant of the Jacobian matrix  MSFA , A11, 
A22, and A33 are the matrix cofactors. More specifically,

 tr(MSFA) = τ−1
E (JEEαEr

αE−1
αE

E − 1) − τ−1
I (1 + JIIαIr

αI−1
αI

I ) − τ−1
a   (26)

 
A11 =

∣∣∣∣
−τ−1

I (1 + JIIαIr
αI−1
αI

I ) 0

0 −τ−1
a

∣∣∣∣ = τ−1
I (1 + JIIαIr

αI−1
αI

I )τ−1
a

  
(27)

 
A22 =

∣∣∣∣
τ−1

E (JEEαEr
αE−1
αE

E − 1) −τ−1
E

τ−1
a b −τ−1

a

∣∣∣∣ = −τ−1
E (JEEαEr

αE−1
αE

E − 1)τ−1
a + τ−1

a bτ−1
E

  
(28)

 

A33 =
∣∣∣∣
τ−1

E (JEEαEr
αE−1
αE

E − 1) −τ−1
E JEIαEr

αE−1
αE

E

τ−1
I JIEαIr

αI−1
αI

I −τ−1
I (1 + JIIαIr

αI−1
αI

I )

∣∣∣∣

= − τ−1
E (JEEαEr

αE−1
αE

E − 1)τ−1
I (1 + JIIαIr

αI−1
αI

I ) + τ−1
E JEIαEr

αE−1
αE

E τ−1
I JIEαIr

αI−1
αI

I   

(29)

 

A11 + A22 + A33 =τ−1
I (1 + JIIαIr

αI−1
αI

I )τ−1
a − τ−1

E (JEEαEr
αE−1
αE

E − 1)τ−1
a + τ−1

a bτ−1
E

− τ−1
E (JEEαEr

αE−1
αE

E − 1)τ−1
I (1 + JIIαIr

αI−1
αI

I ) + τ−1
E JEIαEr

αE−1
αE

E τ−1
I JIEαIr

αI−1
αI

I   

(30)

 

det(MSFA) =τ−1
E (JEEαEr

αE−1
αE

E − 1)τ−1
I (1 + JIIαIr

αI−1
αI

I )τ−1
a

− τ−1
E JEIαEr

αE−1
αE

E τ−1
I JIEαIr

αI−1
αI

I τ−1
a − τ−1

a bτ−1
E τ−1

I (1 + JIIαIr
αI−1
αI

I )  

(31)

To ensure that the dynamics of the system are stable, the real parts of the eigenvalues of the Jaco-
bian at the fixed point, and thus all roots of the characteristic polynomial have to be negative. Since 
the product of the roots is equal to  det(MSFA) ,  −det(MSFA)  has to be positive. We then have

 

b >
αEr

αE−1
αE

E (JEE − det(J) · αIr
αI−1
αI

I )

1 + JIIαIr
αI−1
αI

I

− 1

  

(32)

Since SFA does not modify the synaptic connections, the term  JEE − det(J) · αIr
αI−1
αI

I   is positive for 
networks with  det(J) < 0 .

In the large  rE  limit, if  b  is small such that the above condition cannot be fulfilled,  det(MSFA)  is 
then positive, suggesting that the Jacobian of the system has always at least one positive eigenvalue. 
Therefore, the dynamics of the system cannot be stabilized in the presence of small  b .

In addition,  A11 + A22 + A33  is equal to  λ1λ2 + λ2λ3 + λ1λ3 , with the roots of the characteristic poly-
nomial  λ1 ,  λ2 , and  λ3 . If all roots are real and negative,  A11 + A22 + A33  has to be positive. If one root is 
real and negative and two other roots are complex conjugates, to ensure that all roots have negative 
real parts, one necessary condition is  A11 + A22 + A33 > 0 . From the  tr(MSFA)  and  det(MSFA)  conditions, 
we have

 A11 + A22 + A33 > τ−1
a (−τ−1

a + bτ−1
E ) − bτ−1

E τ−1
I (1 + JIIαIr

αI−1
αI

I )  (33)
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As a result, if  τ
−1
a (−τ−1

a + bτ−1
E ) − bτ−1

E τ−1
I (1 + JIIαIr

αI−1
αI

I ) > 0 ,  A11 + A22 + A33  is guaranteed to be 
positive. We therefore have

 b[τ−1
a τ−1

E − τ−1
E τ−1

I (1 + JIIαIr
αI−1
αI

I )] > τ−2
a   (34)

Note that  τa  has to be small, in other words, SFA has to be fast, so that  τ
−1
a τ−1

E − τ−1
E τ−1

I (1 + JIIαIr
αI−1
αI

I )  

is positive for arbitrary  rI  . For positive  τ
−1
a τ−1

E − τ−1
E τ−1

I (1 + JIIαIr
αI−1
αI

I ) , we have

 

b > τ−2
a

τ−1
a τ−1

E − τ−1
E τ−1

I (1 + JIIαIr
αI−1
αI

I )  
(35)

Since  τa  has to be small, the above condition cannot be satisfied for small  b .
Next, we consider the system with large  b . Suppose that the firing rate  rE  and  rI   in the initial network 

are of order 1, and  b  is of order  K  , where  K   is a large number. We therefore have  −tr(MSFA) ∼ O(1) , 
 A11 + A22 + A33 ∼ O(K) , and  −det(MSFA) ∼ O(K) . The discriminant of the characteristic polynomial is

 

(−tr(MSFA))2(A11 + A22 + A33)2 − 4(A11 + A22 + A33)3 − 4(−tr(MSFA))3(−det(MSFA))

−27(−det(MSFA))2 + 18(−tr(MSFA))(A11 + A22 + A33)(−det(MSFA))

= (A11 + A22 + A33)3[ (−tr(MSFA))2

A11 + A22 + A33
− 4 − 4(−tr(MSFA))3(−det(MSFA))

(A11 + A22 + A33)3

− 27(−det(MSFA))2

(A11 + A22 + A33)3 + 18(−tr(MSFA))(−det(MSFA))
(A11 + A22 + A33)2 ]

  

(36)

Clearly, in the large  b  limit, the discriminant is negative, suggesting that the characteristic polyno-
mial has one real root and two complex conjugate roots (Irving, 2004).

As the input  gE  increases, the complex conjugate eigenvalues cross the imaginary axis when 

 tr(MSFA)(A11 + A22 + A33)  equals  det(MSFA) . As a result, the system undergoes a supercritical Hopf 
bifurcation. We numerically confirmed that the resulting limit cycle is stable (Figure 2—figure supple-
ment 1), consistent with previous work (van Vreeswijk and Hansel, 2001). Thus, the system shows 
oscillatory behavior instead of stable steady state.

