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Abstract
Background: MicroRNAs (miRNAs) are a recently discovered class of non-coding RNAs
(ncRNAs) which play important roles in eukaryotic gene regulation. miRNA biogenesis and
activation is a complex process involving multiple protein catalysts and involves the large
macromolecular RNAi Silencing Complex or RISC. While phylogenetic analyses of miRNA genes
have been previously published, the evolution of miRNA biogenesis itself has been little studied. In
order to better understand the origin of miRNA processing in animals and plants, we determined
the phyletic occurrences and evolutionary relationships of four major miRNA pathway protein
components; Dicer, Argonaute, RISC RNA-binding proteins, and Exportin-5.

Results: Phylogenetic analyses show that all four miRNA pathway proteins were derived from
large multiple protein families. As an example, vertebrate and invertebrate Argonaute (Ago)
proteins diverged from a larger family of PIWI/Argonaute proteins found throughout eukaryotes.
Further gene duplications among vertebrates after the evolution of chordates from urochordates
but prior to the emergence of fishes lead to the evolution of four Ago paralogues. Invertebrate
RISC RNA-binding proteins R2D2 and Loquacious are related to other RNA-binding protein
families such as Staufens as well as vertebrate-specific TAR (HIV trans-activator RNA) RNA-binding
protein (TRBP) and protein kinase R-activating protein (PACT). Export of small RNAs from the
nucleus, including miRNA, is facilitated by three closely related karyopherin-related nuclear
transporters, Exportin-5, Exportin-1 and Exportin-T. While all three exportins have direct
orthologues in deutrostomes, missing exportins in arthropods (Exportin-T) and nematodes
(Exportin-5) are likely compensated by dual specificities of one of the other exportin paralogues.

Conclusion: Co-opting particular isoforms from large, diverse protein families seems to be a
common theme in the evolution of miRNA biogenesis. Human miRNA biogenesis proteins have
direct, orthologues in cold-blooded fishes and, in some cases, urochordates and deutrostomes.
However, lineage specific expansions of Dicer in plants and invertebrates as well as Argonaute and
RNA-binding proteins in vertebrates suggests that novel ncRNA regulatory mechanisms can evolve
in relatively short evolutionary timeframes. The occurrence of multiple homologues to RNA-
binding and Argonaute/PIWI proteins also suggests the possible existence of further pathways for
additional types of ncRNAs.
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Background
Recent studies have unveiled the critical roles that RNA
interference (RNAi) mediated by small noncoding RNAs
(ncRNAs) plays in the regulation of eukaryotic genes. One
particular important ncRNA class is microRNA (miRNA),
single-stranded, 19–25 nucleotide long RNAs that repress
translation by binding to specific mRNA target sites. miR-
NAs differ from short interfering RNAs (siRNA), in that
they are derived from single-stranded rather double-
stranded RNA precursors. Yet like siRNAs, miRNAs can
under some circumstances also effect mRNA degradation
and generally share a common route to biogenesis. Com-
putational predictions of miRNA genes and their target
sites suggest that most metazoan and plant genomes
encode at least several hundred if not thousands of
miRNA genes and, that a large proportion of protein-cod-
ing genes have putative miRNA regulatory binding sites
(reviewed in [1]).

The regulatory roles of miRNAs in both plants and ani-
mals have been reviewed in-depth elsewhere (see [2,3]).
Briefly, plant miRNAs have been shown to be key regula-
tors of tissue morphogenesis and stem development as
well as mediating responses to environmental conditions
[4]. In normal animal tissue, miRNA gene expression has
been shown to modulate a wide variety of functions
including skeletal and muscle development [5] and vari-
ous metabolic pathways [6]. The abnormal expression of
miRNAs has been also linked to various disease patholo-
gies [7,8]. In cancer, miRNAs can act as either tumor sup-
pressors or oncogenes depending upon the miRNA gene
and the type of tumor [9,10]. Comparative analyses of
miRNA expression profiles suggest they have potential as
clinical biomarkers for the classification of tumor types
[11]. Gene expression during cardiac and skeletal muscle
development is also regulated by certain miRNAs which
opens new opportunities for understanding muscle-
related diseases [12,13]. Double stranded DNA viruses
including herpes viruses, polyomaviruses and retroviruses
encode their own specific miRNAs as well as interact with
host miRNAs [14-16]. The differential expression of miR-
NAs is seen in human cells infected with viruses including
HIV [17]. Their important role in disease has lead to seri-
ous consideration of miRNAs as a pharmacological target
[18,19]. In agriculture, the introduction of artificial miR-
NAs might be a strategy for improving the resistance of
crop plants to certain viruses [20].

Evolutionary analyses of miRNA gene families have
revealed a combination of older ancestral relationships
and recent lineage-specific diversification. The human
genome itself likely encodes for a few hundred miRNAs,
many of which have recognizable homologues to miRNA
genes in different species (orthology) as well as amongst
themselves (paralogy) [21]. Several families of miRNA

genes, such as let-7, are highly conserved amongst differ-
ent vertebrate and invertebrate species [22]. In addition,
genomic organization of miRNA genes is often recogniza-
ble across diverse species such as the mir-196 and mir-10
gene families that likely co-evolved with Hox proteins
[23] and the mir-17 gene cluster which has apparently
undergone a complex series of gene duplication and loss
in vertebrates [24]. However, miRNAs can also have
restrictive taxonomic distribution such as the Early
Embryonic microRNA Cluster (EEmiRC) locus of six pre-
miRNA precursors restricted to placental (eutherian)
mammals [25]. Many miRNA genes found in primates,
including humans, are absent in other mammals [21,26].
Similar patterns of conservation and diversification have
been observed for miRNAs in across plant species [27].

