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Abstract
Introduction:	Adults	can	represent	numerical	information	in	nonsymbolic	and	sym-
bolic formats and flexibly switch between the two. While some studies suggest a 
strong	link	between	the	two	number	representation	systems	(e.g.,	Piazza,	Izard,	Pinel,	
Le	Bihan,	&	Dehaene,	2004	Neuron,	44(3),	547),	other	studies	show	evidence	against	
the	strong-	link	hypothesis	(e.g.,	Lyons,	Ansari,	&	Beilock,	2012	Journal of Experimental 
Psychology: General,	141(4),	635).	This	inconsistency	could	arise	from	the	relation	be-
tween task demands and the closeness of the link between the two number 
systems.
Methods:	We	used	a	passive	viewing	task	and	event-	related	potentials	(ERP)	to	ex-
amine the temporal dynamics of the implicit integration between the nonsymbolic 
and symbolic systems. We focused on two ERP components over posterior scalp 
sites that were found to be sensitive to numerical distances and ratio differences in 
both numerical formats: a negative component that peaks around 170 ms poststimu-
lus	(N1)	and	a	positive	component	that	peaks	around	200	ms	poststimulus	(P2p).	We	
examined adults’ (n = 55)	 ERPs	when	 they	were	 passively	 viewing	 simultaneously	
presented	dot	quantities	 and	Arabic	numerals	 (i.e.,	 nonsymbolic	 and	 symbolic	 nu-
merical	 information)	 in	the	double-	digit	 range.	For	each	stimulus,	 the	nonsymbolic	
and symbolic content either matched or mismatched in number. We also asked each 
participant to estimate dot quantities in a separate behavioral task and observed that 
they	tended	to	underestimate	the	actual	dot	quantities,	suggesting	a	need	to	adjust	
the match between nonsymbolic and symbolic information to reflect the perceived 
quantity of the nonsymbolic information.
Results:	Using	this	adjustment,	participants	showed	greater	N1	and	P2p	amplitudes	
when	perceived	dot	quantities	matched	Arabic	numerals	than	when	there	was	a	mis-
match.	However,	no	differences	were	found	between	the	unadjusted	match	and	mis-
match conditions.
Conclusion:	Our	findings	suggest	that	adults	rapidly	integrate	nonsymbolic	and	sym-
bolic	formats	of	double-	digit	numbers,	but	evidence	of	such	integration	is	best	ob-
served	when	the	perceived	(rather	than	veridical)	dot	quantity	is	considered.
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1  | INTRODUC TION

Even	though	we	use	mathematics	frequently	in	our	daily	lives,	 it	 is	
unclear how the knowledge that is required to perform math is rep-
resented in the brain. Previous research has shown that people have 
access	 to	 two	systems	representing	numerical	 information:	One	 is	
an	approximate	number	system	(ANS)	that	represents	the	numeri-
cal	magnitudes	from	nonsymbolic	numbers	>4	(e.g.,	a	dot	quantity	
containing	23	dots	as	“twenty-	ish”);	the	other	is	a	symbolic	number	
system	(SNS)	that	allows	for	the	representation	of	exact	numerical	
information	provided	by	symbolic	numbers	(e.g.,	Arabic	numerals	or	
number	words).	While	 these	 two	 systems	 differ	 fundamentally	 in	
their	 representational	capacities,	 there	 is	evidence	to	suggest	 that	
they are also integrated. This study aimed to investigate the context 
in which such integration occurs at the neural level and its underly-
ing temporal dynamics.

1.1 | Features of the approximate and symbolic 
number systems

The	 acuity	 of	 the	ANS	 is	 typically	measured	 using	 a	 nonsymbolic	
number comparison task in which people are presented with two 
dot quantities in different colors and asked which color has more 
dots	 (Dietrich,	Huber,	&	Nuerk,	2015).	The	dots	are	presented	too	
briefly	for	people	to	count.	Therefore,	people	have	to	estimate	the	
dot quantities to make a judgment. The visual perceptual cues such 
as surface area and dot size are commonly controlled so that the 
number	of	dots	 is	 the	only	 consistent	 cue	across	 trials.	By	 chang-
ing the ratio between the smaller and larger dot quantities in the 
comparison	task,	 it	can	be	shown	that	response	times	and	accura-
cies	vary	as	a	function	of	ratio.	For	example,	if	the	magnitude	of	the	
ratio	is	large,	for	example,	four	dots	versus	eight	dots	(1:2	ratio),	re-
sponses	tend	to	be	fast	and	precise,	which	indicates	that	a	large	ratio	
makes	 the	comparison	easy.	 If	 the	magnitude	of	 the	 ratio	 is	 small,	
for	example,	15	dots	versus	16	dots	(15:16	ratio),	responses	tend	to	
be	slower	than	in	the	easy	ratio	condition,	and	the	accuracy	is	typi-
cally	lower	(Barth,	et	al.,	2003;	Cordes,	Gelman,	Gallistel,	&	Whalen,	
2001;	Pica,	Lemer,	Izard,	&	Dehaene,	2004),	indicating	harder	com-
parison. Converging evidence from developmental and comparative 
studies as well as studies with people whose languages do not have 
number words shows ratio- dependent performance on nonsymbolic 
number	comparison	tasks	suggesting	a	key	feature	of	the	ANS:	in-
dependence	 from	 language	 (Cantlon,	Brannon,	Carter,	&	Pelphrey,	
2006;	 Izard,	 Sann,	 Spelke,	 &	 Streri,	 2009;	 Libertus	 and	 Brannon,	
2009;	Lipton	&	Spelke,	2003;	Nieder,	2009;	Pica	et	al.,	2004;	Xu	&	
Spelke,	2000).

Unlike	the	ANS,	 the	development	of	 the	SNS	has	a	 later	onset	
and continues to develop into adulthood. The acquisition of symbolic 
numbers starts with learning to recite number words around 2 years 
of	 age,	 with	 gradually	 increasing	 understanding	 of	 their	 meaning	
(Fuson,	2012;	Wynn,	1990).	Building	upon	the	basic	symbolic	knowl-
edge,	children	learn	conceptual	and	procedural	knowledge	of	basic	
arithmetic	and	other	advanced	math	knowledge,	such	as	algebra	and	

calculus through both informal and formal math instruction later in 
life.	In	stark	contrast	to	the	ANS,	the	SNS	thus	requires	language	and	
an understanding of a formal symbol system.

1.2 | The mapping between the approximate 
number system and the symbolic number system

Mixed	and	indirect	evidence	for	a	link	between	the	ANS	and	the	SNS	
comes from number comparison tasks involving symbolic number 
stimuli.	On	one	hand,	it	has	long	been	established	that	when	com-
paring	two	symbolic	numbers,	people’s	responses	are	slower	when	
the	numerical	difference,	also	known	as	the	numerical	distance,	be-
tween	two	numbers	decreases	(Dehaene,	Dupoux,	&	Mehler,	1990;	
Moyer	&	Landauer,	1967).	For	instance,	judging	5	is	smaller	than	9	
is	 easier	 than	 judging	 5	 is	 smaller	 than	 6.	 This	 effect	 is	 known	 as	
the	distance	effect,	and	its	existence	suggests	that	symbolic	number	
comparisons activate corresponding nonsymbolic number represen-
tations	because	purely	symbolic	representations	of	5	and	9	should	
be	as	discriminable	as	5	and	6.	On	the	other	hand,	other	variants	of	
symbolic number comparison tasks have dampened the idea of an 
integration	between	the	ANS	and	the	SNS.	Lyons	et	al.	(2012)	asked	
adults to perform numerical comparison tasks in which two num-
bers	could	be	both	nonsymbolic,	both	symbolic,	or	one	nonsymbolic	
and one symbolic. They found that the performance in the mixed- 
formats condition was worse than the performance in the other two 
single- format conditions no matter whether the two numbers were 
presented simultaneously or sequentially. They attributed the dec-
rement in performance in the mixed- formats condition to a weaker 
integration between nonsymbolic and symbolic numbers compared 
to the within- format integration.