Short-term plasticity (STP)
We modeled E- to- E STD following previous work (Tsodyks and Markram, 1997; Varela et al., 1997):

 
τE

drE
dt

= −rE +
[
xJEErE − JEIrI + gE

]αE

+   
(37)

 
τI

drI
dt

= −rI +
[
JIErE − JIIrI + gI

]αI

+   
(38)

 
dx
dt

= 1 − x
τx

− UdxrE
  

(39)

where  x  is the depression variable, which is limited to the interval  (0, 1) ,  τx  is the depression time 
constant, and  Ud  is the depression rate. The steady- state solution  x∗  is given by

 x∗ = 1
1+UdrEτx   (40)

Similarly, we modeled E- to- I STF as

 
τE

drE
dt

= −rE +
[
JEErE − JEIrI + gE

]αE

+   
(41)

 
τI

drI
dt

= −rI +
[
uJIErE − JIIrI + gI

]αI

+   
(42)

 
du
dt

= 1 − u
τu

+ Uf(Umax − u)rE
  

(43)
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where  u  is the facilitation variable constrained to the interval  (1, Umax)  ,  Umax  is the maximal facili-
tation value,  τu  is the time constant of STF, and  Uf   is the facilitation rate. The steady- state solution  u∗  
is given by

 u∗ = 1+UfUmaxrEτu
1+UfrEτu   (44)

Stability conditions for networks with E-to-E STD
The Jacobian  MSTD  of the system with E- to- E STD is given by

 

MSTD =




τ−1
E (xJEEαEr

αE−1
αE

E − 1) −τ−1
E JEIαEr

αE−1
αE

E τ−1
E JEEαEr

2αE−1
αE

E

τ−1
I JIEαIr

αI−1
αI

I −τ−1
I (1 + JIIαIr

αI−1
αI

I ) 0

−Udx 0 −τ−1
x − UdrE



  

(45)

and the characteristic polynomial can be written as follows:

 λ3 − tr(MSTD)λ2 + (A11 + A22 + A33)λ− det(MSTD) = 0  (46)

where  tr(MSTD)  and  det(MSTD)  are the trace and the determinant of the Jacobian matrix  MSTD , A11, 
A22, and A33 are the matrix cofactors. More specifically,

 tr(MSTD) = τ−1
E (xJEEαEr

αE−1
αE

E − 1) − τ−1
I (1 + JIIαIr

αI−1
αI

I ) − τ−1
x − UdrE  (47)

In the case of unstable dynamics,  rE  goes to infinity due to run- away excitation. However, the 
depression variable  x  approaches zero in this limit, as  limrE→∞ x = limrE→∞ 1

1+UdrEτx
= 0 . Therefore, in 

the large  rE  limit,  −tr(MSTD)  is positive.

 

A11 + A22 + A33 =τ−1
I (1 + JIIαIr

αI−1
αI

I )(τ−1
x + UdrE)

+ τ−1
E (xJEEαEr

αE−1
αE

E − 1)(−τ−1
x − UdrE) − τ−1

E JEEαEr
2αE−1

αE
E (−Udx)

− τ−1
E (xJEEαEr

αE−1
αE

E − 1)τ−1
I (1 + JIIαIr

αI−1
αI

I ) + τ−1
E JEIαEr

αE−1
αE

E τ−1
I JIEαIr

αI−1
αI

I   

(48)

Similarly, in the large  rE  limit,  A11 + A22 + A33  is positive.

 

det(MSTD) =τ−1
E (xJEEαEr

αE−1
αE

E − 1)τ−1
I (1 + JIIαIr

αI−1
αI

I )(τ−1
x + UdrE)

− τ−1
E JEIαEr

αE−1
αE

E τ−1
I JIEαIr

αI−1
αI

I (τ−1
x + UdrE) − τ−1

E JEEαEr
2αE−1

αE
E Udxτ−1

I (1 + JIIαIr
αI−1
αI

I ) 
 (49)

Similarly, in the large  rE  limit,  −det(MSTD)  is positive.
According to the Descartes’ rule of signs, the number of positive roots is at most the number of 

sign changes in the sequences of polynomial’s coefficients. Therefore, there are no positive roots for 
the above characteristic polynomial and the network dynamics can be stabilized by E- to- E STD.

Characteristic function approximation for networks with E-to-E STD
As demonstrated above, E- to- E STD is able to restabilize the system, there exists a stable steady state 
for which the STD variable  x  is constant  x = x∗ . Because  x  changes slowly compared to the neuronal 
dynamics, we can approximate it as constant which results in a natural reduction to a 2D system in 
which the weights with STD are modified. The stability of this 2D system can be readily characterized 
by the characteristic function  F(z)  (Kraynyukova and Tchumatchenko, 2018), which depends on the 
previous steady state value of  x . The characteristic function approximation with E- to- E STD can there-
fore be written as follows:

 
F(z) = xJEE

[
z
]αE

+
− JEI

[
det(JSTD) · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
EI JIIgE + gI

]αI

+
− z + gE  

(50)
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where

 
det(JSTD) =

∣∣∣∣
xJEE −JEI

JIE −JII

∣∣∣∣ = −xJEEJII + JIEJEI
  

(51)

Note that  det(JSTD)  can now change its sign due to E- to- E STD, the characteristic function can 
therefore change its bending shape. We used this relation to visualize how E- to- E STD effectively 
changes the network stability of the reduced system in Figure 2D.

Conditions for ISN in networks with E-to-E STD
Here, we identify the condition of being in the ISN regime in supralinear networks with E- to- E STD. 
When the level of inhibition is frozen, the Jacobian of the system reduces to the following:

 

M1 =


τ−1

E (xJEEαEr
αE−1
αE

E − 1) τ−1
E JEEαEr

2αE−1
αE

E

−Udx −τ−1
x − UdrE



  

(52)

For the system with frozen inhibition, the dynamics are stable if

 tr(M1) = τ−1
E (xJEEαEr

αE−1
αE

E − 1) − τ−1
x − UdrE < 0  (53)

and

 det(M1) = τ−1
E (xJEEαEr

αE−1
αE

E − 1)(−τ−1
x − UdrE) + τ−1

E JEEαEr
2αE−1

αE
E Udx > 0  (54)

Therefore, if the network is an ISN at the fixed point, the following condition has to be satisfied:

 

x > min



√

1

JEEαEr
αE−1
αE

E

, τx+τE+τEτxUdrE

τxJEEαEr
αE−1
αE

E




  

(55)

Furthermore, we define the largest real part of the eigenvalues of  M1  as the ISN index for networks 
with E- to- E STD. More specifically,

 

ISN index = Re



τ−1

E (xJEEαEr
αE−1
αE

E − 1) − τ−1
x − UdrE

2
+

√√√√ 1

4
(τ−1

E (xJEEαEr
αE−1
αE

E − 1) + τ−1
x + UdrE)2 − τ−1

E JEEαEr
2αE−1

αE
E Udx



  
(56)

