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Spontaneous fluctuations in resting state activity can change in response to experience-dependent plasticity
and learning. Visual learning is fast and can be elicited in an MRI scanner. Here, we showed that a random dot
motion coherence task can be learned within one training session. While the task activated primarily visual
and parietal brain areas, learning related changes in neural activity were observed in the hippocampus.
Crucially, even this rapid learning affected resting state dynamics both immediately after the learning and
24 h later. Specifically, the hippocampus changed its coupling with the striatum, in a way that was best
explained as a consolidation of early learning related changes. Our findings suggest that long-lasting changes
in neuronal coupling are accompanied by changes in resting state activity.

© 2013 Elsevier Inc. Open access under CC BY license. 
Introduction

Until recently, functional MRI (fMRI) studies have focused on how
brain activity changes with task performance or sensory stimulation.
However, even at rest – in the absence of a task or stimulation – fMRI
signals show spontaneous fluctuations that exhibit spatiotemporal
correlations in networks of functionally connected areas (Biswal
et al., 1995; Fox and Raichle, 2007; Raichle, 2010). These networks
continue to covary during sleep (Fukunaga et al., 2006) and under
anesthesia (Vincent et al., 2007). They show high consistency and
reproducibility across subjects and sessions over the short-term and
long-term, using different variations of independent component anal-
ysis (ICA) (Damoiseaux et al., 2006) and group ICA (Zuo et al., 2010).
The reproducibility in healthy young individuals compares to that of
activations elicited by motor paradigms (Meindl et al., 2010).
Furthermore, there is a close correspondence between the activation
networks – of almost 30,000 human participants of fMRI studies –

with resting state networks (Smith et al., 2009). The interplay between
spontaneous and evoked activity has been of particular interest.
For example, in the visual cortex, spontaneous fluctuations determine
the variability in cortical responses and perception associated with
presentation of a simple visual stimulus (Schölvinck et al., 2012).

The effect of spontaneous fluctuations on evoked responses
associated with perception raises the complementary question of
whether systematic changes in evoked responses, for example
ience, University College London,
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present during learning, might subsequently alter spontaneous fluctua-
tion. Themechanismwe have inmind here is that experience dependent
(associative) plasticity may change synaptic connections and ensuing
neuronal activity in the local circuits affected. As the implicit short
term and immediate long-termpotentiation is consolidated the associat-
ed changes in spontaneous neuronal activity should persist and be
measurable in terms of changes in effective connectivity. A growing
number of studies have investigated this adaptive modulation of resting
state networks. Changes in spontaneous fluctuations have been shown
after visuo-motor learning (Albert et al., 2009), episodic memory tasks
(Tambini et al., 2010), and language tasks (Hasson et al., 2009).

Visual learning is one way in which systematic changes in cortical
responses and perception can be induced. Intensive training on a
simple shape identification task over several days can change resting
state functional connectivity between visual and fronto-parietal corti-
ces (Lewis et al., 2009). This indicates that visual learning can have last-
ing effects on spontaneous brain activity through experience dependent
plasticity. But such effects occur only after several days of training. The
early phase of visual learning occurs much more rapidly—and is often
ignored in typical visual learning experiments. However, learning
entails a rapid consolidation process that starts within a single training
session (Seitz et al., 2005) and that occurs in any experiment, indepen-
dent of modality. The specific changes in spontaneous activity in task-
responsive brain areas in response to this early learning (that occurs
in any experiment, independent of modality) perhaps more typical of
real-world environments (Brovelli et al., 2008; Shtyrov, 2012) remain
unknown. With regard to visual learning, both sensory and non-
sensory areas (Adab and Vogels, 2011; Goldstone, 1998; Seitz and
Watanabe, 2005; Shibata et al., 2011), appear to be involved. Outside
the sensory cortex, single-neuron and functional MRI studies have
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Fig. 1. Experimental paradigm. Participants were scanned on two consecutive days
for about 90 min each day. Two resting state runs were acquired each day, preceding
and following the learning task or a retinotopic mapping respectively. A structural
scan was acquired on both days.
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implicated the lateral intraparietal area (Law and Gold, 2008), lateral
parietal cortex (Kahnt et al., 2011), subcortical structures like the hippo-
campus (Graham et al., 2006; Lee et al., 2005) and the caudate nucleus
(Ding and Gold, 2010). Recently, sub-areas of the medial temporal lobe
(MTL) including the parahippocampal cortex and subiculum have been
implicated in rapid and incidental statistical learning in a visual
paradigm (Schapiro et al., 2012). While MTL regions and, importantly,
the hippocampus – including its connections to the striatum –