Another	way	of	assessing	the	link	between	the	ANS	and	the	SNS	
is	via	nonsymbolic	number	estimation	tasks.	In	a	typical	nonsymbolic	
number	estimation	task,	people	are	presented	with	a	bunch	of	dots	
and are asked to estimate how many dots there are. The dot quan-
tities	are	presented	too	briefly	for	them	to	count,	and	people	have	
to rely on their nonsymbolic number representations to make their 
judgments.	 Meanwhile,	 people	 also	 need	 to	 retrieve	 information	
from their symbolic number knowledge in order to give their verbal 
estimation.	Typically,	people	have	precise	estimates	for	small	num-
bers,	such	as	4	and	5.	As	the	numbers	get	bigger,	there	is	increasingly	
more	variation	in	people’s	estimates	(Dehaene,	Izard,	Spelke,	&	Pica,	
2008;	Revkin,	Piazza,	Izard,	Cohen,	&	Dehaene,	2008).	For	example,	
when	there	are	six	dots	in	a	display,	people’s	answers	are	more	likely	
to	be	five,	six,	or	seven	dots.	It	is	less	likely	for	them	to	say	that	there	
are	20	dots.	However,	when	there	are	60	dots	in	a	display,	people’s	
answers	tend	to	vary	even	more,	for	example,	from	40	to	80.

More	 critically,	 previous	 research	 found	 that	 people	 tend	 to	
underestimate large quantities in nonsymbolic number estimation 
tasks	(Crollen,	Castronovo,	&	Seron,	2011;	Izard	&	Dehaene,	2008;	
Krueger,	 1982;	 Odic,	 Im,	 Eisinger,	 Ly,	 &	 Halberda,	 2015).	 For	 ex-
ample,	when	 presented	with	 60	 dots,	 people	more	 commonly	 es-
timate	 fewer	 than	60	dots	 in	contrast	 to	estimating	more	 than	60	
dots.	 In	 one	 early	 study,	 a	 large	 sample	 of	 adults	 was	 presented	
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with	 only	 a	 single	 trial	 (i.e.,	 one	 dot	 quantity)	 ranging	 from	 25	 to	
300	dots	and	was	asked	to	estimate	the	number	of	dots	 (Krueger,	
1982).	Underestimation	bias	was	observed	for	all	dot	quantities	>30.	
This	 underestimation	 bias	 has	 three	 important	 aspects.	 First,	 the	
degree of the underestimation increases as the quantity increases 
(e.g.,	 Poulton,	 1968,	 1975,	 1979).	 In	 other	 words,	 the	 difference	
between a dot quantity and its estimate is greater if the quantity 
is	 large	compared	to	when	it	 is	small.	Second,	the	underestimation	
bias	can	be	calibrated	by	being	exposed	to	a	reference	quantity.	In	
one	study,	adult	participants	were	shown	a	dot	quantity	labeled	with	
“30” before a dot estimation task. The reference dot quantity either 
contained	25,	30,	or	39	dots,	which	correspondingly	induced	overes-
timation,	linear-	like	estimation,	and	underestimation	in	participants’	
performance	 (Izard	 &	Dehaene,	 2008).	 Third,	 there	 are	 individual	
differences	in	the	underestimation	bias	in	adults	(Izard	&	Dehaene,	
2008;	Odic	et	al.,	2015)	and	young	children	who	have	acquired	sym-
bolic	 number	 knowledge	 (Libertus,	 Odic,	 Feigenson,	 &	 Halberda,	
2016).	 Altogether,	 these	 behavioral	 findings	 suggest	 that	 people	
are	able	to	map	between	the	ANS	and	SNS,	but	that	this	mapping	
is not precise and is subject to a systematic underestimation bias. 
Importantly,	 the	behavioral	evidence	 is	unclear	whether	 this	map-
ping is automatic or only exists when people are forced to provide 
an exact label for a nonsymbolic quantity.

In	 addition	 to	 these	 behavioral	 studies,	 brain	 imaging	 studies	
provide	 evidence	 of	 the	mapping	 between	 the	ANS	 and	 the	 SNS,	
suggesting	that	the	parietal	lobe	is	important	for	both.	Using	event-	
related	potentials	(ERPs),	the	P2p	component,	a	positive	component	
over posterior parietal scalp sites which peaks around 200 ms after 
stimulus	onset,	was	found	to	be	sensitive	to	the	distance	effect	 in	
both	nonsymbolic	and	symbolic	number	comparison	tasks	(Dehaene,	
1996;	Libertus,	Woldorff,	&	Brannon,	2007;	Temple	&	Posner,	1998).	
Specifically,	 the	 amplitude	 of	 the	 P2p	 was	 greater	 for	 small	 dis-
tances	than	large	distances.	Other	studies	using	different	paradigms	
confirmed	 this	 finding	 (Hsu	&	Szücs,	 2012;	Hyde	&	Spelke,	 2009;	
Rubinsten,	Dana,	Lavro,	&	Berger,	2013).	In	fMRI	studies,	the	IPS	was	
repeatedly found to be activated in nonsymbolic and symbolic num-
ber	comparison	tasks	(Ansari,	Garcia,	Lucas,	Hamon,	&	Dhital,	2005;	
Fias,	Lammertyn,	Reynvoet,	Dupont,	&	Orban,	2003).

However,	one	critical	aspect	of	the	behavioral,	ERP	and	fMRI	
studies reviewed above is that they all required participants to 
make explicit judgments about numbers and/or dot quantities. To 
examine	whether	a	link	between	the	ANS	and	the	SNS	depends	on	
explicit	numerical	judgments,	it	is	necessary	to	use	non-	numerical	
tasks	or	no	task	at	all.	A	recent	behavioral	study	(Liu,	Schunn,	Fiez,	
&	Libertus,	2015)	took	a	step	in	this	direction	using	a	number	de-
cision task that was similar to a lexical decision task for word- like 
stimuli.	 In	 this	 number	 decision	 task,	 participants	 were	 briefly	
shown	 an	 image	 that	 contained	 either	 an	 Arabic	 numeral	 (two-	
digit	 number)	 or	 a	 letter	 pair	 and	 they	were	 instructed	 to	 judge	
whether	they	saw	a	valid	numeral	(i.e.,	two	digits)	or	not.	The	nu-
meral/letter	 pairs	 were	 superimposed	 on	 top	 of	 a	 dot	 quantity,	
which the participants could ignore for the number decision task. 
The	number	of	dots	either	matched	or	mismatched	with	the	Arabic	

numeral. Participants’ accuracy and response times were better 
for	the	match	trials	than	the	mismatch	trials	in	the	Arabic	numeral	
condition suggesting that even without explicit judgments about 
numerical	 magnitudes,	 participants	 associated	 the	 nonsymbolic	
and symbolic numerical information.

In	 another	 study	 that	 did	 not	 require	 explicit	 numerical	 judg-
ments,	 brain	 activation	 was	 measured	 via	 fMRI	 as	 adults	 were	
adapted to numbers in either nonsymbolic or symbolic format and 
tested with same- format or cross- format novel numbers (Piazza 
et	al.,	 2004).	 It	was	 found	 that	 in	 the	 right	 IPS,	 the	 blood	 oxygen	
level-	dependent	 (BOLD)	 signal	 recovery	 after	 the	 presentation	 of	
the novel numbers was dependent on numerical distance between 
the adapted number and the novel number but invariant to number 
formats. The findings imply that the human brain can automatically 
pick up numerical information in different formats and integrate it. 
However,	the	BOLD	signal	recovery	 in	the	left	 IPS	was	dependent	
on both numerical distance and number formats suggesting that the 
left hemisphere does not automatically integrate information across 
the	ANS	and	the	SNS.