While the genomic distribution and phylogeny of miR-
NAs has been extensively studied, the evolution of the
enabling miRNA biosynthetic pathway has received less
attention. The biogenesis of a functional miRNA from its
expressed gene product involves several steps and multi-
ple proteins (for reviews see [28-31].) In animals, miRNA
biogenesis begins with expression of a primary, ~1000 nt
miRNA transcript, termed the pri-miRNA. From the pri-
miRNA, a multi-protein complex called the Microproces-
sor cleaves out a ~60–70 nucleotide precursors, termed
pre-miRNAs, that can fold into an imperfect stem-loop
structures. There are two main components of the Micro-
processor. One is called Drosha, a universal RNase III
endonuclease named RNASEN in humans. The other
component is a double-stranded RNA binding protein
known in invertebrates as Pasha or Partner of Drosha
while a similar function in vertebrates is performed by
DiGeorge syndrome critical region gene 8 or DGCR8 [32].
After the pre-miRNA is cleaved from the pri-miRNA, it is
transported into the cytoplasm by Exportin-5, a known
transporter of RNA and protein-RNA complexes [33]. In
the cytosol, the pre-miRNAs are further processed into an
imperfect double stranded RNA (dsRNA) duplex by
another endonuclease RNase III enzyme, Dicer [32,34].

Dicer loads mature miRNA strand into the RNA-induced
silencing complex or RISC while the complementary
strand, miRNA*, is degraded. Both RISC and Dicer are
also known activators of siRNA. Recently, additional pro-
tein partners for Dicer and RISC have been found. The
protein TRBP (human immunodeficiency virus [HIV-1]
transactivating response binding protein) has been identi-
fied as a RISC partner of human Dicer [35,36] and in Dro-
sophila, Loquacious, a TRBP homologue binds to Dcr1,
one of two Dicer isoforms present in that species [37].

Cellular active RISC contains at least one member of the
Argonaute or AGO, a large family of PIWI/PAZ domain
containing proteins [38]. Structure and mutation studies
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suggest that in mammals, Ago2 is specifically responsible
for RISC cleavage activity [39,40]. Several other proteins
have also been co-purified from the RISC including RNA
binding proteins VIG (Vasa Intronic Gene), Fragile X-
related protein [41], nuclease Tudor-SN [42] and various
helicases, like Gemin-3 and Gemin-4 [31].

While miRNA biogenesis proteins have motifs or func-
tional domains which are conserved throughout unicellu-
lar and multicellular organisms [43], miRNA genes
themselves seem to be mostly limited to metazoans and
plants [44]. miRNAs have not been reported for fungi and
are absent from most unicellular species including
Schizosaccharomyces pombe and Tetrahymena thermophila
which have known RNA silencing mechanisms [45,46].
Recently, the first occurrence of miRNAs in a unicellular
organisms was reported for the single-cell algae,
Chlamydomonas reinhardtii [47]. However, none of the C.
reinhardtii miRNAs have any sequence homology to
known plant or animal miRNAs which suggests a unique
lineage-specific evolutionary occurrence – at least until
further examples of miRNAs in unicellular species are
found [48]. Certain double-stranded DNA viruses also
have miRNAs but these were likely obtained from animal
hosts via horizontal gene transfer [14]. Interestingly, the
miRNA biogenesis pathway shares several proteins with
the siRNA processing pathway which is found throughout
both unicellular and multicellular eukaryotes [46].

Among those capable species, there are some subtle yet
significant differences in miRNA function. For example,
plant miRNAs are exactly complementary to their target
sequence while animal miRNA are tolerant of certain
base-pair mismatches [29,30]. In addition, the kinds and
numbers of miRNA biogenesis proteins differ amongst
various animal and plant species. Vertebrates have a single
Dicer gene while the fruitfly, Drosophila melanogaster, has
two genes, Dicer-1 (Dcr1) and Dicer-2 (Dcr2), the former
of which is essential for miRNA processing [49]. Thus,
there is evidence for differential evolution of miRNA bio-
genesis and activation pathways.

In this study, we determined the phyletic occurrences and
evolutionary relationships of four main families of
miRNA processing proteins: Dicer, Argonaute, double-
stranded RNA-binding proteins and Exportin-5. The goal
of this work was to determine whether these key miRNA
proteins descended from a common early ancestor or if
these genes evolved from multiple events of emergence,
specialization and adaptation in specific lineages. We
show that the latter scenario as the most common evolu-
tionary theme in miRNA biogenesis. With increasing evi-
dence that most of the vertebrate genome, including so-
called junk DNA, is actively transcribed, understanding
the potential for additional classes of regulatory ncRNAs

is of growing importance. Thus another aim of our evolu-
tionary analysis is to suggest the existence of other candi-
date ncRNA processing proteins by virtue of their
relationship to known miRNA pathway proteins.

Results and Discussion
Dicer Evolution
RNaseIII enzymes are categorized into three classes, all of
which contain at least one catalytic domain. Class I, found
in bacteria and yeast, is the simplest having only a single
RNaseIII domain and a double-stranded RNA (dsRNA)
binding domain. Class II and Class III enzymes com-
monly have a second RNaseIII domain but are distin-
guishable from each other by specific auxiliary N-terminal
domains. Drosha, a Class II enzyme, has proline-rich and
arginine-serine (RS) domains while Dicer, a Class III
enzyme, has helicase and PAZ (Piwi/Argonaute/Zwille)
domains. As the name indicates, the PAZ domain is also
found in Argonaute proteins, another essential group of
RNAi processing enzymes.

