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Single nucleotide polymorphisms (SNPs) in commercial arrays have often been discovered in a small
number of samples from selected populations. This ascertainment skews patterns of nucleotide
diversity and affects population genetic inferences. We propose a demographic inference pipeline

that explicitly models the SNP discovery protocol in an Approximate Bayesian Computation (ABC)
framework. We simulated genomic regions according to a demographic model incorporating
parameters for the divergence of three well-characterized HapMap populations and recreated the SNP
distribution of a commercial array by varying the number of haploid samples and the allele frequency
cut-off in the given regions. We then calculated summary statistics obtained from both the ascertained
and genomic data and inferred ascertainment and demographic parameters. We implemented our
pipeline to study the admixture process that gave rise to the present-day Mexican population. Our
estimate of the time of admixture is closer to the historical dates than those in previous works which
did not consider ascertainment bias. Although the use of whole genome sequences for demographic
inference is becoming the norm, there are still underrepresented areas of the world from where only
SNP array data are available. Our inference framework is applicable to those cases and will help with the
demographic inference.

One of the main goals of the HapMap project was to describe common patterns of variation in the human
genome, initially from individuals with African, European and Asian descent'. This effort led to the characteri-
zation and selection of sequence variants or single nucleotide polymorphisms (SNPs), that were later included in
commercial genotyping arrays. However, since another goal of this project was to establish associations between
these variants and common diseases, most of the SNPs were confined to those of intermediate frequency in
genic regions, therefore creating a representation bias. Operating under the “common disease, common variant”

- model, SNPs with these characteristics were selected to increase the power of association tests?. Once array data

. became available from several populations, they were used for a different purpose: inference of population genetic
or demographic parameters. Unfortunately, the approach used to identify variants for these SNP arrays may
adversely affect the quality of such inferences.

When SNPs are found in a small sample of individuals from selected populations and then genotyped in other
populations, sites with intermediate frequencies in the discovery panel will be reliably scored in other popula-
tions, while variants that are rare or absent in the discovery panel will not be accurately accounted for when they
are common (or rare) in the population of interest. As a consequence, the observed patterns of nucleotide diver-
sity will be skewed*>*. This phenomenon is known as ascertainment bias, which results in the deviation of popu-
lation genetic statistics and in the loss of important genetic information specific to the history of a population®.
This deviation is particularly relevant as several available human datasets derived from genotyping arrays have
been regularly used for demographic inference®. Inference for population genetic studies usually rely on the site
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Figure 1. Flow chart of our inference method.

frequency spectrum and other summary statistics to study demography. Thus an excess of common sites leads, for
example, to the underestimation of the overall heterozygosity and FST, and the overestimation of Tajima’s D*>7~,

While complete sequencing of all samples in a study eliminates the effect of ascertainment bias, this option
is not always available given the much higher cost relative to SNP array genotyping and there are still popula-
tions of special interest from which only SNP data are available. In addition, ancient DNA sequences have been
enriched for a panel of known SNPs which, in turn, introduces ascertainment bias in the analyses of this type of
samples!®!l,

To address these ascertainment bias issues, several methods have been proposed to correct the site frequency
spectrum generated by the SNP array data®>*%*!2, or to directly account for the underlying bias in the arrays'.
Some of these methods depend on knowing exactly the methodology used to determine SNPs, which is rarely
known for available arrays. For example, in the original phase of the HapMap project, the criteria for selecting
variable sites changed during the course of the SNP discovery process?, making methods for correction even
more challenging. Indeed, investigators have acknowledged that these methods are difficult to generalize across
studies’.

In this study, we develop an inference pipeline that explicitly models the SNP discovery protocol by var-
ying the haploid sample size and the site frequency cut-off. We recreate the SNP distribution of two different
Affymetrix arrays and use a bootstrap strategy to jointly estimate the ascertainment and demographic parameters
in an Approximate Bayesian Computation framework!>!4. We apply this method to estimate parameters of the
Out-of-Africa model and of the admixture model of the Mexican population. This methodology has the capacity
to address diverse demographic questions when only SNP array data are available and is applicable to different
array platforms.