Conditions for paradoxical response in networks with E-to-E STD
Next, we identify the condition of having the paradoxical effect in supralinear networks with E- to- E 
STD. To that end, we exploit a separation of timescales between the fast neural activity and the slow 
STP variable. Therefore, set the depression variable to its value at the fixed point corresponding to 
the fixed point value of  rE . The excitatory nullcline is defined as follows

 
τE

drE
dt

= −rE +
[ 1

1 + τxUdrE
JEErE − JEIrI + gE

]αE

+
= 0

  
(57)

For  rE,I > 0 , we have

 
rI =

1
1+τxUdrE

JEErE − r
1

αE
E + gE

JEI   
(58)

The slope of the excitatory nullcline in the  rE/rI   plane where  x  axis is  rE  and  y  axis is  rI   can be 
written as follows

 
kE

STD = 1
JEI

(
− JEE

(1 + τxUdrE)2 τxUdrE + JEE
1 + τxUdrE

− 1
αE

r
1

αE
−1

E

)

  
(59)
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Note that the slope of the excitatory nullcline is nonlinear. To have paradoxical effect, the slope of 
the excitatory nullcline at the fixed point of the system has to be positive. Therefore, the STD variable 
 x  at the fixed point has to satisfy the following condition

 

x >
√

1

JEEαEr
αE−1
αE

E   
(60)

The inhibitory nullcline can be written as follows

 
τI

drI
dt

= −rI +
[
JIErE − JIIrI + gI

]αI

+
= 0

  
(61)

In the region of rates  rE,I > 0 , we have

 
rI =

JIErE − r
1
αI
I + gI

JII   
(62)

The slope of the inhibitory nullcline can be written as follows

 

kI
STD = JIE

JII + 1
αI

r
1−αI
αI

I   
(63)

In addition to the positive slope of the excitatory nullcline, the slope of the inhibitory nullcline at 
the fixed point of the system has to be larger than the slope of the excitatory nullcline. We therefore 
have

 
JEIαEr

αE−1
αE

E JIEαIr

αI−1
αI

I
(
τ
−1
x + UdrE

)
>


1 + JIIαIr

αI−1
αI

I





−

JEEUdrE

1 + τxUdrE
αEr

αE−1
αE

E +
JEE

1 + τxUdrE
αEr

αE−1
αE

E (τ−1
x + UdrE ) − (τ−1

x + UdrE )



 

 (64)

The above condition is the same as the stability condition of the determinant of the Jacobian of 
the system with E- to- E STD (Eq. (49)). Therefore, the condition is always satisfied when the system 
with E- to- E STD is stable.

Based on the condition of being ISN shown in Eq. (55) and the condition of having paradoxical 
effect shown in Eq. (60), we therefore can conclude that in supralinear networks with E- to- E STD, the 
paradoxical effect implies inhibitory stabilization, whereas inhibitory stabilization does not necessarily 
imply paradoxical responses. This is consistent with recent work by Sanzeni et al., 2020, in which 
threshold- linear networks with STP have been studied. Here, we showed analytically that the conclu-
sion holds for any rectified power- law activation function with positive  α .

To visualize the conditions in a two- dimensional plane, we reduced the conditions into a function 
of  JEE  and  x . For Figure 2G,  rE = 1 . In Figure 2—figure supplement 5 and Figure 2—figure supple-
ment 8, the depression variable thresholds above which the network exhibits the paradoxical effect 
were calculated based on Eq. (60).

Uni-stability conditions
The system is said to be ‘uni- stable’, when it has a single stable fixed point. We first identified the uni- 
stability condition for networks with global inhibition. To that end, we considered a general network 
with  N   excitatory populations and  N   inhibitory populations. To treat this problem analytically, we did 
not take STP into account in our analysis. The Jacobian matrix of networks with global inhibition  Q , 
can be written as follows,

 

Q =


JE←E JE←I

JI←E JI←I



  

(65)

where  JE←E ,  JE←I  ,  JI←E , and  JI←I   are  N   by  N   block matrices defined below.
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JE←E =




a − e ka · · · ka

ka a − e · · · ka
...

...
. . .

...

ka ka · · · a − e



  

(66)

 JE←I = −bJN,N   (67)

 JI←E = cJN,N   (68)

 

JI←I =




−d − f −d · · · −d

−d −d − f · · · −d
...

...
. . .

...

−d −d · · · −d − f



  

(69)

where  a = τ−1
E JEEαE[zE]αE−1

+  ,  b = τ−1
E JEIαE[zE]αE−1

+  ,  c = τ−1
I JIEαI[zI]αI−1

+  ,  d = τ−1
I JIIαI[zI]αI−1

+  , 

 e = τ−1
E  , and  f = τ−1

I  . Here,  zE  and  zI   denote the total current into the excitatory and inhibitory popu-
lation, respectively. Note that all these parameters are non- negative. Parameter  k  controls the excit-
atory connection strength across different populations.  JN,N   is a  N   by  N   matrix of ones.

The eigenvalues of the Jacobian  Q  are roots of its characteristic polynomial,

 det((JE←E − λ1)(JI←I − λ1) − JE←IJI←E) = 0  (70)

where  1  represents the identity matrix of size  N  . The characteristic polynomial can be expanded to:

 

[
(a − e − ka − λ)(−f − λ)

]N−1[
(a − e + (N − 1)ka − λ)(−Nd − f − λ) + N2bc

]
= 0

  
(71)

We therefore had four distinct eigenvalues:

 λ1 = a − e − ka  (72)

 λ2 = −f   (73)

and

 
λ3/4 =

1

2

[
(a − e − f − Nd + (N − 1)ka) ±

√
(a − e − f − Nd + (N − 1)ka)2 − 4((−af + ef + kaf) − N(a − e)d − Nkaf − N(N − 1)kad + N2bc)

]

 
 (74)

Note that the eigenvalues  λ1  and  λ2  have an algebraic and geometric multiplicity of ( N  –1), whereas 
the eigenvalues  λ3  and  λ4  have an algebraic and geometric multiplicity of 1.

In analogy to networks with global inhibition, the Jacobian matrix of networks with co- tuned inhi-
bition  R , can be written as

 

R =


JE←E JE←I

JI←E JI←I



  

(75)

where  JE←E ,  JE←I  ,  JI←E , and  JI←I   are  N   by  N   block matrices defined as follows:

 

JE←E =




a − e ka · · · ka

ka a − e · · · ka
...

...
. . .

...

ka ka · · · a − e



  

(76)
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JE←I =




−Nb + (N − 1)mb −mb · · · −mb

−mb −Nb + (N − 1)mb · · · −mb
...

...
. . .

...

−mb −mb · · · −Nb + (N − 1)mb



  

(77)

 

JI←E =




Nc − (N − 1)mc mc · · · mc

mc Nc − (N − 1)mc · · · mc
...

...
. . .

...

mc mc · · · Nc − (N − 1)mc



  

(78)

 

JI←I =




−Nd + (N − 1)md − f −md · · · −md

−md −Nd + (N − 1)md − f · · · −md
...