have been traditionally linked to memory processes such as memory
consolidation (Battaglia et al., 2011), their role in perceptual learning
has only been examined more recently (Buckley, 2005).

Memory consolidation refers to the processes underlying the
stabilization of memory traces acquired during initial encoding
(Dudai, 2012); where the importance of sleep for consolidation is
well-established (Wang et al., 2011). Previous studies of changes in
resting state activity in response to recent experiences (Albert et al.,
2009; Lewis et al., 2009; Tambini et al., 2010) have not examined
long-term changes in spontaneous fluctuations in the resting state.
This is probably due to the fact that it requires a more extensive
study design. However, we were particularly interested in these
potential long-term changes as markers of experience dependent
plasticity induced by the early learning phase.

Therefore, we used a paradigm with only one relatively short
learning session that promoted rapid perceptual learning. We
hypothesized that rapid perceptual learning would be accompanied
by changes in spontaneous activity in brain structures whose responses
changed during learning. Furthermore, we predicted that resting state
changes would persist following consolidation. We tested this hypoth-
esis by acquiring resting state time-series using functional MRI before
and after a standard perceptual learning experiment. During the
experiment participants learned to discriminate a motion stimulus.
We measured brain responses during task learning to identify regions
whose responses were correlated with the learning in each individual.
Crucially, we also acquired independent measures of resting state brain
activity before and immediately after learning. The following day,
we repeated the paradigm without the learning. We used stochastic
dynamic causal modeling (DCM) to evaluate resting state effective
connectivity (Li et al., 2011) between regions identified in the learning
session. Specifically, we tested for learning dependent changes in effec-
tive connectivity (during rest) immediately after the learning session
and after consolidation of these putative changes on the following day.

Materials and methods

Participants

16 right-handed healthy volunteers (7 female, 19–33 years of age,
mean age 25.4 years) with normal or corrected to normal vision gave
written informed consent to participate in the study consisting of two
scanning sessions at two consecutive days. 11 of the 16 participants
learned themotion coherence task andwere included in the data analysis
(3 performed at ceiling level and were excluded because we did not
expect to see any neural changes in the absence of behavioral
improvement; 2 were not able to learn the task as disclosed by
their persistently low performance). The study was approved by
the local ethics committee.

Stimuli and task design

A random dot motion coherence stimulus was used. The level of dot
motion coherence was set to 20%, which is close to the perceptual
threshold and has been successfully used for naïve participants previ-
ously (Vaina et al., 1998). Further stimulus parameters were chosen
according to the results of a behavioral piloting study of 15 participants.
All participants performed 25 task and 25 control blocks, each
consisting of 16 trials. A presentation time of 0.3 s was used in 7
subjects and 0.4 s in the remainder. The longer presentation time
resulted in ceiling performance for 6 of the 8 participants. Therefore,
we chose a 0.3 s presentation time for the scanning paradigm. The
following stimulus parameters were used: dot speed: 10°/s, dot life
time: 6 frames, response time: 1.5 s, number of dots: 200. White dots
were presented in a central circular aperture covering a 3.14° visual
angle on a black background. Participants were asked to focus on
a white fixation square at the center of the screen throughout the
experiment and no feedback was given.

During trials of the motion task, 80% of the dots were moving in
random directions across the screen, while 20% of the dots were
moving coherently to the left or right. The coherent direction was
chosen randomly. Participants used their right hand and a keypad to
report the direction of motion; i.e. left or right after the stimulus
had disappeared. During control trials the dots were static and a little
arrow, pointing either to the left or right, replaced the central fixation
square. In these trials participants reported the direction of the arrow.