Studies	 that	 compared	 the	more	 detailed	 brain	 activation	 pat-
terns for nonsymbolic numbers and symbolic numbers found that 
there	was	not	much	overlap	between	 the	 two	 formats.	For	exam-
ple,	one	fMRI	study	(Eger	et	al.,	2009)	examined	participants	when	
they were presented with either nonsymbolic or symbolic numbers. 
A	multivoxel	pattern	analysis	that	used	classifiers	to	identify	differ-
ent activation patterns of different quantities within one format in 
IPS	revealed	high	classification	accuracies	(~77%)	in	the	nonsymbolic	
format	 compared	 to	 the	 symbolic	 format	 (accuracies	were	 ~57%).	
The classification generalization was poor from one format to an-
other.	A	classifier	trained	to	differentiate	quantities	within	one	for-
mat	 (e.g.,	Arabic	numeral)	 could	not	differentiate	 as	well	 between	
quantities	presented	in	another	format	(e.g.,	nonsymbolic	numbers).	
Similar	 results	of	classification	accuracies	as	well	as	generalization	
were	 found	 in	other	 fMRI	studies	 (Bulthé,	De	Smedt,	&	de	Beeck,	
2014,	2015;	 Lyons,	Ansari,	&	Beilock,	2015),	 suggesting	 that	even	
though	IPS	 is	responsive	to	numerical	 information	 in	general,	non-
symbolic and symbolic numbers are not represented in the same way 
in	IPS.

As	reviewed	above,	previous	findings	provide	mixed	evidence	re-
garding	the	integration	between	the	ANS	and	the	SNS.	In	addition,	all	
of	these	studies	used	fMRI,	which	 limits	the	conclusions	that	can	be	
drawn	from	these	results.	First	and	foremost,	fMRI	does	not	provide	
a	good	temporal	resolution	of	the	underlying	brain	activity.	Thus,	it	is	
possible	that	more	subtle,	short-	lived	neural	signals	of	integration	re-
main	 unnoticed.	 Second,	 the	 range	of	 numerical	 stimuli	was	 limited,	
which	might	have	artificially	created	an	 illusion	of	 integration.	 In	 the	
fMRI	studies	that	used	classification	methods	to	examine	nonsymbolic	
and	symbolic	number	 representations	 in	 the	 IPS	 (Bulthé	et	al.,	2014,	
2015;	Eger	et	al.,	2009;	Lyons	et	al.,	2015),	 the	number	 ranges	were	
small	and	mostly	under	10.	Piazza	et	al.	 (2004)	used	 larger	numbers,	
but	the	number	stimuli	were	rather	categorical	(small	vs.	large)	instead	
of	continuous.	Besides,	the	participants	in	this	study	were	familiarized	
with example dot quantities of each category and were told the true 
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approximate	ranges	before	the	scan	sessions,	potentially	affecting	nu-
merical integration.

Here,	we	designed	a	passive	viewing	EEG	task,	in	which	the	two	
formats	 of	 numbers	 (dot	 quantities	 and	Arabic	 numerals)	were	 si-
multaneously presented to participants without an explicit number- 
related	 task.	 In	 addition,	we	 included	a	 large,	 continuous	 range	of	
numbers.	 Similar	 to	 the	 stimuli	 used	 by	 Liu	 et	al.	 (2015),	 the	 non-
symbolic number either matched or mismatched with the sym-
bolic	numbers.	In	line	with	previous	studies,	we	examined	two	ERP	
components over posterior scalp sites that are thought to reflect 
number	processing:	 the	N1,	 the	 first	negative	component	peaking	
around	150	ms	poststimulus,	and	the	P2p,	the	second	posterior	pos-
itivity	peaking	around	200	ms	poststimulus	 (Dehaene,	1996;	Hyde	
&	Spelke,	2009;	Libertus	et	al.,	2007;	Rubinsten	et	al.,	2013;	Temple	
&	Posner,	1998).	Furthermore,	as	the	mental	representation	of	non-
symbolic numbers is expected to be imprecise and subject to sys-
tematic	estimation	biases,	we	administered	a	nonsymbolic	number	
estimation	task.	We	hypothesized	that	the	N1	and	P2p	amplitudes	
would show stronger differences between numerical matches and 
mismatches after adjusting for participants’ estimation bias than 
without	 the	adjustment,	as	previously	 found	 in	a	behavioral	 study	
(Liu	et	al.,	2015).

2  | METHODS

2.1 | Participants

Sixty-	four	 participants	 (mean	 age	=	19.3	±	1.5	years,	 34	 females,	
61%	White,	30%	Asian,	3%	African	American,	6%	Other)	were	 re-
cruited	from	the	University	of	Pittsburgh	subject	pool	and	received	
course	 credits	 for	 their	 participation.	 All	 participants	 provided	
written informed consent before participating in accordance with 
the	 Declaration	 of	 Helsinki	 and	 a	 protocol	 approved	 by	 the	 local	
Institutional	 Review	 Board.	 Data	 from	 nine	 participants	 were	 ex-
cluded	because	 of	 low	quality	 of	 behavioral	 data	 (i.e.,	 random	 re-
sponding	in	the	behavioral	task,	n = 3),	excessive	EEG	artifacts	(i.e.,	
more	 than	 50%	 trials	 in	 the	 EEG	 task	 being	 rejected	 as	 artifacts,	
n = 5),	 or	 failing	 to	 complete	 the	EEG	 (font-	change	detection)	 task	
(n = 1).	After	exclusions,	55	participants	remained	in	the	behavioral	
and ERP analysis.

2.2 | Stimuli and tasks

2.2.1 | Behavioral nonsymbolic number 
estimation task

The estimation task was identical to the nonsymbolic number esti-
mation	task	used	by	Liu	et	al.	(2015).	Briefly,	each	stimulus	consisted	
of	a	400-	by-	400	pixel	 image	comprising	a	black	dot	quantity	with	
a	 superimposed,	 translucent	 blue,	 double-	digit	 Arabic	 numeral,	 or	
two random capital letters. The font of all numerals and letters was 
set	as	Arial	Black.	The	background	color	of	 the	 images	was	white,	
and the background color of the screen was black. We selected 12 

Arabic	numerals	with	a	range	from	11	to	63,	12	letter	pairs,	and	24	
dot quantities. The dot quantities and their respective pairings with 
Arabic	numerals	or	letter	pairs	are	listed	in	Table	1.	A	script	created	
by	Dehaene,	Izard,	and	Piazza	(2005)	generated	the	dot	arrays,	with	
half of the images equated on the individual dot size and the other 
half of the images equated for the cumulative surface area of all dots 
to avoid consistent correlations between perceptual features and dot 
quantities. We generated six variations of each quantity with respect 
to	the	 layout	and	size	(three	different	sizes	and	two	layouts).	Dots	
were	randomly	 localized	within	the	400-	by-	400	pixel	area	to	gen-
erate	different	layouts.	However,	density	was	not	controlled	when	
generating	different	layouts.	There	were	144	dot	arrays	in	total.	For	
each	Arabic	numeral	and	corresponding	letter	pair,	three	categories	
of	images	were	created:	match	with	dot	quantity,	mismatch	with	dot	
quantity	where	dot	quantity	<	Arabic	number,	 and	mismatch	with	
dot	quantity	where	dot	quantity	>	Arabic	number.	In	the	case	of	mis-
matches,	the	ratio	between	the	dot	quantity	and	Arabic	numeral	was	
always	1.5	 (i.e.,	 3:2	 or	 2:3).	Considering	 the	 six	 variations	 of	 each	
dot	quantity,	 for	each	Arabic	numeral	or	 letter	pair	 there	were	18	
images.	In	total,	432	images	were	created,	half	of	them	as	dots	with	
Arabic	numerals	and	the	other	half	as	dots	with	letters.