Methods

Sample collection. In this study we investigated the underlying ascertainment of the Affymetrix Axiom
Genome-Wide Human Array (Axiom array) data and the admixture dynamics of the modern Mexican popula-
tion (Supplementary Table S1).

We gathered high coverage whole genomes of unrelated Yoruba (YRI, #n=9), Utah residents with European
ancestry (CEU, n=09), and Han Chinese (CHB, n=4) sequenced by Complete Genomics (CGI genomes)"°. This
was matched with Axiom SNP array data from the same YRI, CEU and CHB individuals. To infer the time of con-
tact of Europeans with the indigenous populations in Mexico, we collected data from individuals with Mexican
ancestry (MXL, n=104) and from Iberian Populations in Spain (IBS, n=162), all part of the 1000 Genomes
Project!®. We also used previously published genotypes from the Nahuas of Puebla (NXP, n=22)!". All three
populations were genotyped on the Affymetrix Genome-Wide Human SNP Array 6.0 (Affy 6.0).

Modeling ascertainment bias. We describe the pipeline in the following sections and a diagram is
depicted in Fig. 1. The main purpose of this pipeline is to model the ascertained data present in the array (in this
case, SNPs) and unascertained data, and to use summary statistics on both datasets to estimate parameter values
with ABC.

Using the Neutral Regions Explorer’®, we determined a set of 1386 10kb genomic neutral regions in order
to reduce the interference of natural selection on demographic inference. This tool allows the rapid application
of several criteria to find neutral regions in the human genome. Our filters were the exclusion of genes, segmen-
tal duplications and other repeats, copy number variants, and an interval of 0.1 cM between non-overlapping
regions. The final set of regions is herein referred as ‘10kb loci.

We assumed that the YRI, CEU and CHB populations, as part of Phase I of the HapMap project, were the first
populations genotyped and that the variable sites discovered in these populations are the basis for most of the
currently available SNP arrays'. We then simulated a simple demographic model of the divergence of the HapMap
populations (Fig. 2) with a small number of parameters. We excluded demographic events like exponential pop-
ulation growth and migration in these populations as opposed to other studies'*?°. We note that demographic
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Figure 2. Out-of-Africa model with HapMap populations. This model includes the effective population sizes
of sub-Saharan Yoruba (NYRI), European (NCEU) and Chinese (NCHB) populations; as well as the ancestral
population size of Europeans and Asians after the Out-of-Africa (NEU_AS). The time of divergence between
Europeans and Asians (TEU_AS), the time of split between Africans and non-Africans (TAF) and the time of
population expansion in Africans (TGROWTH) are also part of this model. The parameters of the discovery
set (haploid sample size in each population and the frequency cut-off) are marked in green, inside the box. See
Fig. 4 for the posterior estimates of the parameters.

events like the aforementioned influence the genetic diversity of populations and therefore the detection of var-
iant sites to be potentially included in a SNP array. Nonetheless, we verified that this simplified model produced
summary statistics with similar values to the observed summary statistics (See Discussion).

A set of values was drawn for the prior distribution of the parameters, both demographic and ascertainment,
and one unique simulation was performed with that set of values. In this manner, we can jointly infer all the
parameters of the model. The parameters of the model and their priors are shown in Table 1. We used a custom-
ized version of the simulator MaCS (Markovian Coalescent Simulator)?! for Python, which allows faster process-
ing of the coalescent simulations. We performed one million simulations of the whole set of 10kb loci, according
to the demographic scenario in Fig. 2. In addition to the demographic parameters, we included four SNP ascer-
tainment parameters in the simulations: the haploid sample size from each of the three HapMap populations to
select variable sites (what we call discovery set) and a minor allele frequency cut-off to determine a SNP in this
discovery set (Step 1A of pipeline).