...
. . .

...

−md −md · · · −Nd + (N − 1)md − f



  

(79)

where  m  controls the degree of co- tuning in the network. If  m = 0 , the network decouples into  N   
independent ensembles and inhibition is perfectly co- tuned with excitation. In the case  m = 1 , inhibi-
tion is global and the block matrices become identical to the above case of global inhibition.

The eigenvalues of the matrix  R  are given as the roots of the characteristic polynomial defined by:

 det((JE←E − λ1)(JI←I − λ1) − JE←IJI←E) = 0  (80)

which yields the following expression:

 

[
λ2 − (a − e − ka − Nd + Nmd − f)λ− (a − e − ka)(Nd − Nmd − f)

+ N2bc(1 − m)2
]N−1[

(a − e + (N − 1)ka − λ)(−Nd − f − λ) + N2bc
]

= 0
  

(81)

We therefore had four distinct eigenvalues:

 
λ

′

1/2 = 1
2

[
(a − e − ka − Nd + Nmd − f) ±

√
(a − e − ka + Nd − Nmd + f)2 − 4N2bc(1 − m)2

]

  
(82)

 
λ
′
3/4 =

1

2

[
(a − e − f − Nd + (N − 1)ka) ±

√
(a − e − f − Nd + (N − 1)ka)2 − 4((−af + ef + kaf) − N(a − e)d − Nkaf − N(N − 1)kad + N2bc)

]

 
 (83)

The eigenvalues  λ
′

1  and  λ
′

2  have an algebraic and geometric multiplicity of ( N  –1), whereas the 
eigenvalues  λ

′

3  and  λ
′

4  have an algebraic and geometric multiplicity of 1. We noted that  λ3 = λ
′

3 , 

 λ4 = λ
′

4 .
To compare under which conditions networks with different structures are uni- stable, we examined 

the different eigenvalues derived above. As  λ2 < 0 , and  λ
′

1 > λ
′

2 , we only had to compare  λ
′

1  to  λ1 . For 
networks with co- tuned inhibition, we have  m < 1 ,

 

λ
′

1 = 1
2

[
(a − e − ka − Nd + Nmd − f) +

√
(a − e − ka + Nd − Nmd + f)2 − 4N2bc(1 − m)2

]

< 1
2

[
(a − e − ka − Nd + Nmd − f) +

√
(a − e − ka + Nd − Nmd + f)2

]
= a − e − ka = λ1

  

(84)

The inequality,  λ
′

1 < λ1 , indicates that networks with co- tuned inhibition have a broad parameter 
regime in which they are uni- stable than networks with global inhibition. Note that in the absence of a 
saturating nonlinearity of the input- output function and in the absence of any additional stabilization 
mechanisms, systems with positive eigenvalues of the Jacobian are unstable. In this case, networks 
with co- tuned inhibition have a broad parameter regime of being stable than networks with global 
inhibition.
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To visualize the conditions in a two- dimensional plane, we reduced the conditions into a function 
of  a  and  d . For Figure 3C,  k = 0.1 ,  m = 0.5  and  bc = 0.9ad .

Distance to the decision boundary
To calculate the distance to the decision boundary in Figures 4 and 5, Figure 4—figure supplement 
2 and Figure 5—figure supplement 2, we first projected the excitatory activity in Phase two onto 
a two- dimensional Cartesian coordinate system in which the horizontal axis is the activity of the first 
excitatory ensemble  rE1  and the vertical axis is the activity of the second excitatory ensemble  rE2 . We 
denote the location of the projected data point in the Cartesian coordinate system by ( x ,  y ), where 
 x  and  y  equal  rE1  and  rE2 , respectively. The distance  L  between the projected data and the deci-
sion boundary which corresponds to the diagonal line in the coordinate system can be expressed as 
follows:

 
L =

√
x2 + y2sin(|45o − arcsin( x√

x2+y2
)|)

  (85)

Note that the inverse trigonometric function arcsin gives the value of the angle in degrees.

Inhibitory feedback pathways for suppressing unwanted neural 
activation
To identify the important neural pathways for the suppression of unwanted neural activation, we 
analyzed how the activity of the second excitatory ensemble  rE2  changes with the input to the first 
excitatory ensemble  gE1 . To that end, we considered a general weight matrix for networks with two 
interacting ensembles

 

J =




JE1E1 JE1E2 −JE1I1 −JE1I2

JE2E1 JE2E2 −JE2I1 −JE2I2

JI1E1 JI1E2 −JI1I1 −JI1I2

JI2E1 JI2E2 −JI2I1 −JI2I2



  

(86)

We can write the change in firing rate of the excitatory population in the second ensemble  δrE2  as 
a function of the change in the input to the other  δgE1 :

 

δrE2 =
1

det(1− FJ)

[
(−f

′
E2JE2E1)f

′
I1JI1I2f

′
I2JI2I1 + f

′
E2JE2I1(−f

′
I1JI1E1)(1 + f

′
I2JI2I2) + f

′
E2JE2I2(1 + f

′
I1JI1I1)(−f

′
I2JI2E1)

− (−f
′
E2JE2E1)(1 + f

′
I1JI1I1)(1 + f

′
I2JI2I2) −f

′
E2JE2I1f

′
I1JI1I2(−f

′
I2JI2E1) − f

′
E2JE2I2(−f

′
I1JI1E1)f

′
I2JI2I1

]
f
′
E1δgE1   

(87)

where  1  is the identity matrix. And  F  is given by

 

F =




f
′

E1 0 0 0

0 f
′

E2 0 0

0 0 f
′

I1 0

0 0 0 f
′

I2



  

(88)

where  f
′

E1 ,  f
′

E2 ,  f
′

I1  and  f
′

I2  are the derivatives of the input- output functions evaluated at the fixed 
point.

Assuming that  JE1E1 = JE2E2 = JEE ,  JI1E1 = JI2E2 = JIE ,  JE1I1 = JE2I2 = JEI  ,  JI1I1 = JI2I2 = JII  , 

 JE1E2 = JE2E1 = J
′

EE ,  JI1E2 = JI2E1 = J
′

IE ,  JE1I2 = JE2I1 = J
′

EI   and  JI1I2 = JI2I1 = J
′

II  , we find

 

δrE2 = 1
det(1 − FJ)

[
(−f

′

E2J
′

EE)f
′

I1J
′

IIf
′

I2J
′

II + f
′

E2J
′

EI(−f
′

I1JIE)(1 + f
′

I2JII) + f
′

E2JEI(1 + f
′

I1JII)(−f
′

I2J
′

IE)

− (−f
′

E2J
′

EE)(1 + f
′

I1JII)(1 + f
′

I2JII) −f
′

E2J
′

EIf
′

I1J
′

II(−f
′

I2J
′

IE) − f
′

E2JEI(−f
′

I1JIE)f
′

I2J
′

II

]
f
′

E1δgE1   

(89)

