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Abstract. Accumulation of atherosclerotic plaques in arterial 
walls leads to major cardiovascular diseases and stroke. 
Macrophages/foam cells are central components of atheroscle-
rotic plaques, which populate the arterial wall in order to remove 
harmful modified low‑density lipoprotein (LDL) particles, 
resulting in the accumulation of lipids, mostly LDL‑derived 
cholesterol ester, in cytosolic lipid droplets (LDs). At present, 
LDs are recognized as dynamic organelles that govern cellular 
metabolic processes. LDs consist of an inner core of neutral 
lipids surrounded by a monolayer of phospholipids and free 
cholesterol, and contain LD‑associated proteins (LDAPs) that 
regulate LD functions. Foam cells are characterized by an 
aberrant accumulation of cytosolic LDs, and are considered a 
hallmark of atherosclerotic lesions through all stages of devel-
opment. Previous studies have investigated the mechanisms 
underlying foam cell formation, aiming to discover therapeutic 
strategies that target foam cells and intervene against athero-
sclerosis. It is well established that LDAPs have a major role in 
the pathogenesis of metabolic diseases caused by dysfunction 
of lipid metabolism, and several studies have linked LDAPs 
to the development of atherosclerosis. In this review, several 
foam cell‑targeting pathways have been described, with an 
emphasis on the role of LDAPs in cholesterol mobilization 
from macrophages. In addition, the potential of LDAPs as 
therapeutic targets to prevent the progression and/or facilitate 
the regression of the disease has been discussed.
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1. Introduction

On average, every 34 sec someone in the United States suffers 
from a coronary event, and every 40  sec someone has a 
stroke (1). Cardiovascular disease and stroke are pathologies 
associated with the development of atherosclerosis, a chronic 
inflammatory process that affects the walls of large‑ and 
medium‑sized arteries. The systemic risk factors associated 
with a higher prevalence of atherosclerosis‑related diseases 
include dyslipidemia, hypertension, chronic kidney disease, 
metabolic syndrome and diabetes (1). Unstable plaques may 
rupture and block the bloodstream, ultimately leading to 
myocardial infarction or stroke. Atherosclerotic plaques consist 
of fatty materials, predominantly cholesterol; necrotic cores; 
calcified regions; and various types of cells, including smooth 
muscle cells, endothelial cells, immune cells, monocytes and 
foam cells. Among these cells, lipid‑laden macrophages, which 
are commonly known as foam cells, are central components 
of the plaques, which have an important role in the process 
of atherosclerotic plaque development from the early to late 
stages.

According to the ‘response to injury’ theory by 
Ross et al (2,3), atherosclerosis is initiated by maladapta-
tion of the blood vessel to endothelial cell damage. Injured 
endothelial cells produce adhesion molecules, which cause 
monocytes and T lymphocytes to adhere to endothelial cells 
and migrate to the subendothelial space (2,3). However, later 
observations have indicated that endothelial injury is not a 
common feature, and uninjured endothelial cells are actu-
ally more common in developing plaques (4). The alternative 
‘response to retention’ hypothesis, postulated by Williams 
and Tabas (4), proposes that atherogenesis is initiated without 
endothelial denudation. Low‑density lipoprotein (LDL) that 
enters the intimal space is retained by the subendothelial 
extracellular matrix molecules, predominantly proteogly-
cans. Proteoglycan‑bound LDL aggregates and is prone to 
undergo several modifications. In particular, LDL binding to 
proteoglycans increases susceptibility of LDL to oxidation. 
Subsequently, oxidized LDL (oxLDL) triggers the synthesis 
of monocyte chemoattractant protein (MCP‑1) by endothe-
lial and smooth muscle cells, and oxLDL is also directly 
chemoattractive to monocytes  (4). Therefore, the final 
outcome of both hypotheses is that monocytes migrate to 
the arterial wall and differentiate into arterial macrophages, 
which take‑up oxLDL to become foam cells.