Class III or Dicer-like RNaseIII enzymes are found
throughout eukaryotes (Fig. 1) although the number of
Dicer homologues is variable among different groups [see
Additional file 1]. Protists such as the ciliate, Tetrahymena
thermophila, and fungi have a single copy of Dicer [50].
Plants have four Dicer homologues, called DCL1–4, each
one specialized for handling a specific small RNA [51]
with DCL1 responsible for processing mature miRNAs
from their primary transcripts [30]. The remaining plant
Dicers could function in anti-viral defense [52]. Our phy-
logenetic tree suggests the scenario of early gene duplica-
tion in plants because all four Dicers isoforms are found
in the genomes of both rice (Oryza sativa) and thale crest
(Arabidopsis thaliana) and show orthologous relation-
ships.

In animals, the evolutionary situation is a little more com-
plicated. Single Dicer genes occur in mammals and cold-
blooded vertebrates which have direct orthologues in uro-
chordates (represented in Fig. 1 by the tunicate, Ciona
intestinalis) and deutrostomes (represented by the sea
urchin, Strongylocentrotus purpuratus). Among proto-
stomes, nematodes (Caenorhabditis sp.) have a single
Dicer gene while Drosophila species, mosquito (Anopheles
gambiae and Aedes aegypti) and possibly all arthropods,
have two Dicer genes, Dcr1 and Dcr2. Unlike the situation
for plants, insect Dicer gene duplications do not corre-
spond with the divergence of arthropods from other meta-
zoans since nematode Dicer splits the insect clade in the
phylogenetic tree with significant bootstrap support (Fig.
1). Rather, DCR2 seems to be a more divergent group of
RNaseIII enzymes which, in our tree, is basal to all other
metazoan Dicer proteins. Drosophila and other insects
have three RNaseIII enzymes, DCR1, DCR2 and Drosha.
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Neighbor-joining phylogenetic tree of the Dicer protein familyFigure 1
Neighbor-joining phylogenetic tree of the Dicer protein family. Major organism groups (with colours) are mammals (red), birds 
(light red), cold-blooded vertebrates (deep blue), urochordates (light blue), deutrostome invertebrates (purple), protostome 
invertebrates (orange). plants (green), fungi (black), and protists (light purple). Stacks of three numbers show, in descending 
order, the percent occurrence of nodes in greater than 50% of 1000 bootstrap replicates of neighbor joining (plain text) and 
maximum parsimony (italicized text) or Bayesian posterior probability (only 0.90 or greater, in square parentheses). Asterisks 
("*") indicate those nodes supported 60% or greater by the first two tree-building methods and 0.95 Bayesian posterior prob-
ability. Nodes with one or two values less than 50% have dashes ("-") while values less than 50% are unmarked. Scale bar rep-
resents 0.1 expected amino acid residue substitutions per site. The multiple sequence alignment file is given in Additional file 1.
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Mutational studies have shown that the Dcr1 gene is
essential for miRNA in fruitfly [49], but not dsRNA
processing. The converse is true for the Dcr2 gene where
mutants have normal miRNA levels but have abnormal
processing of dsRNAs. Drosophila Dicer is just one exam-
ple of lineage-specific gene duplication and specialization
in miRNA biogenesis over the course of eukaryotic evolu-
tion.

Argonaute Evolution
At the core of the RISC is Argonaute (AGO), highly basic
~100 kD proteins characterized by PAZ and PIWI
domains. The N-terminal PAZ domain, also found in
Dicer, is about 130 amino acids in length and is thought
to function in protein-protein interactions (see review
[38]). The C-terminal PIWI domain is approximately 300
amino acids in length. The exact functioning of these
domains in miRNA processing is unknown although
some clues have been revealed in recent structures of a
PIWI-domain protein (AfPiwi) from the thermophilic
Archaea, Archaeoglobus fulgidus, in complex with a small
siRNA-like duplex [53,54]. The miRNA seed region, com-
prised of nucleotides 2–8, is critical for target recognition
[55]. In the AfPiwi structure, the first nucleotide of the
siRNA-like substrate is also unbound to the target
sequence and locked into the protein binding pocket. The
AfPiwi is an imperfect model for eukaryotic AGO because
it lacks a PAZ domain. However, other evidence suggests
that PAZ domains bind to 3' OH terminal ends of RNA or
duplexes with 3' overhang [56]. Therefore, PAZ and PIWI
likely serve to align and stabilize small RNAs to their
respective mRNA target sequences. The stabilized duplex
with mRNA is subsequently either cleaved by siRNA or
translationally repressed by miRNA.

The AGO family is highly diverse with multiple, identifia-
ble variants in plants, fungi, invertebrates and vertebrates.
Phylogenetic analysis shows two distinct groups com-
prised of Argonaute and PIWI type proteins. Within the
Argonaute cluster, the RISC-associated Argonaute proteins
of metazoans are monophyletic relative to other AGO
members (Fig. 2). Plant and fungal Argonaute-like AGO
proteins seem to form separate groups although bootstrap
values are low supporting these clades are low. For the
PIWI cluster, evolutionary analysis also suggests that the
multiple PIWI proteins in mammals, including humans,
arose from vertebrate-specific gene duplication events.
Multiple PIWI-like proteins in nematodes evolved from
various lineage-specific gene duplications events separate
from other animals. [see Additional file 2].

More detailed phylogenetic analysis (Fig. 3) show that
humans and other vertebrates have four Argonaute genes
called Ago1–4, also known as eIFC1–4 for their putative
regulatory role in translation [see Additional file 3].

Included in this subfamily is human AGO1/EIF2C1, once
called GERp95 because of its sub-cellular localization in
the endoplasmic reticulum or ER [57]. In the RISC, AGO2
catalyzes RNA cleavage targeted by siRNAs and miRNAs
[39]. AGO1 and AGO2 appear to be cellular localized to
specific mRNA decay centers that are known as cytoplas-
mic bodies [58]. The roles of AGO3 and AGO4 are still
unclear although they might support aspects of cell differ-
entiation in multi-cellular organisms such as neural devel-
opment [59].