By further assuming that the weight strengths across ensembles are weak and ignoring the corre-
sponding higher- order terms, we get

https://doi.org/10.7554/eLife.71263
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δrE2 ≈ 1
det(1 − FJ)

[
f
′

E2J
′

EI(−f
′

I1JIE)(1 + f
′

I2JII) + f
′

E2JEI(1 + f
′

I1JII)(−f
′

I2J
′

IE)

−(−f
′

E2J
′

EE)(1 + f
′

I1JII)(1 + f
′

I2JII) − f
′

E2JEI(−f
′

I1JIE)f
′

I2J
′

II

]
f
′

E1δgE1

= 1
det(1 − FJ)

[(
J
′

II
J′

EI
f
′

I2 − ( 1
JEI

+ f
′

I2
JII
JEI

)

)
J
′

EIJEIJIEf
′

E2f
′

I1

+

(
J
′

EE
J′

IE
(1 + JIIf

′

I2) − JEIf
′

I2

)
J
′

IEf
′

E2(1 + f
′

I1JII)

]
f
′

E1δgE1
  

(90)

Note that 
 
J
′
EE

J′IE  
 and 

 
J
′
II

J′EI  
 are terms regulating the respective excitatory and inhibitory input from one 

ensemble to the excitatory and inhibitory population in another ensemble. The term  det(1 − FJ)  is 
positive to ensure the stability of the system.

To suppress the activity of the excitatory population in the second ensemble  rE2 , in other words, to 
ensure that  δrE2 < 0 ,  J

′

IE  or/and  J
′

EI   have to be large. Therefore, we identified  J
′

IE  and  J
′

EI   as important 
synaptic connections which lead to suppression of the unwanted neural activation, suggesting that 
inhibition can be provided via  J

′

IE  through the  E1 - I2 - E2  pathway or via  J
′

EI   through the  E1 - I1 - E2  
pathway.

For Figures 4 and 5, the rate- based model consists of two ensembles, each of which is composed 
of 100 excitatory and 25 inhibitory neurons with all- to- all connectivity.

Spiking neural network model
The spiking neural network model was composed of  NE  excitatory and  NI   inhibitory leaky integrate- 
and- fire neurons. Neurons were randomly connected with probability of 20%. The dynamics of 
membrane potential of neuron i,  Ui , as defined by Zenke et al., 2015:

 τm dUi
dt = (Urest − Ui) + gext

i (t)(Uexc − Ui) + ginh
i (t)(Uinh − Ui)  (91)

Here,  τm  is the membrane time constant and  Urest  is the resting potential. Spikes are triggered when 
the membrane potential reaches the spiking threshold  Uthr . After a spike is emitted, the membrane 
potential is reset to  Urest  and the neuron enters a refractory period of  τ ref  . Inhibitory neurons obeyed 
the same integrate- and- fire formalism but with a shorter membrane time constant.

Excitatory synapses contain a fast AMPA component and a slow NMDA component. The dynamics 
of the excitatory conductance are described by:

 
τ ampa dgampa

i
dt

= −gampa
i +

∑
j∈exc

JijSj(t)
  

(92)

 
τnmda dgnmda

i
dt

= −gnmda
i + gampa

i   
(93)

 gexc
i (t) = ξgampa

i (t) + (1 − ξ)gnmda
i (t)  (94)

Here,  Jij  denotes the synaptic strength from neuron  j  to neuron i. If the connection does not exist, 

 Jij  was set to 0.  Sj(t)  is the spike train of neuron  j , which is defined as  Sj(t) =
∑

k δ(t − tkj ) , where  δ  is the 
Dirac delta function and  t

k
j   the spikes times  k  of neuron  j .  ξ  is a weighting parameter. The dynamics 

of inhibitory conductances are governed by:

 
τgaba dginh

i
dt = −ginh

i +
∑

j∈inh
JijSj(t)

  
(95)

In the spiking neural network models, SFA of excitatory neurons is modeled as follows,

 
τm dUi

dt
= (Urest − Ui) + gext

i (t)(Uexc − Ui) + (ginh
i (t) + ai(t))(Uinh − Ui)  (96)

 
dai
dt

= − ai
τa

+ bSi(t)
  

(97)
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where i is the index of excitatory neurons.
The dynamics of E- to- E STD are given by

 

dxij
dt

=
1 − xij
τx

− UdxijSj(t)
  

(98)

 
τ ampa dgampa

i
dt

= −gampa
i +

∑
j∈exc

xijJijSj(t)
  

(99)

where i represents the index of excitatory neurons.
The dynamics of E- to- I STF are governed by

 

duij
dt

=
1 − uij
τu

+ Uf(Umax − uij)Sj(t)
  

(100)

 
τ ampa dgampa

i
dt

= −gampa
i +

∑
j∈exc

uijJijSj(t)
  

(101)

where i denotes the index of inhibitory neurons.
For Figure 6, each excitatory and inhibitory neuron received external excitatory input from 300 

neurons firing with Poisson statistics at an average firing rate of 0.1 Hz at baseline. During stimulation, 
the excitatory neurons corresponding to the activated ensemble received external excitatory input 
from 300 neurons firing with Poisson statistics at an average firing rate of 0.5 Hz. The ensemble activity 
is computed from the instantaneous firing rates of the respective ensembles with 10ms bin size. 
The difference in ensemble activity for the peak amplitude is calculated by subtracting the average 
maximal ensemble activity of the unstimulated ensembles from the maximal ensemble activity of the 
activated ensemble. Similarly, the difference in ensemble activity for the fixed point is calculated by 
subtracting the average ensemble activity of the unstimulated ensembles at the fixed point from the 
ensemble activity of the activated ensemble at the fixed point. Fixed point activity is computed by 
averaging the activity of the middle 1 second within the 2- second stimulation period.

For Figure  2—figure supplement 10, each excitatory and inhibitory neuron received external 
excitatory input from 300 neurons firing with Poisson statistics at an average firing rate of 0.1 Hz at 

Table 1. Parameters for Figure 1C–E.

Symbol Value Unit Description

 JEE 1.8 - E- to- E connection strength

 JIE 1.0 - E- to- I connection strength

 JEI  1.0 - I- to- E connection strength

 JII  0.6 - I- to- I connection strength

 αE 2 - Power of excitatory input- output function

 αI  2 - Power of inhibitory input- output function

 τE 20 ms Time constant of excitatory firing dynamics

 τI  10 ms Time constant of inhibitory firing dynamics

 g
bs
E  1.55 - Input to the E population at baseline

 g
stim
E  3.0 - Input to the E population during stimulation

 gI  2.0 - Input to the I population

Parameters for Figure 1F

 JIE 0.45 - E- to- I connection strength

 JEI  1.0 - I- to- E connection strength

 JII  1.5 - I- to- I connection strength

https://doi.org/10.7554/eLife.71263
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the baseline. During stimulation, each excitatory neuron received external excitatory input from 300 
neurons firing with Poisson statistics at an average firing rate of 0.3 Hz.