Following endocytosis of oxLDL by macrophages, the 
cholesterol ester (CE) carried by these particles is hydrolyzed 
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to free cholesterol (FC) in the lysosomes, which is subsequently 
released into the cytosol. Elevated FC levels in macrophages 
due to uncontrolled LDL uptake can cause membrane damage 
and cytotoxicity (5). However, toxicity can be prevented by 
increasing FC efflux to high‑density lipoprotein (HDL), or 
by esterifying FC to CE, which is subsequently stored in the 
core of cytoplasmic lipid droplets (LDs)  (6) (Fig. 1). As a 
result of LD accumulation in the cytosol, macrophages form 
ʻfoamyʼ looking shapes, hence their alternative name, foam 
cells. While this mechanism may initially be protective, the 
overwhelming accumulation of foam cells caused by unfet-
tered LDL uptake at the arterial wall results in inflammation 
and necrosis. Therefore, foam cells have been the object of 
extensive research efforts aiming to identify novel therapeutic 
strategies against atherosclerosis. In this review, the general 
mechanisms of foam cell formation are described, genes asso-
ciated with LDs and their roles in atherosclerotic development 
are investigated, and the prospect of targeting foam cells to 
prevent and/or intervene against atherosclerosis is discussed.

2. Lipid droplets

LDs are fat depots found in all eukaryotic cells  (7). In 
mammalian adipocytes, LDs reserve large amounts of lipid 
to provide energy in the event of scarcity; therefore, the LD 
was initially considered to be a mere fat reservoir. However, 
numerous studies have demonstrated that LDs are not only 
lipid reservoirs but also dynamic organelles that provide lipids 
for metabolic processes, membrane synthesis, cell signaling 
and intracellular vesicle trafficking (8‑10). In non‑adipocytes, 
LDs protect cells from cytotoxicity caused by a surplus of 
free fatty acids or FC by storing neutral lipid esters in the 
cytosol (11,12). However, the excessive storage of lipids in 
cells is closely associated with metabolic diseases, including 
obesity, diabetes, fatty liver disease and atherosclerosis (13).

LDs consist of a phospholipid monolayer, lipid droplet‑asso-
ciated proteins (LDAPs), and an inner core of neutral lipids, 
including triacylglycerol (TAG), sterol esters, retinyl esters, 
waxes and ether lipids (7,14). A lipidomic study previously 
revealed that LDs are complexes that contain >160 species 
of phospholipid. The most abundant phospholipid is phos-
phatidylcholine, followed by phosphatidylethanolamine, 
phosphatidylinositol and ether‑linked phosphatidlycho-
line  (14). The composition of neutral lipids in the core of 
LDs varies in different cell types. For example, yeast cells 
contain almost an equal proportion of TAG and CE, whereas 
adipocytes contain mostly TAG; however, macrophages/foam 
cells contain mostly CE that originates from LDL (14). In 
eukaryotes, the prevalent theory for LD biogenesis is that LDs 
bud off the endoplasmic reticulum (ER), where the majority 
of enzymes for neutral lipid synthesis are located, including 
acyl‑CoA:cholesterol acyltransferase (ACAT) for sterol esters 
and acyl‑CoA:diacylglycerol acyltransferases for TAG (15,16). 
Following synthesis of neutral lipids within the interspace of 
the lipid bilayer of the ER membrane, lipids are enclosed by a 
monolayer of phospholipids, which originates from the cyto-
plasmic leaflet (17‑20). The newly formed LDs increase in size 
by incorporating lipids that are synthesized in situ by enzymes 
localized at the LD surface, or by the fission of pre‑existing 
LDs (7,21).