In Drosophila, four AGO-like proteins have been identified
which are dPiwi, dAubergine, dAGO1 and dAGO2 [38].
dPiwi and dAubergine are expressed in embryos and
appear to affect germline development. Phylogenetic
analysis places dPiwi and dAubergine with other arthro-
pod PIWI proteins which is the outgroup to vertebrate
PIWI/MIWI proteins (Fig. 2). Both dAGO1 and dAGO2
are RISC components but with different small RNA specif-
icities. Okamura et al.[60] showed that Drosophila
embryos lacking dAGO2 were siRNA-directed RNAi-
defective but still capable of miRNA-directed target RNA
cleavage. In contrast, dAGO1 deficient mutants were inca-
pable of producing mature miRNAs while siRNA-directed
target RNA cleavage was intact. Consistent with their find-
ings, our phylogenetic analysis shows that of the four Dro-
sophila Argonaute homologues, dAGO1 is most closely
related to RISC associated AGO proteins involved with
miRNA processing in vertebrates while dAGO2 is highly
divergent. Nematodes also have multiple PIWI/Argonaute
proteins of which two, Alg1 and Alg2, are the immediate
outgroup to insect and vertebrate AGO proteins (Fig. 2
&3). The different roles of these proteins is unknown
although indirect evidence suggests Alg1 might be
recruited into the miRNA RISC [61].

Humans have eight Argonaute-like proteins [62], four of
which fall into the wider PIWI family while the remainder
are AGO proteins with orthologues in other mammals
and vertebrates (Fig. 2). Homologues in insects and nem-
atodes are clearly outgroups to all four vertebrate AGO
isoforms (Fig. 3). All four mammalian genes AGO1–4
(EIF2C1–4) have orthologues in cold-blooded vertebrates
(i.e. fish and amphibians). The urochordates (C. intestina-
lis) and deutrostomes (S. purpuratus), have only single
AGO copies which appear ancestral to all vertebrate
AGOs. In summary, phylogenetic analysis suggests that
there was an early chordate radiation of the Argonaute
gene family, possibly with the miRNA component AGO2
as the ancestor to the other three AGO proteins. In
humans, AGO1, AGO3 and AGO4 are closely clustered
together on chromosome 1 which also suggests their com-
mon evolution from a series of concurrent gene duplica-
tions.
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Neighbor-joining phylogenetic tree of Argonaute/PIWI protein familyFigure 2
Neighbor-joining phylogenetic tree of Argonaute/PIWI protein family. Major protein subgroups are labeled. The tree is 
unrooted. Phylogenetic reconstruction method, species colour-coding and nodes labeling of significance are the same as Fig. 1. 
Human and Drososphila PIWI/Ago proteins discussed in the text are in larger font. The branch leading to a putative, but 
unlikely, fifth Argonaute gene homolog in mouse, mAgo5, is labeled with a large arrow (see text for explanation). Other 
branches are labeled by a four letter species identifier (the first two letters from the genus and species names) and the Gen-
Bank accession number). Species name abbreviations are given in the Methods. The multiple sequence alignment file is given in 
Additional file 2.
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Phylogenetic tree of vertebrate Argonaute rooted by closely related invertebrate homologuesFigure 3
Phylogenetic tree of vertebrate Argonaute rooted by closely related invertebrate homologues. The major vertebrate sub-
groups are: Argonaute 1/eukaryotic translation initiation factor 2C, 1 (Eif2c1) [Ago1], Argonaute 2/EIF2C2 [Ago2], Argonaute 
3/EIF2C3 [Ago3] and Argonaute 4/EIF2C2 [Ago4]. Phylogenetic reconstruction method, species colour-coding and nodes labe-
ling of significance are the same as Fig. 1. The multiple sequence alignment file is given in Additional file 3.
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The existence of other Argonaute/PIWI proteins leads to
speculation that additional RISC-like ncRNA processing
complexes might be found. Indeed, two recent reports
describe a novel class of small RNAs isolated from mouse
testis libraries which bind to two PIWI proteins, MIWI
[63] and MILI [64] (see Fig 2 for the tentative phylogenetic
position of vertebrate PIWI/MIWI proteins). These "PIWI-
interacting RNAs" called piRNAs, might number in the
thousands and appear to be encoded by specific genomic
regions that are also conserved in rat and human. The bio-
chemical processing of piRNAs as well as their putative
regulatory functions are presently not well understood.

It should be noted that a fifth mammalian Argonaute gene
called mAgo5 (GenBank accession no. AAN75582) has
been reported for the mouse. This protein was identified
through a homology search of the initial mouse genomic
sequence made available by subscription from the com-
pany, Celera [38]. The mAgo5 open reading frame (ORF)
is fragmented with some regions being either highly diver-
gent or deleted relative to other Argonaute proteins. Our
phylogenetic analysis of the entire Argonaute/PIWI pro-
tein positions mAgo5 as a particularly long branch within
the AGO2 cluster, close to the confirmed mouse AGO2
protein (Fig. 2). However, in a phylogenetic analysis
restricted to metazoan Argonaute proteins, mAgo5 was
the most divergent sequence and landed as the outgroup
to both vertebrates and invertebrates (not shown) which
suggests that its position in the full Argonauete/PIWI tree
is an artifact. Our sequence database searches failed to
reveal any mAgo5 orthologue in other mammals or cold-
blooded vertebrates. Therefore, we suggest that unless
confirmed by re-sequencing of genomic DNA, mAgo5 is
likely an artifact from homology searches of incomplete
DNA sequence assemblies of the Celera mouse genome.