For Figure 6—figure supplement 1, the firing rates of 300 neurons are varying from  4/15  Hz to 
 7/15  Hz.

Simulations
Simulations were performed in Python and Mathematica. All differential equations were implemented 
by Euler integration with a time step of 0.1 ms. All simulation parameters are listed in Tables 1–5 and 
Appendix 5—Tables 1–10. The simulation source code to reproduce the figures is publicly available 
at https://github.com/fmi-basel/gzenke-nonlinear-transient-amplification (Wu, 2021 copy archived at 
swh:1:rev:6ff6ff10b9f4994a0f948a987a66cc82f98451e1).

Table 2. Parameters for Figure 2.

Symbol Value Unit Description

 τa 200 ms Time constant of SFA

 b 1.0 - Strength of SFA

 τx 200 ms Time constant of STD

 Ud  1.0 - Depression rate

 τu 200 ms Time constant of STF

 Uf  1.0 - Facilitation rate

 Umax 6.0 - Maximal facilitation value

Note that these values are also applied elsewhere unless mentioned otherwise.

Table 3. Parameters for Figure 3 bi/multi- stable example.

Symbol Value Unit Description

 JEE 1.4 - Within- ensemble E- to- E connection strength

 JIE 0.6 - Within- ensemble E- to- I connection strength

 JEI  1.0 - Within- ensemble I- to- E connection strength

 JII  0.6 - Within- ensemble I- to- I connection strength

 J
′

EE 0.14 - Inter- ensemble E- to- E connection strength

 J
′

IE 0.6 - Inter- ensemble E- to- I connection strength

 J
′

EI  1.0 - Inter- ensemble I- to- E connection strength

 J
′

II  0.6 - Inter- ensemble I- to- I connection strength

 g
bs
E1 2.2 - Input to the E1 population at baseline

 g
stim
E1  3.0 - Input to the E1 population during stimulation

 gE2 2.2 - Input to the E2 population

 gI  2.0 - Input to the I population

Parameters for Figure 3 uni- stable example

 JEE 1.3 - Within- ensemble E- to- E connection strength

 J
′

EE 0.13 - Inter- ensemble E- to- E connection strength

https://doi.org/10.7554/eLife.71263
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Table 4. Parameters for Figures 4 and 5.

Symbol Value Unit Description

 NE 200 - Number of excitatory neurons

 NI  50 - Number of inhibitory neurons

 N  2 - Number of ensembles

 JEE  1.2/(NE/2 − 1) - Within- ensemble E- to- E connection strength

 JIE  1.0/(NE/2) - Within- ensemble E- to- I connection strength

 JEI   1.0/(NI/2) - Within- ensemble I- to- E connection strength

 JII   1.0/(NI/2 − 1) - Within- ensemble I- to- I connection strength

 J
′

EE  0.36/(NE/2 − 1) - Inter- ensemble E- to- E connection strength

 J
′

IE  0.4/(NE/2) - Inter- ensemble E- to- I connection strength

 J
′

EI   0.1/(NI/2) - Inter- ensemble I- to- E connection strength

 J
′

II   0.1/(NI/2) - Inter- ensemble I- to- I connection strength

 gI  2.0 - Input to the I population

Parameters for Figure 4

 g
bs
E1 1.35 - Input to the E1 population

 g
stim
E1  4.0 - Input to the E1 population during stimulation

 gE2 1.35 - Input to the E2 population

Parameters for Figure 5

 g
bs
E1 1.35 - Input to the E1 population at baseline

 g
stim
E1  1.35 + (4.0–1.35) (1- p ) - Input to the E1 population during stimulation

 g
bs
E2 1.35 - Input to the E2 population at baseline

 g
stim
E2  1.35 + (4.0–1.35) p - Input to the E2 population during stimulation

Here, p is a parameter between 0 and 1 controlling the additional inputs to E1 and E2.

https://doi.org/10.7554/eLife.71263
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Table 5. Parameters for Figure 6.

Symbol Value Unit Description

 NE 400 - Number of excitatory neurons

 NI  100 - Number of inhibitory neurons

 Urest –70 mV Resting membrane potential

 Uexc 0 mV Excitatory reversal potential

 Uinh –80 mV Inhibitory reversal potential

 τ ref  3 ms Duration of refractory period

 τ
m
exc 20 ms Membrane time constant of excitatory neurons

 τ
m
inh 10 ms Membrane time constant of inhibitory neurons

 τ ampa 5 ms Time constant of AMPA receptor

 τgaba 10 ms Time constant of GABA receptor

 τnmda 100 ms Time constant of NMDA receptor

 ξ 0.5 - Receptor weighting factor

 JEE 0.19 - Within- ensemble E- to- E connection strength

 JIE 0.10 - Within- ensemble E- to- I connection strength

 JEI  0.10 - Within- ensemble I- to- E connection strength

 JII  0.06 - Within- ensemble I- to- I connection strength

 J
′

EE 0.019 - Inter- ensemble E- to- E connection strength

 J
′

IE 0.05 - Inter- ensemble E- to- I connection strength

 J
′

EI  0.04 - Inter- ensemble I- to- E connection strength

 J
′

II  0.006 - Inter- ensemble I- to- I connection strength
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Appendix 1
Stability conditions in networks with E-to-I STF
The dynamics of supralinear networks with E- to- I STF can be described as follows:

 
τE

drE
dt

= −rE +
[
JEErE − JEIrI + gE

]αE

+   
(102)

 
τI

drI
dt

= −rI +
[
uJIErE − JIIrI + gI

]αI

+   
(103)

 
du
dt

= 1 − u
τu

+ Uf(Umax − u)rE
  

(104)

The Jacobian  MSTF  of the system with E- to- I STF is given by:

 

MSTF =




τ−1
E (JEEαEr

αE−1
αE

E − 1) −τ−1
E JEIαEr
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
  

(105)

The characteristic polynomial for the system with E- to- I STF can be written as follows:

 λ3 − tr(MSTF)λ2 + (A11 + A22 + A33)λ− det(MSTF) = 0  (106)

where  tr(MSTF)  and  det(MSTF)  are the trace and the determinant of the Jacobian matrix  MSFA  , 
A11, A22, and A33 are the matrix cofactors. More specifically,
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(107)

Assuming that  αE = αI = α , we then have

 
tr(MSTF) ∝ τ−1

E
[
JEEα

( rE
rI
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α − r
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I
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I (r
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(108)

Substituting the firing rates with the current into excitatory population  z , we then have

 

tr(MSTF) ∝τ−1
E

[
JEEα

( z
det(JSTF) · J−1
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EI JIIz − J−1
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(109)

 
det (JSTF) =

∣∣∣∣
JEE −JEI

uJIE −JII

∣∣∣∣ = −JEEJII + uJIEJEI
  

(110)