In total, each participant completed 800 trials—400 trials of the
motion learning task and 400 trials of the control task, divided into
25 blocks of 16 trials each. The 25 blocks were spread over 5 runs,
i.e. the scanner was restarted after 5 blocks—allowing participants
to rest between runs. Each block of the motion task was followed by
a block of the control task or vice versa.

Experimental procedure

To address potential changes in resting state connectivity due to
learning and consolidation, participants were scanned on two consecu-
tive days and brain signals were measured in four resting state runs:
one before task performance, one directly after task performance, and
two at the second day. These were repeated at the same times as the
rest runs on the first day. Participants underwent standard retinotopic
mapping and a V5/MT localizer in the scanner between the two rest
runs of the second day (see Fig. 1).

Before entering the scanner on day one, participants were
familiarized with the task, but did not pre-train (to ensure perceptual
learning during scanning). Task instructions emphasized that accuracy
was more important than speed when responding. Both scanning
sessions lasted about 90 min (see Fig. 1 for details), andwere separated
by 24 h for each participant. During resting state runs participantswere
asked to close their eyes, relax, and to not fall asleep. The order of
motion and control conditions in the learning taskwas counterbalanced
over subjects.

Behavioral analysis

Behavioral data were analyzed using inverse efficiency (IE)—a
simple measure that combines reaction time and accuracy; where
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IE = mean reaction time / accuracy (Graham et al., 2006). Single trial
reaction times that deviated from the mean of the respective block by
more than three standard deviations were excluded. IE was calculated
for each block (n = 25) and raw values were fitted to an exponential
function of the form y = ae− bx where a represents the amplitude
and b the learning rate. The ensuing estimates of inverse efficiency
were used as a parametric modulator of the stimulus regressors
in the first level (within-subject) analysis of the functional data
acquired during the learning task (see below). These regressors
modeled learning related adaptation of BOLD responses.

fMRI data acquisition

A 3 T Trio MRI Scanner (Siemens Medical Systems, Erlangen,
Germany) with a 32 channel head coil was used to acquire functional
data with a standard echo planar imaging (EPI) sequence (matrix size
64 × 64; field of view 192 × 192 mm; in plane resolution 3 × 3 mm;
32 slices in ascending acquisition order; echo time 30 ms; acquisition
time per slice 68 ms; TR 2.176 s). Each run of the learning task
comprised 246 volumes, and each resting state acquisition comprised
276 volumes. On both scanning days, B0 field maps were acquired to
correct for geometric distortions in the EPI images. Also a structural
T1-weighted scan was acquired on both days (matrix size 256 × 240;
field of view 256 × 240 mm; in-plane resolution 1 mm × 1 mm; 176
sagittal slices of thickness 1 mm; echo time 2.48 ms; acquisition
time per slice 7.92 ms). During scanning, respiration volume and
cardiac pulse were measured using a breathing belt placed around
the participants' waist and an MRI compatible pulse oximeter
attached to one of the fingers. These data, together with scanner slice
synchronization pulses, were sampled using Spike2 (Cambridge
Electronic Design Limited, Cambridge, UK) and used for physiological
noise correction.

fMRI data analysis

Functional data were analyzed using SPM8 (http://www.fil.ion.ucl.
ac.uk/spm/software/spm8/) and DCM12 was used for dynamic causal
modeling of effective connectivity. To allow for T1 equilibration, the
first five images of each run were discarded. Pre-processing of the
data involved mean bias correction, realignment of each volume to
the first volume of each run, coregistration of the functional data to
the structural data of each day, coregistration of the structural scan
(and functional volumes) of the first day to that of the second day,
normalization to the MNI template brain and smoothing by an 8 mm
Gaussian kernel. The task data were filtered with a standard 128-s
cut-off and the resting state data were filtered with a 256-s cut-off,
high-pass filter to remove low-frequency drifts—including differences
between runs, while preserving as many of the spontaneous fMRI
fluctuations as possible (Birn et al., 2007). Physiological data (respira-
tion and heart beat) were modeled using an in-house developed
MATLAB toolbox (Hutton et al., 2011) based on RETROICOR (Glover
et al., 2000). This resulted in a total of 17 regressors. The resulting
regressors were included as confounds in the first level analysis
for each participant. Movement parameters were also included as
confounds. No global signal regression was performed.