Evolution of TRBP, Loquacious and Other RNA-binding 
Proteins
Mammalian TAR (HIV trans-activator RNA) RNA-binding
protein or TRBP is essential for the recruitment of Dicer-
complexed miRNAs to RISC AGO2 [35,36]. In Drosophila,
a homologous protein to TRBP called Loquacious binds
to DCR-1 to facilitate the normal processing of pre-miR-
NAs [37]. Both TRBP and Loquacious, with three dsRNA-
binding domains, are distantly related to Drosophila
R2D2, another dsRNA binding protein shown to het-
erodimerize with DCR-2 [65] [see Additional file 4]. In C.
elegans, RDE-4 is a comparable dsRNA binding protein
that interacts with DCR-1 and is essential for RNAi
processing [66]. In vertebrates, TRBP is a paralogue to the
protein kinase R (PKR)-activating protein or PACT [36,67]
(Fig. 4). Both proteins regulate PKR, a dsRNA-regulated
interferon-inducible protein kinase but with counteract-
ing effects – TRBP is an inhibitor of PKR while PACT is an
activator [68]. TRBP is also involved in HIV-1 gene expres-

sion [69] which raises intriguing possibilities about the
linkage between miRNAs and the response of the IFN-PKR
pathway to HIV-1 infection [67].

Our phylogenetic tree shows that Drosophila Loquacious,
also found in other insects, is ancestral to both TRBP and
PACT. Sea urchin and tunicate have single genes which
appear to be evolutionary intermediates between inverte-
brate Loquacious and vertebrate TRBP/PACT. However,
bootstrap and posterior probability support for this
branching order is low which might reflect either the
available partial amino acid sequences (at the time of
manuscript submission, both sea urchin and tunicate
genomes were incomplete) or the need for more extensive
taxonomic sampling. Regardless, TRBP and PACT genes
likely diverged in very early chordates since cold-blooded
vertebrates, the fishes and amphibians, as well as mam-
malians have full complements of these genes. As sug-
gested by its evolutionary relationships, PACT has been
recently implicated in small RNA processing in partner-
ship with TRBP and dicer [70].

Sequence database searches using TRBP revealed other
related dsRNA binding proteins. As mentioned above,
Drosophila R2D2 and C. elegans RDE-4, both known par-
ticipants in RNAi processing, are distantly related to
Loquacious, TRBP and PACT. Other evolutionary related
dsRNA binding proteins are the Staufens, a family of pro-
teins with a tubulin-binding domain which likely serve to
transport mRNAs intra-cellularly using microtubules.
There are two families of Staufens in mammals, Stau1 and
Stau2, which seem to have specific functions in mRNA
transport in neurons [71]. In Drosophila, Staufens have
been associated with a number of neurological functions
including neurodegeneration [72] and long-term memory
formation [73]. Like miRNA precursors, Staufen-dsRNA
complexes are transported out of the nucleus by Exportin-
5 [74]. Although Staufens have not been previously linked
with ncRNAs, their similarity to three known dsRNA bind-
ing protein families in the miRNA pathway suggests that
further study about their potential role in small RNA
transport might be warranted. Recent studies suggest that
Staufen-containing neuronal granules share several pro-
tein components, such as Me31B, with cytoplasmic P-
bodies which are thought to be the sites for translational
regulation by miRNA [75,76].

Evolution of Exportin-5
The transfer of RNAs and proteins between the nucleus
and the cytoplasm is facilitated by shuttling transporters
which have specificity for various cargoes (reviewed in
[77-79]). The importin-β family is a large group of karyo-
pherin-related nuclear transporters, which includes pro-
teins that facilitate both nuclear import (importins) and
nuclear export (exportins). The directionality of transport
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in the importin-β family is determined by interactions
with the small nuclear GTPase, Ran.

In most species, Exportin-5 is responsible for shuttling
pre-miRNA out of the nucleus into the cytoplasm. Expor-
tin-5 also transports other small RNAs and several protein
binding partners have been identified including ILF3
(Interleukin enhancer binding factor 3) [80], the ILF3-
binding protein JAZ [81], and the previously mentioned
RNA-binding protein Staufen2 [74]. Homology searches
and phylogenetic analysis revealed three closely related
paralogous yet monophyletic separate families to Expor-
tin-5 which are Exportin-1 and Exportin-T, transporters
specific for snRNAs and tRNAs, respectively, and Mtr10P,
fungi-specific nuclear importins [77] (Fig. 5; see Addi-
tional file 5).

Aside from fungal Mtr10P, the three remaining exportins
have an unusual phyletic occurrence. Exportin-1, Expor-
tin-T and Exportin-5, are all encoded by the genomes of
plants, cold-blooded vertebrates and mammals as well as
fungi. Partial sequences corresponding to all three export-
ins were also found in the urochordate, Ciona intestinalis,
although the lengths of contiguous sequences were too
short for phylogenetic reconstruction (data not shown).
Moreover, orthologues of all three exportins were identi-
fied in the sea urchin suggesting commonality across deu-
trostomes. In Arabidopsis, the Exportin-5 protein Hasty has
been shown to transport miRNA [82] while the Exportin-
T-like transporter, Paused facilitates tRNA export from the
nucleus [83].

However, among protostome invertebrates there are some
notable examples of missing exportins and shifts in RNA
specificity. Drosophila exportin-5 also transports tRNAs
which might compensate for the lack of exportin-T across
arthropods [84]. The nematodes, C. elegans and C.
briggsae, lack Exportin-5 but have orthologues to Exportin-
T and Exportin-1, the latter also called IMB-4 (Fig. 5). It is
presently unclear how nematodes actually export miRNAs
from the nucleus without Exportin-5, but IMB-4 or Expor-
tin-T are possible candidates for this function [85].