In the large  rE  limit,  z  is large,  limrE→∞ u = limrE→∞
1+UfUmaxrEτu

1+UfrEτu
≈ Umax . Therefore, we can 

guarantee that  det (JSTF)  becomes positive for sufficiently large  Umax . Since the denominator 

 det (JSTF) · J−1
EI [z]α+ + J−1

EI JIIz − J−1
EI JIIgE + gI   grows faster than the numerator for  z ≫ 1 ,  tr(MSTF)  

becomes negative for large  rE .
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 (111)

Similarly, in the large  rE  limit,  A11 + A22 + A33  is positive.

https://doi.org/10.7554/eLife.71263
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det(MSTF) =τ−1
E (JEEαEr
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αE

E − 1)τ−1
I (1 + JIIαIr
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I )(τ−1
u + UfrE)
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I JIErEαIr
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αI

I Uf(Umax − u))  

(112)

Similarly, in the large  rE  limit,  det(MSTF)  is negative.
Therefore, similar to E- to- E STD, networks dynamics can also be stabilized by E- to- I STF.

https://doi.org/10.7554/eLife.71263
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Appendix 2
Conditions for ISN in networks with E-to-I STF
Here, we identify the condition of being ISN in supralinear networks with E- to- I STF. If inhibition 
is frozen, in other words, if feedback inhibition is absent, the Jacobian of the system becomes as 
follows:

 

M2 =


τ−1

E (JEEαEr
αE−1
αE

E − 1) 0

Uf(Umax − u) −τ−1
u − UfrE



  

(113)

For the system with frozen inhibition, the dynamics are stable if

 tr(M2) = τ−1
E (JEEαEr

αE−1
αE

E − 1) − τ−1
u − UfrE < 0  (114)

and

 det(M2) = τ−1
E (JEEαEr

αE−1
αE

E − 1)(−τ−1
u − UfrE) > 0  (115)

Therefore, if the network is an ISN at the fixed point, the following condition has to be satisfied:

 τ−1
E (JEEαEr

αE−1
αE

E − 1) > 0  (116)

Note that this condition is independent of the facilitation variable  u  of E- to- I STF. We further 
define the ISN index for the system with E- to- I STF as follows:

 ISN index = τ−1
E (JEEαEr

αE−1
αE

E − 1)  (117)
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Appendix 3
Conditions for paradoxical response in networks with E-to-I STF
Next, we identify the condition of having the paradoxical effect in supralinear networks with E- to- I 
STF. The excitatory nullcline is defined by

 
τE

drE
dt

= −rE +
[
JEErE − JEIrI + gE

]αE

+
= 0

  
(118)

For  rE,I > 0 , we have

 
rI =

JEErE − r
1

αE
E + gE

JEI   
(119)

The slope of the excitatory nullcline in the  rE/rI   plane where  x  axis is  rE  and  y  axis is  rI   can be 
written as follows

 
kE

STF =
JEE − 1

αE
r

1
αE

−1
E

JEI   
(120)

Note that the slope of the excitatory nullcline is nonlinear. To have paradoxical effect, the slope 
of the excitatory nullcline at the fixed point of the system has to be positive. We therefore have

 JEEαEr
αE−1
αE

E − 1 > 0  (121)

We exploit a separation of timescales between fast neural activity and slow short- term plasticity 
variable, we therefore set the facilitation variable to the value at its fixed point corresponding to 
the dynamical value of  rE . Then we can write the inhibitory nullcline as follows

 
τI

drI
dt

= −rI +
[1 + UfUmaxrEτu

1 + UfrEτu
JIErE − JIIrI + gI

]αI

+
= 0

  
(122)

In the region of rates  rE,I > 0 , we have

 
rI =

1+UfUmaxrEτu
1+UfrEτu

JIErE − r
1
αI
I + gI

JII   
(123)

The slope of the inhibitory nullcline can be written as follows

 

kI
STF =
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(124)

In addition to the positive slope of the excitatory nullcline, the slope of the inhibitory nullcline 
at the fixed point of the system has to be larger than the slope of the excitatory nullcline. We 
therefore have

 

−(JEEαEr
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E − 1)(1 + JIIαIr
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αI

I ) + JIEαEr
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αI−1
αI

I rE > 0
  

(125)

The above condition is the same as the stability condition of the determinant of the Jacobian of 
the system with E- to- I STF (Eq. (112)). Therefore, the condition is always satisfied when the system 
with E- to- I STF is stable.

Note that the condition of being ISN shown in Eq. (116) is identical to the condition of having 
paradoxical effect shown in Eq. (121). Therefore, in networks with E- to- I STF alone, paradoxical 

https://doi.org/10.7554/eLife.71263
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effect implies ISN and ISN implies paradoxical effect. We thus use paradoxical effect as a proxy for 
inhibitory stabilization.

https://doi.org/10.7554/eLife.71263
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Appendix 4
Change in steady-state activity of unstimulated co-tuned neurons
To analyze the pattern completion in supralinear networks, we considered a network with one 
excitatory population and one inhibitory population. Neurons in the excitatory population are co- 
tuned to the same stimulus feature and are separated into two subsets denoting by E11 and E12. 
The dynamics of the system can be described as follows:

 
τE

drE11

dt
= −rE11 +

[
JE11E11 rE11 + JE11E12 rE12 − JE11IrI + gE11

]αE

+   
(126)

 
τE

drE12

dt
= −rE12 +

[
JE12E11 rE11 + JE12E12 rE12 − JE12IrI + gE12

]αE

+   
(127)

 
τI

drI
dt

= −rI +
[
JIE11 rE11 + JIE12 rE12 − JIIrI + gI

]αI

+   
(128)

The change in the firing rate of the Subset 2 in the excitatory population  δrE12  can be written as 
a function of the change in the input to the Subset 1  δgE11 :

 

δrE12 = 1
det(1 − FJ)

[−f
′

E12 JE12If
′

IJIE11 − (−f
′

E12 JE12E11 )(1 + f
′

IJII)]f
′

E11δgE11

= 1
det(1 − FJ)

[JE12E11 + JE12E11 JIIf
′

I − JE12IJIE11 f
′

I]f
′

E11 f
′

E12δgE11   

(129)

where  1  is the identity matrix. And  F  is given by

 

F =




f
′

E11 0 0

0 f
′

E12 0

0 0 f
′

I



  

(130)

where  f
′

E11 ,  f
′

E12 , and  f
′

I   are the derivatives of the input- output functions evaluated at the fixed 
point. The term  det(1 − FJ)  is positive to ensure the stability of the system.