3. Lipid droplet‑associated proteins

LDAPs are usually located at the surface of LDs and have 
an important role in the formation and degradation of 
LDs (22). Proteomic analyses on LD fractions of lipid‑loaded 
cells have identified numerous LDAPs  (23,24). Relatively 
well‑characterized LDAPs include members of the perilipin, 
ADFP and Tip47 (PAT), and cell death‑inducing DNA frag-
mentation factor‑like effector (CIDE) families. In mammals, 
the PAT family comprises five members: Perilipin 1 (PLIN1), 
Perilipin 2 (PLIN2/adipophilin/adipose differentiation‑related 
protein/ADFP), Perilipin  3 (PLIN3/Tip47), Perilipin  4 
(PLIN4/S3‑12), and Perilipin 5 (PLIN5/lipid storage droplet 
protein 5/myocardial lipid droplet protein/OXPAT/PAT1) (25). 
The CIDE family comprises three members: CIDEA, CIDEB 
and CIDEC (human)/fat‑specific protein of 27 kDa (mouse). 
While all cells have the ability to accumulate LDs, the expres-
sion of LDAPs varies depending on cell and tissue type. 
Therefore, different LDAPs are expected to replace the function 
of others based on their expression pattern. PLIN1 was the first 
LDAP to be identified (26), and is highly expressed in white 
and brown adipose tissues, and steroidogenic cells (26,27). 
In addition, PLIN1 is expressed in detectable amounts in 
macrophages (28); however, its expression in mouse macro-
phages remains controversial (29). Four splicing variants of 
PLIN1 have been identified, namely perilipin A‑D (26,30). 
Perilipin A and B are expressed in adipocytes, whereas the 
C and D isoforms are predominantly expressed in steroidogenic 
cells. Under non‑hydrolytic conditions, interaction of PLIN1 
with comparative gene identification‑58 (CGI‑58) blocks the 
access of hydrolases to LDs, and protects TAG in LDs against 
hydrolysis. Under β‑adrenergic receptor activation‑induced 
hydrolytic conditions, both PLIN1 and cytoplasmic hormone 
sensitive lipase (HSL) are phosphorylated by protein kinase A. 
Phosphorylated HSL gains access to LDs, whereas phosphory-
lated PLIN1 dissociates from LDs and releases CGI‑58 from 
the LD surface. Interaction of CGI‑58 with adipose triglyc-
eride lipase (ATGL) in the cytoplasm results in translocation 
of ATGL to LDs, where it primarily hydrolyzes TAG, whereas 
HSL sequentially breaks down the diacylglycerol generated by 
ATGL (31,32).

PLIN2 and PLIN3 are ubiquitously expressed (28,33,34). 
PLIN2 is highly induced by lipid loading, and is expressed in 
macrophages/foam cells and atherosclerotic plaques (29,35). 
PLIN2 was initially isolated and characterized during a study 
on the differentiation of pre‑adipocytes into adipocytes (36). 
Lipid loading increases the transcriptional and post‑transla-
tional levels of PLIN2, since PLIN2 bound to LDs is protected 
from degradation by the proteasome pathway (37,38). PLIN2 
reduces the affinity of ATGL to LDs, and consequently 
reduces the degradation of LDs by ATGL (39). A missense 
polymorphism in PLIN2 (Ser251Pro) has been shown to 
increase the number of small‑sized LDs. The human Pro251 
allele was associated with decreased plasma TAG and VLDL 
concentrations (40).

PLIN3 has been detected on the surface of LDs in 
HeLa cells using a PLIN3 antibody to track its subcel-
lular localization  (41). PLIN3 is involved in the transport 
of mannose 6‑phosphate receptors from endosomes to the 
trans‑Golgi network (42). Unlike PLIN1 and PLIN2, which 
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are fundamentally associated with LDs, PLIN3 is abundantly 
found in the cytosol (43,44). Acetylated LDL (acLDL) loading 
of PLIN2‑depleted human THP‑1 macrophages was shown to 
decrease CE levels; however, PLIN3 knockdown reduced TAG 
levels in acLDL and oleic acid‑loaded cells (45). Increased 
localization of PLIN3 to LDs was observed in PLIN2‑depleted 
THP‑1 macrophages, without alterations to PLIN3 expres-
sion (29,45). Similarly, Chang et al (46) detected increased 
PLIN3 localization to LDs in PLIN2‑deficient hepatocytes. 
These results suggest a differential and compensatory role 
of LDAPs in lipid metabolism even within the same cells. 
PLIN4 is predominantly detected in white adipose tissue, 
although lower amounts can be detected in heart and skeletal 
muscle (41,47). PLIN5 is expressed in heart, brown adipose 
tissue, liver and skeletal muscle (34,47). A previous study, 
which used microarrays to identify the expression of LDAPs in 
oxLDL‑loaded THP‑1 macrophages, demonstrated that PLIN1 
expression was not altered, whereas PLIN2 was increased and 
PLIN3 was decreased. Furthermore, PLIN4 and PLIN5 were 
upregulated by oxLDL in THP‑1 cells (48).