Based on current genome sequences, fungi, plants and
deutrostomal metazoans have all three exportins while
nematodes and arthropods (possibly all protostomes)
lack full complements. Subtree analysis of Exportin-5
showed generally expected pattern of species evolutionary
relationships with deutrostomes, protostomes, plants and
fungi forming separate monophyletic groups (Fig. 6; see
Additional file 6). Exportin-T and Exportin-1 also show
clustering by taxonomic group (Fig. 5). The most parsi-
monious explanation for this unusual phyletic distribu-
tion of exportin genes is the independent loss and shifting
of function between paralogues in the early evolution of

certain invertebrate groups. In arthropods, the loss of
Exportin-T was compensated by Exportin-5 adapting a
dual specificity transport role for tRNAs as well as miR-
NAs. In nematodes, either IMB-4 or Exportin-T possibly
fulfills the role of miRNA transport in the absence of
Exportin-5.

Not surprisingly, putative Exportin-T and Exportin-1
homologues which function to shuttle other small RNAs
besides miRNAs were also found in protists, such as spe-
cies of Plasmodium, Trypanosomes and Leishmania.
Other components of the RNA-silencing pathway have
been detected in these species. However, no plausible
miRNA gene orthologues have been detected outside of
the metazoan [45] except for the unicellular algae,
Chlamydomonas reinhardtii [47] Interestingly, our database
search shows that fungi, which have regulation by siRNA
but not miRNA, have genes encoding for Exportin-5,
Exportin-1, and Exportin-T.

Discussion – Something Borrowed; Something New
There are many additional proteins involved in miRNA
biogenesis and a thorough evolutionary analysis of all is
beyond the scope of this report. However, preliminary
phylogenetic trees for several other components (data not
shown) show similarly diverse evolutionary patterns as
Argonaute, Dicer, dsRNA-binding proteins and Exportin-
5. Gemin4, Gemin5, and Tudor-SN are other examples
where particular members of multi-protein families have
specific roles in miRNA and siRNA processing and activa-
tion. In contrast, Drosophila Pasha and vertebrate DGCR8
are direct orthologues, without any lineage-specific gene
duplications.

Co-opting particular isoforms from large, diverse protein
families seems to be a common theme in miRNA biogen-
esis (Fig. 7). Arthropods have two Dicer isoforms with dis-
tinct roles; DCR-1 is functional in miRNA processing
while DCR-2 is essential for siRNA activation [49]. In
plants, there are four Dicer paralogues which have special-
ized functions involving different types of host and viral
RNAs [51,52]. Similarly, of the four vertebrate AGO pro-
teins, AGO2 alone is essential for RISC catalytic activity.
The occurrence of similar yet divergent miRNA biogenesis
proteins in vertebrates, invertebrates, and plants suggests
that translational regulation by miRNAs has undergone
significant lineage-specific modifications. A thorough
knowledge of these underlying evolutionary patterns
might be an important caveat when comparing miRNA-
related experiments from different model systems. More
generally, the variable recruitment and adaptations of
proteins for enabling miRNA biogenesis across species
further reveals the extensive plasticity of genomes for rap-
idly evolving novel yet significant cellular regulatory net-
works.
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Neighbor-joining phylogenetic tree of double-stranded RNA-binding proteinsFigure 4
Neighbor-joining phylogenetic tree of double-stranded RNA-binding proteins. Major clusters of proteins include Staufen sub-
families (Stau1 and Stau2), HIV trans-activator RNA (TAR), RNA-binding protein (TRBP), protein kinase R (PKR)-activating 
protein (PACT), Loquacious and R2D2. Phylogenetic reconstruction method, species colour-coding and nodes labeling of sig-
nificance are the same as Fig. 1. The multiple sequence alignment file is given in Additional file 4.
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Different natural selection pressures between and within
species might have also played a role in the occurrence of
miRNA pathway genes and their levels of sequence diver-
gence. Obbard et al. [86] recently showed that the siRNA
pathway genes Dcr2, R2D2 and Ago2 are evolving rapidly
in Drosophila which they provocatively suggest might a
consequence of an antiviral "arms-race". Conversely, they
demonstrate that the rates of amino acid substitutions
were not elevated in miRNA associated genes, Ago2 and
Dcr1 which might be due to constraints associated with
the essential regulatory roles of miRNAs in many cellular
functions.

The components of siRNA processing are ancient as evi-
dent from proteins with distant but recognizable motifs
found in single-cell eukaryotes and, the case of Dicer, even
bacteria and archaea have similar RNaseIII domains [46].
However, genes encoding proteins specific for miRNA
biogenesis seem to be more recent innovations. The diver-
sity of miRNA pathway genes in plants, as well as meta-
zoan protostomes, and deutrostomes, suggests that these
three lineages had specific adaptations (Fig. 7). Two
reports [45,87] noted that further expansions of miRNA
gene families themselves might have coincided with the
emergence of bilaterians, vertebrates and mammals.