We established the following strategy to model the SNP ascertainment process. For each locus in the 10kb loci
from the aforementioned coalescent simulations, we created a “pseudo-array” with the same number of sites as
the Axiom array and with a similar physical distance distribution between the SNPs. To accomplish this, we ran-
domly selected from the prior distribution a number of haploid samples from each of the HapMap populations
and simulated segregating sites. In this discovery set, sites with frequency greater than the cut-off were selected
and, of these available sites, sites with the closest physical position to the corresponding Axiom SNPs were kept
for subsequent analysis. A simulation was repeated until sufficiently many segregating sites were obtained (Step
1 A of pipeline). One simulation included: the simulation of the whole genome data (10kb loci) in the sample that
includes 9 YRI, 9 CEU and 4 CHB diploid individuals, of the discovery panel and of the ascertained data (ascer-
tained SNPs in each of the 10kb loci in the discovery panel).

The summary statistics calculated in the simulated (Step 1 A) and the observed data (Step 1B) were later trans-
formed into Partial Least Squares components in order to obtain linear combinations of the summary statistics.
We calculated the mean and standard deviation of site frequency spectrum and haplotype based summary sta-
tistics across the 10kb loci extracted for the CGI genomes and for the Axiom SNPs that are present in those loci.
The summary statistics used were the number of segregating sites, singletons, doubletons, Tajima’s D, number of
distinct haplotypes and number of the most frequent haplotype per population, FST and number of shared and
private haplotypes between pairs of populations.

We inferred the ascertainment and demographic parameters for the Out-of-Africa model with the software
ABCtoolbox?? and to optimize the parameter estimation, we varied the number of PLS components and the num-
ber of retained simulations (Step 2). For each choice, we re-sampled the one million simulations with replacement
and used ABCtoolbox to estimate the parameters. This step was repeated 1000 times for each choice. We then
computed the covariance matrix of the posterior estimates (to maintain the structure of the joint estimation of the
parameters) and simulated 1000 random values using its covariance structure.
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nYRI 2 20 Discrete uniform | 3.82 2 9.59

nCEU 2 20 Discrete uniform 17.82 4.58 20

nCHB 2 20 Discrete uniform 17.09 6.5 20
Frequency cut-off | 0.05 0.10 Uniform 0.094 0.07 0.10

log10 (NYRI) 3.7 5.0 Uniform 4.63 4.36 4.90

log10 (NCEU) 3.0 5.0 Uniform 4.62 4.28 4.95

log10 (NCHB) 3.0 5.0 Uniform 3.67 3.52 3.79
NEU_AS 1500 5000 Uniform 4469.7 2216.22 5000
TEU_AS 200 (5,000) 1599 (39,975) | Discrete uniform | 1401.16 (35,029) | 1160.94 (29,024) | 1599 (35,975)
TAF 1600 (40,000) | 4100 (102,500) Discrete uniform 2786.87 (69,672) 2117.68 (52,942) 3277.96 (81,949)
log10 (NANC) 00 ~10 o Sorany | = _ _
TGROWTH 1 4100 Discrete uniform — — —

Table 1. Prior and posterior distributions of the Out-of-Africa model. Parameter labels correspond to

those given in Fig. 1. The effective population sizes are set to a log10 scale and divergence times are given in
generations units (25 years) and in years (values in parenthesis). For posterior distributions, see Supplementary
Fig. S2. Log(NANC) corresponds the ancestral population size in Africans while TGROWTH is the time of
population growth.
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Figure 3. Admixture model involving the Mexican population. This model includes the parameters from the
Out-of-Africa model (Fig. 1), the effective population sizes of the Nahuas (NXP), Mexican (NMEX) and Iberian
(IBS) populations. The times of divergence between Asian and Native Americans (TCHB_NXP) and between
Northern and Western Europeans and Iberians (TCEU_IBS) populations are also included. The admixture
parameters are the time (TADM) and the European contribution (PADM) to the indigenous population. The
parameters of the discovery set are written in green, inside the box. See Fig. 5 for the posterior estimates of the
parameters.

We then performed simulations using these 1000 parameter values, standardized the observed and simulated
summary statistics and calculated the Euclidean distance between them. Lastly, we selected the number of PLS
components and number of retained simulations that minimized this distance and confirmed that its parameter
values generated summary statistics like the observed ones. We then retained the posterior mode and 95% High
Posterior Density Intervals (HPDI) for each parameter (Step 3), as estimated by ABCtoolbox. For more details on
the different steps of the methodology, refer to the supplemental materials.