With distinctive tissue distribution, the three members of 
the CIDE family are involved in TAG metabolism and their 
functions are highly associated with metabolic disorders. 
CIDEA and CIDEB are abundantly expressed in brown 
adipose tissue and in the liver, respectively (49,50). CIDEC is 
expressed in white and brown adipose tissues, but not in normal 
liver tissue (49,51,52). Deletion of each CIDE member in mice 
resulted in leaner mice due to increased energy expenditure, 
and was associated with resistance to diet‑induced obesity and 
insulin resistance (53). All three members of the CIDE family 
have recently been detected in THP‑1 macrophages loaded 
with oxLDL (48). However, the role of CIDEs in cholesterol 
metabolism and atherosclerotic development has yet to be 
elucidated.

The predominant form of lipid stored in the LDs of 
macrophages/foam cells is CE. Whereas PAT and CIDE 
proteins have central roles in LD metabolism, these proteins 
do not exert TAG or CE hydrolyzing activities. HSL is the 
best‑characterized CE hydrolase in macrophages  (54,55). 
Despite its strong CE hydrolase activity, the absence of HSL 
in human macrophages and plaques suggests the possible 
existence of other CE hydrolase(s) to replace the role of HSL 
in human atheroma (23,55). A recent proteomic analysis on 
the LD fraction of Raw 264.7 macrophages identified a novel 
CE hydrolase, lipid droplet‑associated hydrolase (LDAH). 
Overexpressed LDAH in RAW 264.7 macrophages decreased 
CE levels by increasing FC efflux (23). LDAH was reported 
to be ubiquitously expressed; however, it is significantly more 
abundant in white and brown adipose tissues and in the liver. 
Notably, LDAH is also highly expressed in both human and 
mouse macrophages and atherosclerotic lesions (23).

4. Cholesterol trafficking in macrophages

In macrophages, oxLDL is notably taken‑up via endocytosis 
mediated by scavenger receptors (SRs), including SR‑A and 
cluster of differentiation  36 (CD36); however, additional 
mechanisms may mediate oxLDL uptake (56,57). CE derived 
from oxLDL is hydrolyzed to FC by lysosomal acid lipase 
(LAL) and is then released into the cytosol. FC in the cytosol 
is either effluxed by ATP‑binding cassette (ABC) transporters, 
including ABCA1 and ABCG1, or re‑esterified by ACAT1 in 
the ER and stored as CE in cytosolic LDs (Fig. 1). Two LD CE 
hydrolytic pathways have been reported. In the first pathway, 
CE in LDs is hydrolyzed to FC by neutral cholesterol ester 
hydrolases (nCEHs), which associate with LDs. The second 
pathway involves autophagocytic engulfment of LDs, followed 
by fusion with lysosomes and CE hydrolysis by LAL (58). FC 

Figure 1. Cholesterol trafficking in macrophages. ABCA1, ATP‑binding cassette, sub‑family A, member 1; ABCG1, ATP‑binding cassette, sub‑family G, 
member 1; ER, endoplasmic reticulum; SR‑A, scavenger receptor A; CD‑36, cluster of differentiation 36.
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generated from both pathways is effluxed via ABC transporters 
and transferred to extracellular acceptors for reverse transport 
to the liver and, ultimately, the feces (Fig. 1).

5. Approaches to target foam cells

Due to the central role of foam cells in atherosclerotic devel-
opment, foam cells have been the target of interventions, in 
order to identify novel therapeutic strategies. Some of the most 
significant approaches are described in this review.