Our comparative genomic analyses show that urochor-
dates (represented by the tunicate, C. intestinalis) and early
deutrostomes (represented by the purple sea urchin, S.
purpuratus) have single copies of vertebrate-like miRNA
processing proteins. Provisional that no further gene cop-
ies are found once their entire genomes are completely
sequenced, these species may represent the ancestral state
of the deutrostome/chordate miRNA pathway which sub-
sequently underwent specialization via gene duplications
in early vertebrates. According to robust Bayesian phylo-
genetic analysis of multiple proteins concurrently cali-
brated with the fossil record, echinoderms (sea urchins
and seastars) and protochordates (cephalochordates)
diverged about 896 million years ago (MYA)[88]. Chor-
dates and urochordates split more recently, about 794
MYA. In the most recent release of miRBASE (Sanger
Center, release 10.1), there are no miRNAs reported for
either urochordates or echinoderms. However, Hertel et
al. [45] identified by homology searches, 40 new miRNA
genes in S. purpuratus and 9 miRNA genes in two species
of tunicates C. intestinalis and C. savignyii. Collectively
with our analyses showing that miRNA biogenesis pro-
teins are found in tunicates and sea urchins, these species
probably do have rudimentary miRNA regulatory net-
works. The potential simplicity yet close vertebrate simi-
larity of these species suggests that they might be
intriguing systems to study the structure, function and
evolution of miRNAs. Moreover, as genomic data is gen-
erated for intermediate groups between urochordates and

jawed-fishes such as the jawless fishes (i.e. hagfish and
lampreys), we might gain more insight into the specific
stages in the evolution of the vertebrate miRNA pathway.

Conclusion
Finally, our study suggests that there are several other can-
didate proteins for processing small, ncRNAs. Indeed,
divergent homologues to miRNA processing AGO2, the
PIWI proteins, MIWI and MILI, have been recently shown
to process a novel class of ncRNAs, the "PIWI-interacting
RNAs" or piRNAs. Our study suggests that there are mul-
tiple Argonaute/PIWI as well as double-stranded RNA-
binding proteins and exportins which, by evolutionary
associations, are hypothesized to participate in the
processing of additional classes of ncRNAs and might war-
rant further experimental investigation.

Methods
Protein (amino acid) sequences were retrieved from Gen-
Bank Nonredundant and species-specific databases (Ciona
intestinalis [tunicate – urochordate] and Strongylocentrotus
purpuratus [sea urchin – early deutrostome]) via BLASTP
(default settings) searches using human miRNA pathway
genes as the initial queries [89]. As necessary, sequences
from other species or additional paralogues (i.e. such as
Exportin-T) were used to obtain a full set of homologues.
Homology cut-offs were E-values ≤ 10e-10.

Initial multiple sequence alignments were performed
using the program CLUSTALW v1.7 [90] with default set-
tings and subsequently, refined manually using the pro-
gram SEQLAB of the GCG Wisconsin Package v11.0
software package (Accelrys, San Diego, CA, USA). We
removed regions with residues that could not be unam-
biguously aligned or that contained insertions or dele-
tions. Multiple sequence alignments are included as
Additional files 1, 2, 3, 4, 5, 6. For each file, the first row
titled "Analysis_1", marks with an "*" the columns of
amino acids retained in the edited multiple sequence
alignments for phylogenetic analysis.

We constructed phylogenetic trees using distance neigh-
bor-joining (NJ), maximum parsimony (MP), and Baye-
sian posterior probabilities (BP). NJ trees were based on
pair wise distances between amino acid sequences using
the programs NEIGHBOR and PROTDIST (Dayhoff
option) of the PHYLIP 3.6 package [91]. The programs
SEQBOOT and CONSENSE were used to estimate the
confidence limits of branching points from 1000 boot-
strap replications. MP analysis was performed using
PAUP4.0b5 software [92] where the number and lengths
of minimal trees were estimated from 100 random
sequence additions, while confidence limits of branch
points were estimated by 1000 bootstrap replications. BP
trees were constructed using the software MrBayes v3.0B4
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Neighbor-joining phylogenetic tree of exportins and importins that are most closely related to Exportin-5Figure 5
Neighbor-joining phylogenetic tree of exportins and importins that are most closely related to Exportin-5. The families are 
Exportin-5 (Xpo-5), Exportin-1 (Xpo-1), Exportin T (Xpo-T), and fungal importin Mtr10P. Phylogenetic reconstruction 
method, species colour-coding and nodes labeling of significance are the same as Fig. 1. The tree is unrooted. Locations of 
some specific isoforms from Homo sapiens, Arabidopsis thaliana and Caenorhabditis elegans (CE) that are mentioned in the text 
are annotated on the tree. Species name abbreviations are given in the Methods. The multiple sequence alignment file is given 
in Additional file 5.
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Neighbor-joining phylogenetic tree of Exportin-5 orthologuesFigure 6
Neighbor-joining phylogenetic tree of Exportin-5 orthologues. Phylogenetic reconstruction method, species colour-coding and 
nodes labeling of significance are the same as Fig. 1. The multiple sequence alignment file is given in Additional file 6.
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[93,94]. Bayesian analysis used the mixed model of
sequence evolution with random starting trees. Markov
chains were run for 106 generations, burn-in values were
set for 104 generations, and trees sampled every 100 gen-
erations. All trees were visualized using the program
TREEVIEW v1.6.6 [95]. Subsets of Argonaute and Exportin
protein family members that were known to be involved
in miRNA biogenesis were also re-aligned and subjected
to separate phylogenetic analysis.

The Dicer phylogeny shown in Fig. 1 was based on an
edited alignment of 926 amino acids. One minimal
length MP trees were recovered, 3020 steps in length with

a consistency index (CI) of 0.6907 and a retention index
(RI) of 0.6629. The Argonaute/PIWI phylogeny shown in
Fig. 2 was based on an edited alignment of 288 amino
acids. MP analysis recovered 214 minimal length trees,
6035 steps in length with a consistency index (CI) of
0.3934 and a retention index (RI) of 0.6699. The variable
branch arrangements were among certain terminal nodes
within of the each AGO protein.