The list of the 10kb loci and all the scripts used in this work can be found in the following link: https://bit-
bucket.org/cdquinto/ascertainment-bias-scripts/.
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Figure 4. Posterior distributions of the discovery set and demographic parameters as estimated from the Out-
of-Africa model using the observed data. The black curve corresponds to the prior distribution of the parameter
values, while the blue one is the truncated prior distribution. The truncated prior distribution is built based on
the parameter values of the retained simulations that are kept for analysis based on euclidean distance of the
simulated summary statistics from the observed summary statistics, thus making these values a subset of the
prior distribution and directly affecting the amount of information given for inference. The red curve is the
posterior distribution, and the dashed lines are the 95% High Posterior Density Interval. Results estimated with
8 PLS components and 500 retained simulations.

Mexican admixture example. We examined the admixture process giving rise to the present-day Mexican
Mestizo population with the proposed demographic pipeline. We used the data described above from the
HapMap, IBS, MXL and NXP populations.

We established the model shown in Fig. 3 as a simplified depiction of this admixture process. We used the
NXP and IBS populations as the principal contributors and assumed that these populations diverged from one of
the HapMap populations. This model includes the parameters of the Out-of- Africa model as well as the time and
proportion of admixture (Table 2). We performed one million simulations of this model and followed the pipeline
described above to estimate the parameter values, with some additional steps. The discovery set parameters were
used to determine the ascertained sites for the Affy 6.0 array in the HapMap samples and summary statistics of
the IBS, MXL and NXP chromosomes were calculated at these specific SNPs for each region in the 10kb loci. As
a consequence, the final set of simulated summary statistics included summary statistics from the 10 kb loci set
and ascertained sites for the HapMap populations, and from only the ascertained sites for the IBS, MXL and NXP
populations.

Validation and comparison of the pipeline. To validate this method we used simulated summary
statistics with their associated known parameter values from each model and treated them as observed data
(pseudo-observed datasets). We applied our pipeline to these datasets to verify our ability to successfully recover
the true parameter values of each pseudo-observed dataset in the 95% HPDI as reported by ABCtoolbox. In addi-
tion, we used our inference pipeline in 1,000 pseudo-observed datasets for each of the tested demographic models
to calculate the ration of the posterior estimates and their true value.

Likewise, we compared our pipeline and results to the methodology described in Wollstein et al. in 2010
to account for ascertainment bias using ABC'?. Firstly, they simulated a demographic model involving the 3
HapMap populations and sampled a random number of haploid samples from each population in order to find
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nYRI 2 20 Discrete uniform | 6.91 2 17.39

nCEU 2 20 Discrete uniform | 16 3.56 1991

nCHB 2 20 Discrete uniform | 7.45 2 17.58
Frequency cut-off 0.05 0.10 Uniform 0.061 0.051 0.085

log10 (NYRI) 3.7 5.0 Uniform 4.44 4.1 4.99

log10 (NCEU) 3.0 5.0 Uniform 4.09 37 4.64

log10 (NCHB) 3.0 5.0 Uniform 3.55 3.27 3.68

NEU_AS 1500 5000 Uniform 4151.52 2190.93 4982.32
TEU_AS 500 (12,500) | 1599 (39,975) | Discrete uniform | 1410.28 (35,257) | 1055.98 (26,400) | 1599 (39,975)
TAF 1600 (40,000) | 4100 (102,500) Discrete uniform | 1953.54 (48,839) 1600 (40,000) 2493.52 (62,338)
TGROWTH 1 4100 Discrete uniform | — — —

log10 (NNXP) 3.0 5.0 Uniform 4.13 3.38 4.91

log10 (NIBS) 3.0 5.0 Uniform 4.72 34 5

log10 (NMXL) 3.0 5.0 Uniform 421 3.31 5

TCEU_IBS 400 (10,000) TEU_AS Discrete uniform | 976 (24,400) 400 (10,000) 1297.33 (32,433)
TCHB_NXP 400 (10,000) TEU_AS Discrete uniform | 688.73 (17,218) 418.05 (10,451) 1491.44 (37,286)
TADM 16 (400) 24 (600) Discrete random 21.5(538) 16.53 (413) 24 (600)