Blocking the uptake of oxLDL by knocking down SRs. Native 
LDL is removed from circulation by the process of endocy-
tosis by LDL receptors (LDLRs); however, modified LDL 
is recognized and taken‑up by SRs  (57,59). Among these 
receptors, SR‑A1 and CD36 are responsible for 75‑90% of the 
degradation of oxLDL in vitro (60). Therefore, blocking SRs 
may be a promising strategy to ameliorate the development 
of atherosclerosis. However, studies in SR‑A1‑/‑ or CD36‑/‑ 
mice with an apolipoprotein E knockout (apoE‑/‑) or LDLR 
knockout (LDLR‑/‑) background have exhibited contradictory 
results. Suzuki et al (61) reported that SR‑A1‑/‑/apoE‑/‑ mice 
exhibited decreased atherosclerotic lesion development due to 
reduced cholesterol uptake. However, these mice were more 
sensitive to infection, since SRs bind a broad range of ligands 
expressed by bacterial pathogens (61). CD36‑/‑/apoE‑/‑ mice 
also exhibited significantly reduced lesion development; 
however, elevated plasma LDL levels were detected due to 
loss of LDL uptake (62). In addition, SR‑A or CD36 deficiency 
in macrophages of LDLR‑/‑ mice resulted in reduced lesion 
development  (63). Conversely, Moore  et  al  (56) detected 
increased lesion area in the aortic sinus with abundant macro-
phages/foam cells in apoE‑/‑ mice lacking either SR‑A1 or 
CD36, presumably due to alternative LDL uptake mechanisms. 
Manning‑Tobin et al (64) also reported no changes in lesion 
size and macrophage/foam cell content, but observed reduced 
inflammatory gene expression and macrophage apoptosis in 
SR‑A‑/‑/CD36‑/‑/apoE‑/‑ mice. Therefore, the benefit of targeting 
SRs remains controversial.

Inhibiting re‑esterification of FC to CE (ACAT‑/‑ mice). 
Excessive cytoplasmic FC can be re‑esterified by ACAT1 in 
the ER, and the generated CE can subsequently be stored in 
LDs (Fig. 2). Since only FC, not CE, can enter efflux pathways, 
blocking re‑esterification of FC to CE may be considered a 
promising strategy to inhibit foam cell formation and facilitate 
cholesterol efflux. Unexpectedly, ACTA1‑/‑ mice, with either an 
LDLR‑/‑ or apoE‑/‑ background, exhibited increased lesion size 
with abundant necrotic cores due to macrophage apoptosis 
as a result of toxicity from excessive FC accumulation in the 
ER (65‑67). Therefore, the therapeutic inhibition of ACAT1 
does not appear to be a desirable strategy for the treatment of 
atherosclerosis.

Blocking LD formation by knocking down LDAPs. Since 
LDAPs are structurally or enzymatically involved in LD 
homeostasis, their roles in pathologies associated with 
dysfunctional lipid metabolism have been extensively studied. 
As mentioned previously, abundant expression of certain 
LDAPs in macrophages is closely associated with foam cell 

formation during atherosclerotic development. Among known 
LDAPs, PLIN2 is highly expressed in macrophages and its 
expression is increased by lipid loading, whereas the expres-
sion levels of other members of the PAT family remain very 
low or unchanged (29,48). In line with the role of PLIN2 in 
TAG accumulation in non‑monocytic cells, PLIN2 increased 
CE accumulation in acLDL‑loaded THP‑1 macrophage by 
inhibiting cholesterol efflux (68). In addition, PLIN2 mRNA is 
highly expressed in human and mouse atherosclerotic plaques 
compared with healthy areas of the same arteries (68,69). A 
global approach to identify cholesterol responsive genes in the 
macrophages of LDLR‑/‑ mice loaded with cholesterol in vivo 
detected increased levels of PLIN2 (35). In agreement with 
these findings, a significant role for PLIN2 in the development 
of atherosclerosis was verified by Paul et al (29) using PLIN2 
null mice with an apoE‑/‑ background. PLIN2‑/‑/apoE‑/‑ mice 
exhibited decreased lesion development with reduced foam cell 
formation in lesions due to increased FC efflux (29). In addi-
tion, contrary to observations made under ACAT1 deficiency, 
PLIN2 deficiency was well tolerated by the macrophages, thus 
indicating that PLIN2 may be a safe target for the amelioration 
of atherosclerotic development (70). 

Macrophages/foam cells in the arterial wall generate 
proinflammatory cytokines. The secretion of these cytokines 
is an important predictor of atherosclerotic development. The 
expression levels of proinflammatory cytokines, including 
tumor necrosis factor‑α, MCP‑1 and interleukin‑6, were 
increased by PLIN2 overexpression and decreased following 
knockdown of PLIN2 in THP‑1 macrophages loaded with 
acLDL (71). Regarding the role of PLIN1 in the development 
of atherosclerosis, contradictory results have been reported. 
Langlois  et  al  (72) detected increased atherosclerosis in 
PLIN1‑/‑ mice, whereas Zhao et al (28) reported that global and 
bone marrow‑specific PLIN1 deficiency reduced atheroscle-
rosis. With respect to CIDE proteins, CIDEB has been shown 
to control hepatic cholesterol homeostasis, and CIDEB‑/‑ mice 
exhibited lower levels of plasma cholesterol and LDL, and 
increased hepatic cholesterol levels, due to increased LDLR 
and ACAT expression (73). These observations raise the possi-
bility that, in addition to a potential role in lipid metabolism 
in macrophages, CIDE family proteins may have a role in 
atherogenesis by regulating plasma cholesterol levels.