Clearly, if the term  JE12E11 + JE12E11 JIIf
′

I − JE12IJIE11 f
′

I   is positive (negative), increasing the input 
to the Subset 1 leads to an increase (a decrease) in the activity of neurons in the Subset 2. As 
the input to the Subset 1 increases, the firing rate of the inhibitory population  rI   and also  f

′

I   will 
increase. In the presence of E- to- E STD or E- to- I STF,  JE12E11  or  JIE11  will decrease or increase 
with the input to the Subset 1. As a result, the sign of  JE12E11 + JE12E11 JIIf

′

I − JE12IJIE11 f
′

I   can switch 
from positive to negative as the input to the Subset 1 increases, indicating that the effect on the 
activity of the co- tuned unstimulated neurons in the same ensemble can switch from potentiation 
to suppression. Note that this behavior is different from linear networks in which the change is 
independent of the input or firing rates.

https://doi.org/10.7554/eLife.71263
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Appendix 5

Appendix 5—table 1. Parameters for Figure 1—figure supplement 1.

Symbol Value Unit Description

 JEE 0.5 - E- to- E connection strength

 JIE 0.45 - E- to- I connection strength

 JEI  1.0 - I- to- E connection strength

 JII  1.5 - I- to- I connection strength

 g
bs
E  0.5 - Input to the E population at baseline

 g
bs
I  1.5 - Input to the I population at baseline

Appendix 5—table 2. Parameters for Figure 2—figure supplement 2.

Symbol Value Unit Description

 g
stim
E  2.0 - Input to the E population during stimulation

Note that values of the unlisted parameters are the same as Tables 1–2.

Appendix 5—table 3. Parameters for Figure 2—figure supplement 3 SSN example.

Symbol Value Unit Description

 JEE 1.8 - E- to- E connection strength

 JIE 2.0 - E- to- I connection strength

 JEI  1.0 - I- to- E connection strength

 JII  1.0 - I- to- I connection strength

Appendix 5—table 4. Parameters for Figure 2—figure supplement 5.

Symbol Value Unit Description

 g
bs
E  1.8 - Input to the E population at baseline

Note that values of the unlisted parameters are the same as Tables 1–2.

Appendix 5—table 5. Parameters for Figure 2—figure supplement 10.

Symbol Value Unit Description

 NE 400 - Number of excitatory neurons

 NI  100 - Number of inhibitory neurons

 JEE 0.05 - E- to- E connection strength

 JIE 0.02 - E- to- I connection strength

 JEI  0.05 - I- to- E connection strength

 JII  0.03 - I- to- I connection strength

Appendix 5—table 6. Parameters for Figure 2—figure supplement 11.

Symbol Value Unit Description

 JEE 0.9 - E- to- E connection strength

 JIE 1.2 - E- to- I connection strength

Appendix 5—table 6 Continued on next page

https://doi.org/10.7554/eLife.71263


 Research article Neuroscience

Wu and Zenke. eLife 2021;10:e71263. DOI: https://doi.org/10.7554/eLife.71263  42 of 43

Symbol Value Unit Description

 JEI  0.5 - I- to- E connection strength

 JII  0.5 - I- to- I connection strength

 τE 20 ms Time constant of excitatory firing dynamics

 τI  60 ms Time constant of inhibitory firing dynamics

 g
bs
E  1.0 - Input to the E population at baseline

 g
stim
E  2.0 -

Input to the E population during 
stimulation

 gI  2.0 - Input to the I population

Note that values of the unlisted parameters are the same as Tables 1–2.

Appendix 5—table 7. Parameters for Figure 2—figure supplement 12.

Symbol Value Unit Description

 JEE 1.0 - E- to- E connection strength

 JIE 1.2 - E- to- I connection strength

 JEI  0.5 - I- to- E connection strength

 JII  1.0 - I- to- I connection strength

 g
bs
E  0.5 - Input to the E population at baseline

 g
bs
I  1.0 - Input to the I population at baseline

Appendix 5—table 8. Parameters for Figure 3—figure supplement 1 global inhibition example.

Symbol Value Unit Description

 JEE 1.6 - Within- ensemble E- to- E connection strength

 JIE 1.0 - Within- ensemble E- to- I connection strength

 JEI  1.0 - Within- ensemble I- to- E connection strength

 JII  1.2 - Within- ensemble I- to- I connection strength

 J
′

EE 0.16 - Inter- ensemble E- to- E connection strength

 J
′

IE 1.0 - Inter- ensemble E- to- I connection strength

 J
′

EI  1.0 - Inter- ensemble I- to- E connection strength

 J
′

II  1.2 - Inter- ensemble I- to- I connection strength

 g
bs
E1 1.5 - Input to the E1 population at baseline

 gE2 1.5 - Input to the E2 population

 gI1 2.5 - Input to the I1 population

 gI2 2.5 - Input to the I2 population

Parameters for Figure 3—figure supplement 1 co- tuned example

 JIE 1.0 * (4/3) - Within- ensemble E- to- I connection strength

 JEI  1.0 * (4/3) - Within- ensemble I- to- E connection strength

 JII  1.2 * (4/3) - Within- ensemble I- to- I connection strength

Appendix 5—table 6 Continued

Appendix 5—table 8 Continued on next page
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Symbol Value Unit Description

 J
′

IE 1.0 * (2/3) - Inter- ensemble E- to- I connection strength

 J
′

EI  1.0 * (2/3) - Inter- ensemble I- to- E connection strength

 J
′

II  1.2 * (2/3) - Inter- ensemble I- to- I connection strength

Appendix 5—table 9. Parameters for Figure 4—figure supplement 1.

Symbol Value Unit Description

 JEE  1.5/(NE/2 − 1) - Within- ensemble E- to- E connection strength

 JIE  1.0/(NE/2) - Within- ensemble E- to- I connection strength

 JEI   1.0/(NI/2) - Within- ensemble I- to- E connection strength

 JII   1.0/(NI/2 − 1) - Within- ensemble I- to- I connection strength

 J
′

EE  0.1/(NE/2 − 1) - Inter- ensemble E- to- E connection strength

 J
′

IE  0.3/(NE/2) - Inter- ensemble E- to- I connection strength

 J
′

EI   0.3/(NI/2) - Inter- ensemble I- to- E connection strength

 J
′

II   0.1/(NI/2) - Inter- ensemble I- to- I connection strength

 g
bs
E1 1.5 - Input to the E1 population at baseline

 gE2 1.5 - Input to the E2 population

 gI  2.0 - Input to the I population

Appendix 5—table 10. Parameters for Figure 6—figure supplement 1.

Symbol Value Unit Description

 JEE 0.20 - Within- ensemble E- to- E connection strength

 JIE 0.09 - Within- ensemble E- to- I connection strength

 JEI  0.10 - Within- ensemble I- to- E connection strength

 JII  0.10 - Within- ensemble I- to- I connection strength

 J
′

EE 0.02 - Inter- ensemble E- to- E connection strength

 J
′

IE 0.054 - Inter- ensemble E- to- I connection strength

 J
′

EI  0.07 - Inter- ensemble I- to- E connection strength

 J
′

II  0.01 - Inter- ensemble I- to- I connection strength

Note that values of the unlisted parameters are the same as Table 5.

Appendix 5—table 8 Continued
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