PADM 0.0 1.0 Uniform 0.53 0.43 0.65

Table 2. Prior and posterior distributions of the Mexican admixture model. Parameter labels correspond

to those given in Fig. 2. The effective population sizes are in a log10 scale and divergence times are given in
generations units (25 years) and in years (values in parenthesis). For posterior distributions, see Supplementary
Fig. S5. Log(NANC) corresponds the ancestral population size in Africans while TGROWTH is the time of
population growth.

polymorphic sites within regions of the ENCODE project data?. The physical distance distribution of these sites
was then fitted to the observed distribution of the Affy 6.0 platform and, with ABC, the parameters of the previ-
ously mentioned demographic model as well as the number of ascertained samples were inferred. The summary
statistics used were: observed heterozygosity, number of distinct haplotypes, number of the most frequent haplo-
type per population and the joint frequency spectrum. Secondly, the resulting posterior distribution of the demo-
graphic parameters and samples sizes were utilized as the prior for the consecutive investigated models involving
the different Oceanian populations. Herein, we refer to this series of steps as Wollstein’s method.

We followed Wollstein’s steps to infer the ascertainment and demographic parameters of the Out-of-Africa
and Mexican admixture models using our observed data. We reduced our summary statistics in order to replicate
the set used in'* mean number of segregating sites, mean FST, mean number of different haplotypes, mean num-
ber of the most frequent haplotype in both the 10kb loci and array data. We also retained the same percentage of
simulations as in the aforementioned paper (0.02% of the total number of simulations).

We finally compared the mode and the width of the 95% HPDI of the parameters’ estimations obtained by the
two methods and verified if the true values of pseudo-observed datasets were recovered by Wollstein’s method.
The complete description of the validation and comparison of the pipeline can be found in the Supplemental
Material.

Results

Results of the Out-of-Africa model. We applied the inference pipeline to the Out-of-Africa model and
obtained posterior estimates of the discovery set and demographic parameters (Table 1, Fig. 4). We inferred that
3.8 haploid samples came from YRI (95% HPDL.: 2-9.6), 17.8 from CEU (95% HPDI.: 4.58-20), and 17.1 from
CHB (95% HPDL.: 6.5-20) to define the SNPs present in the Axiom array, with a frequency cut-off of 9.4% (95%
HPDL: 7-10%).

Moreover, we estimated that African and Eurasians populations diverged 69.7 kya (thousand years ago, 95%
HPDLI.: 52.9-81.9kya), and that the time of divergence between CHB and CEU was 35.0kya (95% HPDI.: 29.0-
35.9kya). We also found particularly large effective populations sizes for YRI (42.7 K, 95% HPDI.: 22.9-79.4K)
and CEU (41.7K, 95% HPDLI.: 19.1-79.4K); whereas we estimated 4.7 K (95% HPDI.: 3.3-6.2K) for CHB, and the
size of the ancestral population of Eurasians was 4.5K (95% HPDI.: 2.2-5K).

Results of the Mexican admixture model. We first confirmed that the MXL samples show a signal of
admixture with the IBS and NXP populations as sources. In the PCA plot, the IBS and NXP samples formed
tight clusters on opposite sides of the plot and the MXL individuals are found between these two clusters
(Supplementary Fig. S3). The mean European contribution to the MXL individuals was 48.6% (sd 17.2%) accord-
ing to the ADMIXTURE results (Supplementary Fig. S$4).

The posterior estimates are reported in Table 2 and the posterior distributions of the Mexican admixture
specific parameters are shown in Fig. 5. We estimated the following discovery set of the Afty 6.0 array: 6.9 YRI