Increasing CE hydrolysis in LDs. Reverse cholesterol trans-
port (RCT) from arteries involves transfer of cholesterol from 
macrophages/foam cells to HDL (74). In order to be effluxed, 
CE deposited in LDs must be hydrolyzed to FC; therefore, CE 
hydrolysis may be considered the first step in RCT (75,76). 
Since RCT from arteries is considered atheroprotective, 
enzymes that hydrolyze CE stored in LDs, generally known 
as nCEHs, may have high therapeutic potential. HSL is an 
intracellular neutral hydrolase that is able to hydrolyze various 
esters, including CE in macrophages (77,78). However, HSL 
knockdown in the bone marrow macrophages of LDLR‑/‑ mice 
did not induce significant changes in lesion development, 
indicating the possibility of compensatory mechanisms (79). 
Unexpectedly, rather than improving atherosclerosis, 
macrophage‑specific expression of transgenic rat HSL in 
mice with an apoE‑/‑ background accelerated atherosclerosis. 
This paradoxical effect was not associated with the excessive 
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intracellular accumulation of FC, or with larger necrotic core 
development within the lesions, but was attributed to coupling 
of effective re‑esterification of surplus FC to CE by ACAT1 
and to limited efflux by ABC transporters (77,80). Notably, 
increasing cholesterol acceptors in HSL transgenic mice 
reduced aortic lesion development (81). However, regardless of 
its role in mice, HSL is not expressed in human atherosclerotic 
lesions (23). Therefore, the identity of the nCEH(s) in human 
atheroma remains unknown. A possible candidate is LDAH, 
which is expressed in both human and mouse atherosclerotic 
lesions, as well as in cultured and primary human and mouse 
macrophages (23). LDAH overexpression in macrophages has 
been reported to increase the rate of CE hydrolysis and choles-
terol efflux. However, to date, the role of LDAH in genetically 
engineered mice has yet to be reported (23).

Enhancing cholesterol efflux and acceptors. Although FC can 
be effluxed by passive diffusion (82), FC from macrophages 
is mainly effluxed through the ABC transporters, ABCA1 
and ABCG1 (83). Therefore, inducing expression or activity 
of ABC transporters is an attractive strategy to increase RCT 
from arteries. ABCA1 delivers both FC and phospholipids to 
lipid‑free or lipid‑poor apolipoprotein A‑I in order to generate 
nascent or pre‑beta HDL, whereas ABCG1 effluxes FC to 
HDL particles (84). This gives rise to a synergistic relationship 
in which the nascent HDL generated by ABCA1‑mediated 
FC efflux serves as substrate for FC efflux by ABCG1. 
ABCA1‑/‑/LDLR‑/‑ mice exhibit increased atherosclerosis, and 
human ABCA1 transgenic mice with an apoE‑/‑ background 
develop markedly smaller and less complex lesions  (85). 
Although plasma HDL levels did not rise, HDL from ABCA1 
transgenic mice accepted FC more efficiently than HDL from 
wild‑type mice (86). The role of ABCG1 in atherosclerosis 
is less clear. The transgenic expression of human ABCG1 in 
apoE‑/‑ mice did not affect lesion development (87). Conversely, 

ABCG1 transgenic expression in LDLR‑/‑ mice increased 
atherosclerosis (88). In addition, it has been reported that macro-
phage‑specific deletion of ABCG1 in bone marrow‑derived 
cells decreased lesion development in both apoE‑/‑ and LDLR‑/‑ 
mice (89), whereas another study observed slightly increased 
lesion development in LDLR‑/‑ mice with ABCG1 deletion in 
macrophages (90). Notably, compared with the controversial 
phenotype of single ABCG1 knockout on the development of 
atherosclerosis, the double knockout with ABCA1 synergisti-
cally increased atherosclerosis development (91).