Participants were instructed to estimate the quantity of dots 
shown	in	the	image,	ignoring	the	numerals	and	letters,	type	in	their	
answer,	and	hit	the	Enter	key	to	move	on	to	the	next	trial.	Each	image	
was	 presented	 for	 400	ms,	 followed	 by	 a	 blank	 response	 screen	
until	 the	participants	responded.	Although	there	was	no	time	limit	
for	 participants	 to	 type	 in	 their	 answer,	 they	were	 encouraged	 to	
respond as quickly and accurately as possible. The entire task con-
tained	six	blocks	with	72	trials,	each	separated	by	five	short	breaks.	
The	entire	task	took	about	40	min	to	complete.

2.2.2 | Symbolic integration task with EEG 
acquisition

The stimuli were identical to those used in the behavioral nonsym-
bolic	number	estimation	task,	except	that	there	were	no	letter	trials	
and	we	extended	the	Arabic	numerals	and	corresponding	dot	quanti-
ties	to	cover	single	digit	numerals	and	more	numerals	in	the	30–40	
range. The latter change was designed to create a more balanced 
“match” and “mismatch” set after accounting for a range of possible 
estimation	biases.	A	complete	list	of	all	Arabic	numerals	and	the	cor-
responding	mismatch	quantities	can	be	 found	 in	Table	1.	As	 in	 the	
behavioral	 non-	symbolic	 number	 estimation	 task,	 the	dot	quantity	
either	matched	or	mismatched	the	Arabic	numeral.	Also,	in	the	mis-
match	condition,	half	of	the	images	were	dot	quantities	less	than	the	
Arabic	numerals	and	half	of	the	images	were	dot	quantities	greater	
than	the	Arabic	numerals.	Aside	from	these	images,	27	images	with	
the	same	Arabic	numerals	but	different	font	(Marker	Felt)	were	cre-
ated for an orthogonal font- change detection task to encourage 
participants’	attentiveness	to	the	stimuli,	but	avoid	explicit	number	
processing.	However,	 data	 from	 the	 trials	with	 these	 images	were	
not	included	in	any	analysis.	The	total	set	of	315	images	was	repeated	
four	times	and	thus	created	a	set	of	1,260	trials	for	the	entire	task.
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Each trial started with a fixation cross centered on the screen 
for	an	average	duration	of	500	ms	(range:	450–550	ms).	Immediately	
after	 the	 fixation	 disappeared,	 a	 stimulus	 image	 was	 presented	
for	 a	 fixed	 500	ms	 duration,	 followed	 by	 a	 fixed	 250	ms	 fixation.	
Participants were instructed to look at the images and press a key 
on	a	keypad	when	they	detected	a	font	change	in	the	Arabic	numeral	
(11%	of	all	trials).	The	entire	task	contained	six	blocks	with	210	tri-
als each separated by five short breaks. The entire task took about 
30 min to complete.

EEG	data	were	recorded	throughout	the	symbolic	integration	task	
using	a	64-	channel	Brain	Vision	actiChamp	system	(Brainproducts,	
Munich,	Germany).	The	sampling	rate	was	set	at	1,000	Hz	during	re-
cording	and	was	resampled	at	500	Hz	offline.	The	impedance	of	all	
electrodes	was	kept	under	5	kΩ. Electrodes were referenced to the 
right mastoid during recording and later algebraically re- referenced 
to an average of the right and left mastoids during offline analysis.

2.3 | Procedure

After	obtaining	written	consent,	while	the	experimenters	set	up	the	
EEG	equipment	and	adjusted	the	impedance	of	the	electrodes,	the	
participants were given the behavioral nonsymbolic number estima-
tion	task.	After	 they	finished	the	estimation	task,	 they	were	given	
a	short	break,	 followed	by	 the	symbolic	 integration	 task	with	EEG	

acquisition.	Finally,	they	were	given	a	short	demographic	question-
naire	asking	about	age,	gender,	major,	year	in	college,	and	the	num-
ber of math classes taken in high school and college.

2.4 | Data analysis

2.4.1 | Behavioral nonsymbolic number 
estimation task

To determine whether participants were using estimation instead of 
counting,	we	performed	a	repeated-	measures	anova and correlation 
analyses to examine the relation between the dot quantities that the 
participants	saw	and	their	responses.	If	participants	were	paying	at-
tention	to	the	task	and	were	responding	reasonably,	their	estimate	
would	increase	as	the	dot	quantities	increase.	Moreover,	as	the	dot	
quantities	increase,	the	variability	of	participants’	estimates	should	
also	increase	(Odic	et	al.,	2015).

As	the	nonsymbolic	number	estimation	task	included	both	num-
ber	 and	 letter	 trials,	we	 first	 compared	 participants’	 estimates	 on	
these trials types. Each participant’s estimates from the number 
and letter trials in the behavioral nonsymbolic number estimation 
task	were	fitted	using	separate	power	functions	in	PsiMLE	1.0	(Odic	
et	al.,	2015).	PsiMLE	 is	an	R-	based	package	 that	uses	a	maximum-	
likelihood estimation approach to optimize the parameters of 

TABLE  1 Arabic	numerals,	letters,	and	dot	quantities	used	in	each	match	and	mismatch	condition	in	the	behavioral	nonsymbolic	
estimation	task	and	the	symbolic	integration	EEG	task

Behavioral nonsymbolic estimation task Symbolic integration EEG task

Arabic 
numeral 
(Match) Letter

Mismatch 
Dot < Num

Mismatch 
Dot > Num

Arabic 
Numeral 
(Match)

Perceived 
dot quantity

Mismatch 
Dot < Num

Perceived 
dot quantity

Mismatch 
Dot > Num

Perceived 
dot quantity

11 RC 7 17 6 8.61 4 6.52 9 11.43

13 PH 9 20 7 9.59 5 7.60 10 12.31

17 CF 11 26 8 10.52 5 7.60 12 13.99

21 LR 14 32 9 11.43 6 8.61 14 15.61

25 QX 17 38 28 25.65 18 18.67 42 34.45

28 GM 19 42 29 26.31 19 19.41 44 35.64

32 KJ 21 48 31 27.61 20 20.13 47 37.41

38 XR 25 57 32 28.26 21 20.85 48 37.99

42 YG 28 63 34 29.53 23 22.26 50 39.14

48 JD 32 72 36 30.78 24 22.95 53 40.86

59 PN 39 89 38 32.02 24 22.95 60 44.77

63 FW 42 95 39 32.63 25 23.64 61 45.31

41 33.85 27 24.99 62 45.86

42 34.45 28 25.65 63 46.41

44 35.64 30 26.97 64 46.95

46 36.82 31 27.61 69 49.64

Right	panel:	The	first	column	represents	the	Arabic	numeral	as	well	as	the	dot	quantities	used	to	create	the	match	trials.	The	3rd	and	5th	column	rep-
resent the dot quantities used to create the mismatch trials. The perceived dot quantity of each actual dot quantity used in the symbolic integration 
EEG	task	was	calculated	(1)	using	each	participant’s	best	fitting	power	function	to	calculate	the	perceived	dot	quantity	and	(2)	average	the	perceived	
dot quantity for each actual dot quantity across all participants.
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power functions that capture participants’ behavioral responses 
in	 the	 nonsymbolic	 number	 estimation	 task.	 Specifically,	 PsiMLE	
estimates the scaling factor α,	the	exponent	β of a power function 
y = αxβ,	 and	 an	 extra	 parameter	σ that describes the variability of 
the estimates of each dot quantity given the actual dot quantities 
x and each participant’s responses y with the likelihood function 
L (α,β,σ�x,y)=

n∏
i=1

��
2πα∗xβ ∗σ

�−1
exp

�
−

1

2

�
y−α∗xβ

�2�
α∗xβ ∗σ

�−2�
.