SCIENTIFICREPORTS| (2018) 8:10209 | DOI:10.1038/s41598-018-28539-y 6



www.nature.com/scientificreports/

log(NAT) log(NIBS) log(NMEX)
o
° | | S | | © } |
S | | | | © I |
| | o | | | } |
o ©
© >
24 | | | | ] } I
2z ! 2z | 2 |
2] 2R 2]
e e X e
o < 3 o s <
o 3 a o o d
o~ o | o
v s v
e I ! ! 1 ° | I
| | | | } |
) o o
o 1 1 S 1 ] c 1 |
T T T T T T T T T T T T T T T
3.0 35 4.0 45 5.0 3.0 35 4.0 4.5 5.0 3.0 35 4.0 4.5 5.0
mode at 4.13128 mode at 4.71713 mode at 4.21212
TCEU_IBS TCHB_NAT TADM
©
S - (=3
g g
g g
8 s ©
0 =
o 8
o d
g o £ ° g e
5 o 5§ 2 § o
o 3 o 3 ]
o 2
P o
0
g g s
S S
o o
g g g
> 3 S
o o
400 600 800 1000 1400 400 600 800 1000 1400
mode at 976 mode at 688.727 mode at 21.4949
PADM
©
© -
2
k7
5 <
=)

00 02 04 06 08 1.0

mode at 0.525255

Figure 5. Posterior distributions of the demographic parameters of the Mexican admixture model. These
posterior distributions correspond to the demographic parameters pertaining only to the Mexican, Iberian and
Nahuas populations (see Fig. 3). Same color legend as Fig. 4. The posterior distributions of all the ascertainment
and demographic parameters can be found in Supplementary Fig. S15. Results estimated with 8 PLS
components and 100 retained simulations.

haploid samples (95% HPDI: 2-17.4), 16 haploid samples (95% HPDI: 3.6-19.9); 7.5 haploid samples (95% HPDI:
2-17.6); and a frequency cut-off value of 6.1% (95% HPDI: 5.1-8.5%). The estimated time for the Out-of-Africa
migration was 48.8 kya (95% HPDI: 40-62.3 kya), and the time of divergence between Europeans and Asians was
35.3kya (95% HPDI: 26.4-39.9 kya). The effective populations sizes of these populations were 27.5 K (95% HPDI:
12.6-97.7K), 12.3K (95% HPDI: 5-43.7K) and 3.5K (95% HPDI: 1.8-4.8 K) individuals for YRI, CEU and CHB
respectively. The size of the ancestral population to Europeans and Asians was estimated to be 4.1 K individuals
(95% HPDI: 2.2-4.9K).

Of special interest are the estimations for the IBS, NXP and MXL populations. The divergence time between
Northern/Western Europeans and Iberian populations was 24.4 kya (95% HPDI: 10-32.4kya), while the split
between Han Chinese and the indigenous Mexican population was dated to be 17.2kya (95% HPDI: 10.5-
37.3kya). The estimates of the effective population sizes of the Nahuas and Iberian populations were 13.5K (95%
HPDI: 2.4-81.3K) and 52.5K (95% HPDI: 2.5-100 K) respectively; while the Mexican Mestizo population size
was 16.2K (95% HPDI: 2-100 K). Moreover, the time of admixture between the Iberian and Nahua populations
was estimated to have occurred almost 22 generations ago, or 550 years ago (95% HPDI: 413-600 ya); with the
Iberian population contributing 53% (95% HPDLI.: 43-65%) of the genomes.

Results of the validation and comparison with other methods. The estimations of the parameter
values of the pseudo-observed datasets were always within the 95% HPDI and the true values were most of the
time recovered by the mode of the posterior distributions. Supplementary Figs S7 and S8 show the results of one
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pseudo-observed dataset from the Out-of-Africa model, and one pseudo-observed dataset from the Mexican
admixture model.

We calculated the ratio of our posterior estimate and the true value of the parameters for 1,000
pseudo-observed datasets. For both tested models, the mode of the distribution of this ratio peaks close to the
expected value of one and most of the obtained distributions peak at this value (Supplementary Figs S9 and S10).
Yet, in the Mexican admixture model, the estimated values of the effective population sizes of Iberians, Mexican
and Nahuas are smaller than their true values as the ratios are closer to 0.5; indicating that the posterior estimates
were roughly half of the true value. This observation, however, is in agreement with our results when using the
observed data of the Mexican admixture model.