The expression of ABCA1 and ABCG1 is regulated by direct 
binding of liver X receptor (LXR) (92,93). Administration 
of synthetic LXR agonists has been reported to success-
fully attenuate atherosclerotic development  (94). However, 
systemic administration of LXR ligands causes unfavorable 
effects, including liver steatosis and hypertriglyceridemia due 
to activation of enzymes associated with fatty acid biosyn-
thesis (95‑98). Therefore, several studies have attempted to 
discriminate the mechanisms of LXR activation between 
liver and macrophages. Kim et al (99) reported that thyroid 
hormone receptor‑associated protein 80 (TRAP80) selectively 
activates LXR‑mediated sterol regulatory element binding 
protein 1c, which causes liver steatosis, but not LXR‑mediated 
ABCA1 expression. Combinatory treatments to concomitantly 
reduce TRAP80 activity and increase LXR activity could 
be of potential therapeutic use against atherosclerosis (99). 
Furthermore, nanotechnology has recently been employed 
for local delivery of LXR agonists to macrophages/foam 
cells without systemic effects (100,101). The delivery of the 
LXR agonist GW3965 encapsulated in poly(lactide‑co‑glycoli 
de)‑b‑poly(ethylene glycol) copolymer nanoparticles to 
LDLR‑/‑ mice markedly reduced the number of macrophages 
and decreased the size of atherosclerotic plaques by 50%, 
without increasing total cholesterol and TAG levels in liver 
and plasma (100). Alternatively, Lim et al (101) developed a 

Figure 2. Efforts targeting foam cells to prevent/intervene against atherosclerosis. CE, cholesterol ester; ER, endoplasmic reticulum; LD, lipid droplet; ox‑LDL, 
oxidized low‑density lipoprotein; SR‑A, scavenger receptor A; CD‑36, cluster of differentiation 36; AL, acid lipase; ACAT1, acyl‑CoA:cholesterol acyl-
transferase 1; nCEH, neutral cholesterol hydrolase; ABCA1, ATP‑binding cassette, sub‑family A, member 1; ABCG1, ATP‑binding cassette, sub‑family G, 
member 1; HDL, high‑density lipoprotein.
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novel site‑specific antibody‑drug conjugate (ADC) to target 
and deliver an aminooxy‑modified LXR agonist conjugated to 
anti‑CD11‑immunoglobulin G through a stable, cathepsin B 
cleavable oxime linkage. The LXR agonist delivered by ADC 
was 3‑fold more powerful than the conventional LXR agonist 
T0901317 when tested in THP‑1 macrophages, but it did 
not induce LXR target genes in hepatocytes (101). However, 
the effect of this delivery system remains untested in vivo. 
Since targeted delivery of LXR agonists effectively prevents 
atherosclerosis while avoiding the unfavorable side effects of 
conventional LXR agonists, additional research in this field 
is strongly supported, and underscores the potential of nano-
medicine to treat atherosclerotic cardiovascular disease.

6. Conclusion

Atherosclerosis is a life threatening pathology, which progresses 
as plaques grow in the arterial wall. Macrophages/foam cells 
are found in the plaques from the early to late stages of athero-
sclerotic development. Therefore, numerous efforts to elucidate 
the mechanisms underlying foam cell formation, and to target 
foam cells to prevent and/or reverse atherosclerosis have 
been made. Presumably, given the complexity of advanced 
plaques, effective interventions against atherosclerosis should 
involve several pathways. Recent advances concerning the 
mechanisms underlying foam cell formation have identified 
several LDAPs in macrophages. Genetic modulation of some 
of these proteins in mice has supported the hypothesis that 
LDAPs may represent plausible novel targets for the ameliora-
tion of atherogenesis by preventing foam cell formation, and 
promoting RCT with less side effects than other interventions 
on non‑LD foam cell proteins. The recent identification of 
novel LDAPs in macrophages leaves much room for research 
on the role of these proteins in lipid homeostasis and the devel-
opment of atherosclerosis. Unveiling the function of diverse 
LDAPs and elucidating their molecular network may lead to 
novel therapeutic strategies to overcome atherosclerosis.
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