The animal Argonaute phylogeny shown in Fig. 3 was
based on an edited alignment of 834 amino acids. MP
analysis recovered 200 minimal length trees, 2538 steps in
length with a consistency index (CI) of 0.7281 and a

Phyletic distribution of microRNA biogenesis proteins from this studyFigure 7
Phyletic distribution of microRNA biogenesis proteins from this study. Representative species for the taxonomic groups are 
Homo sapiens (vertebrates), Ciona intestinalis (urochordates), Strongylocentrotus purpuratus (echinoderms), Drosophila mela-
nogaster (arthropods), Caenorhabditis elegans (nematodes), and, Arabidopsis thaliana (plants). Cladogram at the bottom repre-
sents relative evolutionary relationships among these groups according to the Tree of Life web project [96]. In italics are a few 
proteins (Drosha, DGCR8, Pasha HYI1 and DRB4) which were not included in the phylogenetic analyses but are known 
miRNA or siRNA processing enzymes [2,3].
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retention index (RI) of 0.8938. The variable branch
arrangements were among certain terminal nodes (mam-
mals) within of the each vertebrate Ago families, Ago1–4.
However, separate monophyly of each Ago family was
strongly supported by all phylogenetic methods. The dou-
ble-stranded RNA-binding protein tree shown in Fig. 4
was based on an edited alignment of 156 amino acids. MP
analysis recovered 34 minimal length trees, 1334 steps in
length with a consistency index (CI) of 0.6402 and a
retention index (RI) of 0.8294. The variable branch
arrangements were among certain terminal nodes within
vertebrate clades of Staufens, PACT and TRBP which did
not affect the central findings. The Exportin/Mtr10P phyl-
ogeny shown in Fig. 5 was based on an edited alignment
of 392 amino acids. MP analysis recovered 20025 mini-
mal length trees, 10368 steps in length with a consistency
index (CI) of 0.4169 and a retention index (RI) of 0.7567.
The variable branching concerned terminal branches
which did not affect the main observations of this tree.
The Exportin 5 phylogeny Fig. 6 was based on an edited
alignment of 809 amino acids. MP analysis recovered four
minimal length trees, 6186 steps in length with a consist-
ency index (CI) of 0.7118 and a retention index (RI) of
0.8110. The variable branching concerned the two fish
Exportin 5 proteins relative to each other which, also, did
not affect the central findings.

For Fig. 2, the species (with abbreviations) included in the
tree are Anopheles gambiae (ANGA), Apis mellifera (APIS),
Arabidopsis thaliana (ARTH), Aspergillus nidulans (ASNI),
Blumeria graminis (BLGR), Candida albicans (CAAL), Bos
taurus (COW), Cryptococcus neoformans (CRNE), Danio
rerio (DARE), Drosophila melanogaster (DRME), Takifugu
ribripes (FUGU), Gallus gallus (GAGA), Gibberella zeae
(GIZE), Homo sapiens (HOSA), Magnaporthe grisea
(MAGR), Mus musculus (MUS), Neurospora crassa (NECR),
Oryza sativa (ORSA), Podocoryne carnea (POCA), Oryctola-
gus cuniculus (RABBIT), Rattus norvegicus (RAT), Schizosac-
charomyces pombe (SCPO), Stylonychia lemnae (STLE),
Strongylocentrotus purpuratus (STPU), Tetraodon nigroviridis
(TENI), Xenopus laevis (XELA), and Xenopus tropicalis
(XETR).

For Fig. 5, species (and abbreviations) included in the tree
are Aedes aegypti (AEAE), Anopheles gambiae (ANGA), Apis
mellifera (APIS), Arabidopsis thaliana (ARTH), Aspergillus
clavatus (ASCL), Aspergillus fumigatus (ASFU), Ashbya gos-
sypii (ASGO), Aspergillus nidulans (ASNI), Aspergillus oryzae
(ASOR), Aspergillus terreus (ASTE), Candida albicans
(CAAL), Candida glabrata (CAGL), Chaetomium globosum
(CHGL), Chironomus tentans (CHTE), Bos taurus (COW),
Coprinopsis cinerea (COCI), Coccidioides immitis (COIM),
Cryptococcus neoformans (CRNE), Danio rerio (DARE),
Debaryomyces hansenii (DEHA), Dictyostelium discoideum
(DIDI), Canis lupus familiaris (DOG), Drosophila erecta

(DRER), Drosophila melanogaster (DRME), Drosophila pseu-
doobscura (DRPS), Drosophila simulans (DRSI), Drosophila
yakuba (DRYA), Emericella nidulans (EMNI), Ashbya gos-
sypii [Eremothecium gossypii] (ERGO), Gallus gallus
(GAGA), Gibberella zeae (GIZE), Homo sapiens (HOSA),
Kluyveromyces lactis (KLLA), Leishmania major (LEMA),
Macaca mulatta (MAMU), Magnaporthe grisea (MAGR),
Medicago truncatula (METR), Mus musculus (MUS), Neosa-
rtorya fischeri (NEFI), Neurospora crassa (NECR), Oryza
sativa (ORSA), Ostreococcus tauri (OSTA), Pan troglodytes
(PATR), Phaeosphaeria nodorum (PHNP), Plasmodium
berghei (PLBE), Plasmodium falciparum (PLFA), Podospora
anserine (POAN), Pongo pygmaeus (POPY), Rattus norvegi-
cus (RAT), Saccharomyces cerevisiae (SACE), Schizosaccharo-
myces pombe (SCPO), Strongylocentrotus purpuratus (STPU),
Tetraodon nigroviridis (TENI), Tetrahymena thermophila
(TETH), Trypanosoma brucei (TRBU), Tribolium castaneum
(TRCA), Trypanosoma cruzi (TRCU), Ustilago maydis
(USMA), Xenopus laevis (XELA), Xenopus tropicalis (XETR),
and Yarrowia lipolytica (YALI).
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