Repeated- measures anovas were used to examine whether the ex-
ponents and scaling factors from number trials differed from the 
exponents and scaling factors from letter trials. There were no 
significant differences between the exponents and scaling factors 
in the number and letter trials (exponent β: F(1,54)	=	1.29,	p = .26;	
scaling factor α: F(1,54)	=	2.44,	p = .12).	To	examine	the	reliability	of	
the	behavioral	estimation	task,	we	also	submitted	the	exponents	and	
scaling factors to a correlational analysis. There were very high pos-
itive correlations for both exponents and scaling factors across the 
number and letter trials (exponent β: r(1,60)	=	.88,	p < .001; scaling 
factor α: r(1,60)	=	.93,	p < .001).	Hence,	we	 collapsed	 across	 num-
ber and letter trials and fitted power functions for all trials for each 
participant. These power functions were used to adjust for the per-
ceived	dot	quantities	used	in	the	symbolic	integration	EEG	task	(see	
below).

2.4.2 | Symbolic integration EEG task

Raw	EEG	data	were	processed	offline	in	EEGLab	(Delorme	&	Makeig,	
2004)	and	ERPLab	 (Lopez-	Calderon	&	Luck,	2014).	The	data	were	
filtered	at	0.1–60	Hz.	Four	artifact	 rejection	algorithms	were	used	
to	reject	trials	with	eye	blinks,	horizontal	eye	movements,	motion,	
electromyography	 (EMG),	and	other	noises:	simple	voltage	thresh-
old	 detection,	 peak-	to-	peak	 threshold	 detection,	 blink	 detection,	
and step- like artifact detection. The rejection threshold for each 
algorithm was manually set and adjusted slightly based on each 
participant’s data because their overall signal strengths varied sub-
stantially. The range of the thresholds was 80 to 120 μV.	For	par-
ticipants	whose	general	signal	voltage	was	low	(e.g.,	90	μV),	we	used	
a threshold close to the lower boundary (close to 80 μV)	and	vice	
versa.	After	 artifact	 rejection,	 the	EEG	data	were	 segmented	 into	
700- ms segments consisting of a 200- ms baseline prior to stimulus 
onset	and	500	ms	after	stimulus	onset.	Segmented	EEG	data	were	
selectively averaged with respect to each pair of dot quantity and 
Arabic	numeral	to	create	ERPs.	ERPs	were	first	grouped	into	match	
and	mismatch	conditions	according	to	actual	dot	quantities,	as	de-
scribed	in	Table	1.	Note	that	the	trials	in	the	embedded	font-	change	
detection	task	were	excluded	from	EEG	data	analysis	but	were	used	
to determine whether participants were attending to the stimuli dur-
ing	EEG	recording.

Because	 participants	 showed	 large	 underestimation	 biases	
on	 the	 behavioral	 nonsymbolic	 number	 estimation	 task,	 we	 also	
adjusted the match and mismatch conditions based on each par-
ticipant’s best fitting power function derived from the behavioral 
estimation	task.	For	instance,	an	image	that	contained	42	dots	and	
the	 Arabic	 numeral	 “28”	 was	 originally	 considered	 a	 “mismatch”	

while	an	image	that	contained	42	dots	and	the	Arabic	numeral	“42”	
was	considered	a	“match”	before	the	adjustment.	For	a	participant	
whose	power	fitting	function	revealed	an	estimate	of	42	dots	as	28	
dots,	the	42	dots-	28	numeral	image	was	labeled	as	“match”	whereas	
the	42	dots-	42	numeral	image	was	labeled	as	“mismatch”	after	the	
adjustment.	To	control	for	perceptual	features	of	the	dot	quantities,	
we only used adjusted mismatch trials that contained the same dot 
quantities as the adjusted match trials in the adjusted ERP analysis. 
Based	on	previous	work	(Hyde	&	Spelke,	2009;	Libertus	et	al.,	2007),	
we	selected	two	ERP	components	of	interest:	N1	(130–200	ms),	and	
P2p	ERP	components	(200–250	ms).	As	ERPs	are	not	highly	informa-
tive	of	spatial	information	related	to	brain	activation,	we	focused	on	
the overall brain response pattern over a relative large brain region 
that	 covers	 several	 electrodes.	Specifically,	we	 selected	 four	elec-
trodes of interest over posterior parietal scalp sites from each hemi-
sphere to obtain enough coverage of the posterior regions that have 
been	 reported	 in	previous	studies	 (Hyde	&	Spelke,	2009;	Libertus	
et	al.,	2007).	Electrodes	P3,	P5,	PO3,	and	PO7	were	selected	from	
the	 left	 hemisphere,	 and	 electrodes	 P4,	 P6,	 PO4,	 and	 PO8	 were	
selected	from	the	right.	By	averaging	across	each	set	of	four	elec-
trodes,	two	regions	of	interest	for	each	hemisphere	(ROIL	and	ROIR)	
were formed. The mean amplitude of each component at each of the 
two	ROIs	was	 exported	 from	ERPLab	 for	 both	 the	 no-	adjustment	
analysis	 and	 the	 after-	adjustment	 analysis.	 A	 two-	way	 (Trial	 Type,	
Hemisphere)	repeated-	measures	anova was run for overall main ef-
fects	and	 interactions	 separately	 for	 the	N1	and	P2p	components	
and separately for unadjusted and adjusted data.

3  | RESULTS

3.1 | Behavioral results

3.1.1 | Nonsymbolic number estimation task

We first examined participants’ performance in the estimation task 
to obtain personalized quantity estimation parameters to use in the 
ERP	analysis.	For	each	participant,	we	removed	estimates	that	were	
more than three standard deviations from their average estimate 
across	all	trials	to	remove	extreme	estimates	(e.g.,	500)	from	the	data	
that most likely resulted from typing errors. To show that the par-
ticipants followed the task instruction and estimated dot quantities 
instead	of	randomly	inputting	responses,	we	conducted	two	correla-
tion analyses on the quality of the estimates. We found a very high 
correlation	 in	 all	 participants,	 mean	 correlation	 coefficient	 r = .97,	
standard deviation (SD)	=	0.02,	 between	 the	 actual	 dot	 quantities	
that were presented and participants’ estimates. We also found a 
positive	correlation,	mean	correlation	coefficient	r = .68,	SD =	0.20,	
between the actual dot quantities and the variability in participants’ 
estimates,	which	is	consistent	with	participants	relying	on	their	ap-
proximate number system when making their estimates.

Next,	we	fitted	each	participant’s	estimates	with	the	best	fitting	
power function and obtained the corresponding exponents and scal-
ing factors. We first removed outliers from the estimates of each 
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dot	quantity	for	each	participant.	For	all	the	trials	with	the	same	dot	
quantity,	the	estimates	that	were	more	than	three	standard	devia-
tions above or below the mean were removed. The mean exponent 
was	 0.70,	 SD =	1.3.	 The	 mean	 scaling	 factor	 was	 2.72,	 SD =	0.14.	
Each participant’s estimates of the dot quantities as well as the mean 
power	fitting	curve	are	shown	in	Figure	1.	As	shown	in	this	figure,	
participants	exhibited	a	strong	underestimation	bias,	especially	for	
larger dot quantities. We used each participant’s best fitting power 
function to calculate the person’s perceived dot quantity of each ac-
tual	 dot	 quantity.	 Then,	we	 used	 these	 estimates	 to	 calculate	 the	
average perceived dot quantities across our entire sample that are 
listed	in	Table	1	(right	panel,	columns	2,	4,	and	6).

3.1.2 | Symbolic integration EEG task

We analyzed participants’ performance in the font- change detection 
task	 that	was	embedded	 in	 the	 symbolic	 integration	EEG	 task.	The	
mean	response	time	was	449	ms,	SD =	16	ms.	The	mean	accuracy	was	
95%,	SD =	6%.	Hence,	the	participants	responded	to	the	stimuli	with	
a	different	font	quickly	and	accurately,	which	confirms	that	they	were	
engaged	in	this	(non-	numerical)	task	through	the	entire	EEG	recording.