We also compared the posterior estimates of the parameters that were obtained with our method and with
Wollstein’s. The estimates of the ascertainment parameters are different, except for the frequency cut-off; and the
95% HPDI’s tend to overlap (Supplementary Table S3). Yet, we observed greater differences in the demographic
parameters. The inferred effective populations sizes of the HapMap populations are larger when utilizing the
Wollstein method, the 95% HPDI do not overlap, and the times of divergence are considerably recent: ~20kya for
the time of split between Eurasians, and ~47 kya for the Out of Africa migration. Also, some of Wollstein’s poste-
rior distributions peak at the edge of the distributions like the frequency cut-off, the effective population size of
Europeans and the time of split of Eurasians; and the mode of the truncated prior and posterior distributions do
not coincide (Supplementary Fig. S11). The width of the 95% HPDI for seven parameters of the pseudo-observed
data was smaller when using our method than Wollstein’s (Supplementary Table S3) and all intervals overlapped
(Supplementary Fig. S12). However, neither method recovered the true value of the number of ascertained sam-
ples in Asians (nCHB), probably because its true value laid at the end of the prior distribution.

Regarding the Mexican admixture model, we first estimated the ascertainment and demographic parameters
of the Out-of-Africa part of the model using the 10kb loci and the Affy 6.0 data. We estimated that the num-
ber of haploid samples to define SNPs for the Afty 6.0 array were 19 from YRI, 8 from CEU and 11 from CHB.
We then proceeded to use these posterior distributions as priors to simulate the IBS, NXP and MXL samples
(Supplementary Fig. S13), following the topology of the admixture model and inferred the demographic param-
eters. The estimated population sizes and the admixture-related parameters are not radically different between
the two methods, but the time of divergence between CEU and IBS and the time of divergence between CHB and
NXP as estimated by Wollstein’s method are particularly old; 39.8 kya and 25 kya, respectively (Supplementary
Table S5). Additionally, we noted that only two HPDIs inferred by our method were smaller than Wollstein’s, and
that the posterior distributions of the effective population size of Iberians and the time of split between IBS and
CEU have their mode right at the boundary of the distributions (Supplementary Fig. S13b).

Discussion

One of the motivations to perform this work was the inability to know exactly the ascertainment strategy used
to define SNPs during the creation of HapMap. Different papers have pointed out that HapMap utilized different
SNP ascertainment procedures and so, the final ascertainment will be a mixture of ascertainment schemes. In
2005, Clark and colleagues showed the effect of ascertainment bias on the value of some summary statistics for
the HapMap and Perlegen SNP datasets*. They were able to assemble enough information to obtain the possible
distribution of the sample size (depth) in the discovery sample for HapMap and Perlegen. According to their
results, between 5 and 10 samples were used in HapMap while 20 samples were used in Perlegen. Our estimates of
the number of haploid samples used to find SNPs oscillate between 3 and 17, which may likely reflect the mixture
of ascertainment strategies (See Tables 1 and 2).

Our estimates of the dispersal out of Africa and the divergence times between Eurasians are compatible with
previous analyses, using mitochondrial DNA?, resequencing data'®?, and whole-genome information®. In con-
trast, our estimates of the effective population sizes seem to be elevated (Table 1). However, as no significant bias
in the estimation of these parameters was observed in our validation, the elevated effective population sizes may
reflect model misspecification.

An important difference between the previously mentioned publications and our Out-of-Africa model is the
exclusion of migration and exponential growth in the studied populations. These demographic events will have
an effect on the amount of genetic diversity of those populations. Nevertheless, the complexity of a demographic
model increases the complexity of the parameter estimation with ABC, and for this reason, we decided to utilize
a model with the smallest number of parameters that produced summary statistics with similar values to the
observed summary statistics (Supplementary Fig. S2).

It is also very important to note that we included instantaneous growth in Africa (see Table 1, Figs 2 and 3) to
ensure that the range of the simulated summaries encompassed the observed values. However, our pipeline did
not have to power to accurately estimate this parameter (see Supplementary Fig. S16), and therefore we excluded
this parameter from the inference process for both the Out-of-Africa and the Mexican model. This could poten-
tially be explained by the type and amount of data used in our analysis as it has been previously noted that, to
accurately infer the rate and time of growth in African populations, a large amount of data is required>?’.