3.2 | ERP results

Our	analyses	focused	on	two	ERP	components	that	have	been	pre-
viously	 established	 in	 the	 literature	 (Libertus	 et	al.,	 2007;	 Temple	
&	 Posner,	 1998):	 N1	 (130–200	ms)	 and	 P2p	 (200–250	ms).	 In	 line	
with	previous	studies,	we	concentrated	on	two	ROIs	over	bilateral	
occipito-	parietal	 scalp	 sites	 (Hyde	 &	 Spelke,	 2009;	 Libertus	 et	al.,	
2007).	 Unadjusted	 and	 adjusted	 match	 and	 mismatch	 ERP	 wave-
forms	 for	 both	 ROIs	 are	 shown	 in	 Figure	2.	 For	 unadjusted	 and	

adjusted	 data	 in	 the	 N1	 and	 P2p	 time	 window,	 we	 conducted	 a	
repeated- measures anova	with	Trial	Type	(match	vs.	mismatch)	and	
Hemisphere	 (left	vs.	 right)	as	repeated	factors	 (see	Table	2	for	 the	
mean	and	standard	deviation	of	the	ERP	amplitudes	of	each	ROI	of	
each	Trial	Type	before	and	after	the	adjustment).

3.3 | Without adjustment

3.3.1 | N1 (130–200 ms)

The repeated- measures anova showed a significant main effect of 
Hemisphere (F(1,54)	=	32.25,	 p < .001,	 η2 =	0.37).	When	 averaging	
across	the	two	trial	types,	the	ROIL had higher ERP amplitudes than 
the	ROIR (left: M = 0.28 μV,	standard	error	of	mean	(SE) = 0.33; right: 
M = −1.03	μV,	SE =	0.37).	No	other	main	effects	or	interactions	were	
significant (ps >	.2).

3.3.2 | P2p (200–250 ms)

There were no significant main effects or interactions in the Trial 
Type by Hemisphere repeated- measures anova (all ps >	.26).

3.4 | With adjustment

3.4.1 | N1 (130–200 ms)

There was a significant difference between the ERP amplitudes in 
the	 ROIL	 and	 ROIR, F(1,54)	=	25.81,	 p < .001,	 η2 = 0.323. The ERP 
amplitudes	in	the	ROIL were higher than the ERP amplitudes in the 
ROIR (left: M = 1.75	μV,	SE = 0.28; right: M = 1.29 μV,	SE =	0.27).	We	
also found a significant difference between adjusted match and mis-
match	trials	across	the	two	ROIs,	F(1,54)	=	4.93,	p = .03,	η2 =	0.084.	
The adjusted match trials were higher in amplitude than the ad-
justed mismatch trials (match: M = −0.19	μV,	 SE = 0.37; mismatch: 
M = −0.65	μV,	SE =	0.33).	No	significant	interactions	were	found	be-
tween	Trial	Type	and	Hemisphere,	F(1,54)	=	1.31,	p = .26,	η2 =	0.024.

3.4.2 | P2p (200–250 ms)

We found a marginally significant difference between adjusted 
match	 and	 mismatch	 trials	 across	 the	 two	 ROIs,	 F(1,54)	=	3.03,	
p = .087,	η2 =	0.053.	The	adjusted	match	trials	had	higher	amplitude	
than the adjusted mismatch trials (match: M = 3.71 μV,	 SE = 0.30; 
mismatch: M = 3.22 μV,	SE =	0.33).	No	other	effects	were	found	sig-
nificant,	ps > .129.

4  | DISCUSSION

The present study examined the integration between the approxi-
mate	number	system	(ANS)	and	the	symbolic	number	system	(SNS).	
Specifically,	 the	 integration	 between	 nonsymbolic	 and	 symbolic	
formats of numbers in the human brain was examined by asking 

F IGURE  1 The relation between nonsymbolic numerosities 
presented in the behavioral estimation task and participants’ 
mean estimates. The blue line represents the mean power fitting 
function,	Y = 2.72 * X0.70,	where	Y is the predicted perceived dot 
quantity and X is the actual presented dot quantity. The dashed 
lines represent upper boundary and lower boundary of outlier 
removal
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young adults to passively look at matching or mismatching numeri-
cal information in both formats simultaneously while recording their 
EEG.	We	hypothesized	that	ERP	components	that	were	previously	
found to be sensitive to numerical information should differentiate 
between	match	and	mismatch	 trials.	However,	we	also	know	from	
previous research that adults’ estimates of nonsymbolic numerical 
stimuli	are	biased	(Izard	&	Dehaene,	2008;	Krueger,	1982;	Odic	et	al.,	
2015)	and	 that	 therefore	an	actual	match	between	a	nonsymbolic	
numerical stimulus and a symbolic one may not be perceived as such. 

To	 take	 estimation	biases	 into	 account,	we	 collected	 each	partici-
pant’s estimates of nonsymbolic stimuli similar to the ones used in 
the	EEG	task	and	adjusted	the	match	and	mismatch	trials	in	the	EEG	
task according to their behavioral estimation biases.

4.1 | ERP symbolic integration effect

We found significant differences between match and mismatch 
trials over bilateral parietal scalp sites starting as early as 130 ms 

F IGURE  2 The	ERP	waveforms	of	match	(black	lines)	and	mismatch	condition	(red	lines).	(a)	The	waveforms	of	the	left	ROI	in	the	no-	
adjustment	analysis.	(b)	The	waveforms	of	the	right	ROI	in	the	no-	adjustment	analysis.	(c)	The	waveforms	of	the	left	ROI	in	the	adjustment	
analysis.	(d)	The	waveforms	of	the	right	ROI	in	the	adjustment	analysis.	Gray	bars:	P1	(70–130	ms).	Light	green	bars:	N1	(130–200	ms).	Light	
blue	bars:	P2p	(200–250	ms).	(e,	f)	Topographic	map	of	the	mismatch	effect	for	N1	component	(e)	and	P2p	component	(f).	Left:	unadjusted	
data. Right: adjusted data. *p <	.05.	†p < .1
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poststimulus when perceived rather than actual nonsymbolic quan-
tities were taken into consideration. These findings argue for a rapid 
integration of numerical information across nonsymbolic and sym-
bolic	 stimuli	 in	 the	 adult	 brain.	 The	N1	 and	P2p	ERP	 components	
have been associated with numerical processing in previous studies 
and have been found to be sensitive to numerical distance in both 
nonsymbolic	 and	 symbolic	 stimuli	 (Dehaene,	 1996;	 Libertus	 et	al.,	
2007;	Temple	&	Posner,	1998).	Our	 findings	suggest	 that	 sensitiv-
ity to numerical information extends beyond explicit numerical pro-
cessing as the participants in our study were passively viewing the 
numerical	 stimuli.	Our	 findings	also	suggest	 that	 sensitivity	 to	nu-
merical information spans across nonsymbolic and symbolic formats 
of	numerical	 information.	 Interestingly,	 the	 integration	of	nonsym-
bolic and symbolic numerical formats did not result in a later onset of 
the ERP differences than previous studies focusing on stimuli within 
a	given	format,	 suggesting	 that	cross-	format	numerical	 integration	
occurs as rapidly as within- format numerical comparison. This fur-
ther implies that the processing of symbolic and nonsymbolic nu-
merical information unfolds in parallel.