The present-day Mexican population primarily descends from an admixture process between the indigenous
resident populations and Spanish explorers that entered Mexico after 1492. A minor source of current genetic
variation in Mexico traces to African slaves that were brought to the Americas'”?%; however, their contribution
was not considered here.

We chose to examine the case of admixture in Mexico for two reasons: (1) at the time of this work only SNP
genotypes from indigenous Mexican populations were publicly available!’, and (2) the effects of ascertainment
bias are expected to be stronger given the divergence between indigenous Mexican populations and those that
were part of the SNP discovery panels (i.e., HapMap populations). The choice of the Nahuas from Puebla as a
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representative of the indigenous population was motivated by its location in central Mexico and the number of
available samples. We also made the assumption that MXL individuals were Mestizo individuals with predom-
inately more ancestry from central groups which held a large territory, as opposed to more isolated and small
populations (e.g. Mayans).

Regarding the admixture dynamics of this historical encounter, our results indicate an admixture time of 21.5
generations ago (538 years ago, 95% HPDI: 413-600 ya), in agreement with recorded history and with previous
estimates of admixture timing using alternative approaches such as ancestry block length distribution?-*!. When
an admixture event takes place, the chromosomes that are brought together are shuffled by recombination during
meiosis. As the time since admixture increases, chromosomes from the admixed population become mosaics of
shorter segments of DNA from the sources populations. The ancestry switch points are inherited like point muta-
tions and can be used as markers to define ancestry blocks or haploblocks.

In contrast with such methods, our approach enables bias-free inference of additional demographic parame-
ters, like the effective population sizes and times of divergence which have been typically inferred from sequenc-
ing data only until now. Our inference of 53% Spanish contribution to the Mexican Mestizo genetic pool (95%
C.L: 43-65%) is consistent with other published estimates for Mexican Americans (48%,'71%%*1). The small
difference in the estimates could be due to the fact that the MXL samples were collected outside of Mexico
and probably experienced more recent gene flow from Europeans in the U.S.%. The estimate of the divergence
between CHB and NXP (18kya) corresponds to the estimated time of crossing of the Bering land bridge during
the Last Glacial Maximum by the ancestors of Americans®*>-**. However, we inferred a very old split time between
Northern/Western European and Iberian populations (24 kya), as opposed to previous results that point out to
a much recent divergent time between European populations (e.g. divergence time between Dutch and Central
Italian: 7 kya?,) and the high degree of relatedness in those populations®.

We estimated similar population sizes for the IBS, NXP and MXL populations (10,000) which are lower esti-
mates compared to previous results using data generated by 1000 Genomes Project*. In contrast, using runs of
homozygosity, the effective population size of the Nahua population was calculated to be around 3,100 individu-
als'”. These large differences in the estimates could be due to the particular dataset analyzed, the complexity and
assumptions of the models employed, and/or due to the fact that our method has little power to estimate these
parameters (see the width of the HPDIs in Table 2).

In general, the results of the validation of our pipeline show that it is possible to estimate without bias demo-
graphic and ascertainment parameters (See Supplementary Figs S9 and S10). When compared to Wollstein’s
method, we found that our pipeline provided more accurate estimates of the parameter values, even though the
95% HPDI’s almost always overlapped between the two approaches. In some cases, the disparity between the
parameter estimates were of an order of magnitude (see effective population sizes and times of divergence in
Supplementary Table S3).

The differences in the estimates between our pipeline and Wollstein’s method could be explained by the fact
that we implemented the analyses with the same proportion of simulations that Wollstein seemed to have retained
(0.02% of the total), which probably provided a small amount of information to ABCtoolbox for the inference.
Another important difference is the estimation of the ascertainment and demographic parameters of models at
the same time and the incorporation of bootstrap sampling to have information of the joint distribution of the
parameters.

In sum, we showed that our developed pipeline enables to do demographic inference using SNP array data
ABC, can be applied to data from different commercial arrays and that the only requirement for its application is
to have whole genome information of the populations used to define SNPs and the SNP array data of the popu-
lations of interest.
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