However,	 other	 research	 suggests	 that	 the	 P2p	 ERP	 compo-
nent may reflect the evaluation of perceptual visual features of 
nonsymbolic	numerical	stimuli.	For	example,	Gebuis	and	Reynvoet	
(2013)	showed	that	P2p	amplitudes	were	modulated	as	a	 function	
of	variation	 in	perceptual	 cues	of	dot	quantities,	 such	as	different	
convex	hulls	and	densities,	but	that	the	P2p	did	not	differentiate	be-
tween	different	dot	quantities.	 In	 the	present	 study,	we	 took	 two	
steps to avoid systematic perceptual confounds between mismatch 
and	match	trials.	First,	our	stimuli	were	created	such	that	each	dot	
quantity	was	used	both	in	mismatch	and	match	trials.	Second,	as	our	
adjustment shifted the alignment between the dot quantities and 
Arabic	numerals	resulting	in	a	larger	number	of	mismatch	trials,	we	
intentionally only used the mismatch trials based on the dot quan-
tities used in match trials for each participant in the adjusted ERP 
analysis.	For	example,	for	a	participant	who	estimated	42	dots	to	be	
28	dots,	 the	stimulus	showing	42	dots	paired	with	Arabic	numeral	
28	was	 considered	 a	 new,	 adjusted	match	 trial.	We	 then	 selected	
the	corresponding	mismatch	 trials	 as	42	dots	paired	with	a	differ-
ent	Arabic	numeral	(e.g.,	42).	Therefore,	in	both	our	unadjusted	and	
adjusted	match	and	mismatch	trials,	the	dot	quantities	were	exactly	

identical and hence any ERP differences cannot result from percep-
tual differences in the nonsymbolic stimuli.

A	related	question	is	whether	the	ERP	differences	we	observed	
may	 stem	 from	 the	 perceptual	 differences	 in	 Arabic	 numerals.	
Indeed,	 in	the	present	study	the	perceptual	features	of	the	Arabic	
numerals	were	not	controlled,	neither	before	nor	after	adjustment.	
However,	 if	any	perceptual	difference	of	the	Arabic	numerals	con-
tributed	to	the	P2p	difference	we	observed	after	the	adjustment,	we	
should	observe	P2p	differences	in	the	nonadjusted	analysis	as	well,	
which	we	did	not.	Therefore,	 it	 is	unlikely	 that	 the	 integration	be-
tween nonsymbolic and symbolic numerical information observed in 
our study results from systematic variation in perceptual features in 
either	stimulus	format.	Instead,	we	argue	for	a	rapid	brain	response	
that is associated with the numerical evaluation and integration of 
both nonsymbolic and symbolic numbers.

4.2 | N1 and P2p amplitude differences

In	previous	studies,	 small	numerical	changes	 in	an	adaptation	 task	
(Hyde	&	Spelke,	2009)	or	small	numerical	distances	in	a	number	com-
parison	task	(Dehaene,	1996;	Libertus	et	al.,	2007;	Temple	&	Posner,	
1998)	elicited	higher	P2p	amplitudes	compared	to	large	changes	or	
large	distances,	respectively.	In	our	study,	the	P2p	amplitude	tended	
to	be	higher	for	match	trials	compared	with	mismatch	trials.	As	the	
numerical distance between the nonsymbolic and symbolic numbers 
is	smaller	than	the	numerical	distance	in	the	mismatch	trials,	our	P2p	
amplitude finding was in line with previous findings.

Unlike	the	P2p	amplitude,	the	sensitivity	to	numerical	informa-
tion	 in	 the	N1	has	 not	 been	 consistent	 across	 studies.	One	 study	
found	 that	 the	N1	amplitude	was	higher	 if	 the	numerical	distance	
was	closer	irrespective	of	number	format	(Temple	&	Posner,	1998),	
while	another	study	found	that	the	N1	amplitude	was	higher	if	the	
numerical distance was far between newly learned artificial symbols 
with	numerical	meanings	 (Merkley,	Shimi,	&	Scerif,	2016).	 In	 addi-
tion,	two	other	studies	found	no	N1	amplitude	differences	between	
close or far conditions with neither nonsymbolic nor symbolic num-
bers	 (Hyde	&	Spelke,	2009;	 Libertus	et	al.,	 2007).	 Instead,	 the	N1	
amplitude seemed to be only modulated by the size of small nonsym-
bolic	numbers	 (Hyde	&	Spelke,	2009;	Libertus	et	al.,	2007).	When	

TABLE  2 The	Trial	Type	effect	on	the	N1	and	P2p	component	in	the	adjusted	and	unadjusted	analyses

ERP component Adjustment Condition Mean SE F n p η2

N1	(130–200	ms) Unadjusted Match 3.71 0.30 1.67 55 .20 0.03

Mismatch 3.22 0.33

Adjusted Match −0.19 0.37 4.93 55 .03* 0.084

Mismatch −0.647 0.33

P2p	(200–250	ms) Unadjusted Match 3.41 0.27 1.275 55 .26 0.023

Mismatch 3.52 0.28

Adjusted Match 3.71 0.30 3.03 55 .087† 0.053

Mismatch 3.22 0.33

*p <	.05;	†p < .1.
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nonsymbolic	numbers	were	in	the	small	number	range	(<5	dots),	the	
N1	amplitude	decreases	as	number	increases.	But	the	N1	amplitude	
was	not	modulated	by	large	nonsymbolic	quantities.	As	mentioned	
earlier,	the	dot	quantities	in	our	study	were	exactly	the	same	across	
match	and	mismatch	trials.	Thus,	the	N1	amplitude	differences	can-
not be attributed to any perceptual differences between the non-
symbolic	 components	of	our	 stimuli.	However,	we	were	unable	 to	
also	 control	 for	 the	perceptual	 features	of	 the	Arabic	numerals	 in	
our	 stimuli.	 Yet,	 we	 did	 not	 see	 any	 differences	 between	 match	
and	 mismatch	 conditions	 prior	 to	 adjusting	 for	 estimation	 biases,	
which	 suggests	 that	 the	N1	 amplitude	 differences	 observed	 after	
the adjustment cannot be attributed to the perceptual differences in 
Arabic	numerals	either.

In	general,	the	N1	component	is	well	known	for	its	role	in	visual	
attention	 (Hillyard	 &	 Anllo-	Vento,	 1998;	 Mangun,	 1995)	 and	 dis-
crimination	processes	 (Vogel	&	Luck,	2000).	 It	 is	possible	 that	 the	
adjusted mismatch trials attracted more attention compared to ad-
justed	match	trials.	Of	note,	the	N1	amplitude	did	not	show	any	dif-
ferences	between	unadjusted	match	and	mismatch	trials,	suggesting	
that,	 if	any	attention	was	 involved,	 it	was	related	to	the	perceived	
mismatch. This possibility needs further examination.

So	 far,	we	 have	 shown	 that	 the	N1	 and	 P2p	 amplitude	 differ-
ences observed in our study are not likely due to perceptual features 
of	the	dot	quantities	or	Arabic	digits.	However,	the	number	of	match	
and	mismatch	trials	in	our	task	was	not	balanced,	especially	after	ad-
justment.	Hence,	we	cannot	rule	out	the	possibility	that	our	ERP	dif-
ferences may be due to the imbalance between match and mismatch 
trials.	In	fact,	research	that	investigates	general	visual	mismatch	ef-
fects in non- numerical visual domains revealed ERP differences in 
similar	ERP	components	as	the	N1	and	P2p	in	our	study	(Stefanics	
&	Czigler,	 2015).	 These	ERP	differences	 are	 typically	 evoked	by	 a	
visual mismatch paradigm that consists of a stream of stimuli with 
different	proportions	of	standard	and	deviant	(oddball)	stimuli.	The	
stimuli	vary	 from	basic	visual	 stimuli,	 such	as	shapes	and	gratings,	
to	complex	visual	stimuli,	such	as	faces.	The	general	finding	is	that	
less frequent deviant stimuli are typically associated with a lower 
ERP amplitude than more frequent standard stimuli over bilateral 
occipital and occipito- parietal sites in two components similar to the 
N1	 and	 P2p	 around	 150–250	ms	 poststimulus	 (Heslenfeld,	 2003).	
Researchers argue that this visual mismatch effect reflects predic-
tion errors because the deviant stimuli are presented less frequently 
than	standard	stimuli.	In	the	visual	mismatch	paradigm,	participants	
adapt to the more frequent standard stimuli and generate a predic-
tion	favoring	the	standard	stimuli.	If	this	prediction	is	violated,	brain	
activity changes resulting in the observed ERP differences.

One	study	(Hsu	&	Szücs,	2011)	examined	such	mismatch	effect	
in	the	numerical	processing	domain.	In	this	study,	the	authors	pre-
sented	two	Arabic	numerals	simultaneously	to	adult	participants	and	
asked participants to judge whether the two numerals in a trial were 
the	same	or	not.	Two-	thirds	of	their	total	trials	were	mismatch	trials,	
and	one-	third	was	match	trials.	Thus,	the	match	trials	were	the	less	
frequent/deviant condition and the mismatch trials were the more 
frequent/standard	condition.	Similar	to	the	visual	mismatch	effect,	

Hsu	 and	Szücs	 found	 that	 the	match	 (deviant)	 trials	 elicited	 lower	
ERP	amplitude	within	 the	236–328	ms	 time	window	over	bilateral	
occipito-	parietal	sites,	suggesting	that	a	general	mismatch	detection	
mechanism might have been activated rather than a number- specific 
one.

In	our	study,	we	presented	one-	third	match	trials	and	two-	thirds	
mismatch trials. The adjustment changed the number of match and 
mismatch trials but did not reverse the proportion of the two types 
of	trials.	Therefore,	similar	to	Hsu	and	Szücs’	(2011)	study,	after	the	
adjustment the mismatch trials were the standard condition and 
the	match	trials	were	the	deviant	condition	in	our	study.	Thus,	it	is	
possible that participants predicted that a numerical mismatch was 
more	likely	to	occur.	However,	unlike	in	visual	mismatch	paradigms	in	
general	and	Hsu	and	Szücs’	(2011)	study	in	particular	where	the	less	
frequent	stimulus	elicits	the	more	negative	ERP	amplitude,	we	ob-
served	more	positive	amplitudes	for	adjusted	match	(less	frequent)	
than	adjusted	mismatch	(more	frequent)	trials	during	the	N1	and	P2p	
time windows. This direction of the mismatch effect suggests that 
our finding may not reflect a general mismatch detection process. 
Instead,	we	hypothesize	that	it	reflects	the	detection	of	numerically	
mismatching information across two different number formats.

4.3 | The role of the nonsymbolic underestimation 
bias for symbolic integration

Previous studies found that large quantities are likely to be under-
estimated	 (Izard	&	Dehaene,	 2008;	Krueger,	 1982,	 1984;	 Libertus	
et	al.,	2016;	Odic	et	al.,	2015).	We	replicate	this	underestimation	bias	
in	the	behavioral	nonsymbolic	number	estimation	task.	Importantly,	
we found that it was critical to take estimation biases into account 
to	observe	an	 integration	effect	 in	our	ERP	 task.	Before	adjusting	
for	 each	 participant’s	 estimation	 biases,	 we	 did	 not	 observe	 any	
differences	 between	match	 and	mismatch	 trials	 in	 the	N1	 or	 P2p	
components.	However,	after	adjusting	for	 individual	differences	 in	
participants’	 estimates	 of	 nonsymbolic	 dot	 quantities,	 significant	
ERP differences emerged.

It	is	critical	for	future	studies	on	symbolic	integration	to	consider	
these underestimation biases in conjunction with other paradigms 
such as explicit number comparisons using different numerical for-
mats	or	 fMRI	 adaptation	paradigms.	 In	 addition,	 it	 is	 important	 to	
further examine the origins and development of the underestimation 
bias for a more thorough understanding of its potential influence on 
the	integration	between	the	ANS	and	SNS	across	the	life	span.

4.4 | Limitations and future directions

One	limitation	of	the	current	study	relates	to	the	order	in	which	the	
participants completed our tasks. The behavioral estimation task was 
always	administered	before	the	EEG	passive	viewing	task.	This	order	
could prime the participants to integrate nonsymbolic and symbolic 
stimuli	in	the	following	passive	viewing	task.	Thus,	it	is	possible	that	
the ERP integration effect between nonsymbolic and symbolic num-
bers	may	not	have	been	entirely	spontaneous.	However,	we	did	not	
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provide any feedback in the estimation task and hence there was no 
explicit way for the participants to calibrate their estimation per-
formance.	Further	studies	should	reverse	the	task	order	to	examine	
whether it had an impact on participants’ integration effects.

In	previous	studies	using	EEG/ERP	to	study	numerical	cognition,	
posterior electrodes have been found to be related to numerical pro-
cessing.	In	our	study,	we	selected	our	ROIs	based	on	these	studies	
(Hyde	&	Spelke,	2009;	Libertus	et	al.,	2007)	and	found	the	symbolic	
integration	 effect	 in	 these	 ROIs.	 Given	 that	 these	 posterior	 sites	
are spatially close to parietal cortex and the fact that parietal cor-
tex,	especially	the	IPS,	has	been	implicated	in	numerical	processing	
in	other	studies	 (Ansari	et	al.,	2005;	Fias	et	al.,	2003;	Piazza	et	al.,	
2004),	 it	 is	tempting	to	link	our	findings	to	the	function	of	parietal	
cortex.	Yet,	the	spatial	resolution	of	the	EEG/ERP	method	constrains	
the	power	to	make	such	inferences.	Future	studies	should	consider	
adopting methods that have both high spatial and temporal resolu-
tion.	As	numerical	processing	in	the	parietal	cortex	does	not	involve	
many	subcortical	structures,	magnetoencephalography	(MEG)	could	
be beneficial to study the symbolic integration at the cortical level. 
Another	potential	possibility	 is	 to	use	an	 intracranial	EEG	method.	
Finally,	a	 third	way	to	test	 the	 involvement	of	parietal	cortex	 is	 to	
incorporate	lesion	studies.	If	bilateral	parietal	cortices	are	involved	
in	parallel	but	functionally	different	numerical	processing,	then	pa-
tients with brain damage in unilateral parietal cortex might exhibit 
different patterns in their ERP waveforms in passive viewing tasks 
such	as	that	used	in	our	study.	For	example,	patients	with	left	hemi-
sphere	 lesion	might	 lack	 the	symbolic	 integration	effect	 in	 the	N1	
time window over left posterior sites.

Another	limitation	of	the	present	study	is	that	we	concentrated	
our	ERP	analysis	on	the	N1	and	P2p	time	windows	and	our	poste-
rior	ROIs.	There	were	other	time	windows	and	electrodes	where	the	
graphed data present some evidence of the symbolic integration ef-
fect.	For	example,	in	Figure	2c,d,	the	waveforms	for	match	and	mis-
match	 condition	 separate	 in	 the	300-		 to	 400-	ms	 time	window.	 In	
Figure	2e,f,	there	are	electrodes	located	in	the	central	regions	that	
show	the	symbolic	integration	effect.	Future	analyses	are	needed	to	
address the possibility of integration effects in other time windows 
and at other locations.

5  | CONCLUSION

The present study tested the integration between nonsymbolic and 
symbolic	numerical	formats	 in	the	adult	brain.	After	adjusting	for	
participants’	estimation	biases	inherent	to	the	nonsymbolic	format,	
we found greater ERP amplitudes for trials in which the symbolic 
and perceived nonsymbolic numerical information matched than in 
trials where this information did not match. This neural symbolic 
integration	effect	 emerged	around	130	ms	poststimulus	 (N1	ERP	
component)	over	bilateral	posterior	 scalp	sites.	Our	 findings	sug-
gested that the integration between the nonsymbolic and symbolic 
numerical information occurs rapidly but is best observed when 
perceived rather than veridical quantities are taken into account.
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