Perceptual learning session
Regressors modeling the stimuli were formed by convolving

boxcar functions encoding each condition with a canonical hemo-
dynamic response function—where stimulus functions modeling
learning blocks were parametrically modulated by the fitted values
of inverse efficiency (IE). These stimulus functions model perceptual
learning related changes in responses evoked during the learning task.
Contrasts of first level parameter estimates were used to perform a ran-
dom effects analysis over participants in the usual way. This involved
estimating (contrasts of) parameters encoding the effects of interest
using a standard linear convolution model at the first (within-subject)
level (over all five task runs) and then passing the resulting contrast
images to one sample t-tests at the second (between-subject) level.
The resulting statistical parametric maps (SPMs) were used to test for
differences between the learning and the control task, the learning
task and the fixation baseline, and the effects of learning (i.e. testing
for a parametric modulation of the learning task effects). The anatomy
toolbox (Eickhoff et al., 2005) was used to anatomically designate
activated areas.

Psychophysiological interaction analysis
The peak activation – elicited by the effect of perceptual learning –

was used as region of interest (ROI) for the analysis of the resting
state data. Time series of this ROI were extracted for all four resting
state runs and included as regressors in a first level general linear
convolution model, together with the nuisance regressors. Again,
resulting contrast images were passed to one sample t-tests at the
second (between-subject) level and the resulting SPMs were used
to test for changes in the coupling with the region defined during
the learning task. More precisely, the four rest runs constituted two
main effects, i.e. the main effect of day (rest 1 and 2 vs. rest 3
and 4) and the main effect of time (rest 1 and 3 vs. rest 2 and 4).
The interaction of the two effects, i.e. day × time, was used to test for
changes in the coupling between the learning related ROI and any
other brain region (regression slope of regional activity on the activity
of the ROI). Participant-specific peak coordinates of the learning related
region were used. The peaks (p b 0.05, uncorrected) were within
16 mm of the second-level (between subject) peak and within the
specific anatomical region, as defined by the SPM Anatomy toolbox
(Eickhoff et al., 2005). Together with the learning related region, the
region showing the most significant psychophysiological interaction
(over subjects) was used for subsequent dynamic causal modeling of
changes in their effective connectivity.

Dynamic causal modeling
DCMmodels neuronal dynamics in terms of directed and reciprocal

influences among brain regions. Stochastic DCM allows one to model
spontaneous or endogenous (non-controlled) activity. It does not
require any input usually associated with experimental manipulation.
Two subject-specific ROIs defined by the learning task and the psycho-
physiological interaction analysis were used as the nodes for 10
different models of changes in extrinsic connectivity. Regional activity
in each ROI was summarized with its principal eigenvariate, adjusted
for nuisance variables, based on voxels within 8 mm of subject-
specific peaks. All four runs were concatenated into a single time series
and parametric modulators were used to model learning-related
changes in effective connectivity, plus potential consolidation of these
changes.

More precisely, run-specific differences – in terms of the (bilinear)
modulation of the average connectivity over all four rest runs – were
modeledwith three different parametric modulators. First, wemodeled
non-specific adaptation (i.e. the effect of “run”) due to time in the scan-
ner by weighting the four different rest runs accordingly by [0 1 0 1].
Second, we added the effects of visual learning – following the learning
phase – using the following weights [0 1 0 0]. Finally, a consolidation
model comprised adaptation effects, i.e. [0 1 0 1], and learning effects
that persisted during the second day with the following weights [0 2 1
1]. Crucially, the learning and consolidation models have two bilinear
coupling parameters per connection that control the relative expression
of adaptation and learning (or consolidation) respectively. We applied
the models of coupling changes, – including a null model with no
changes in coupling – to different permutations of connections: forward
connections from one region to another, backward connections from
one region to another, and bilateral connections, involving both forward
and backward connections. This resulted in models with the same
extrinsic reciprocal connections between two nodes, but different
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modulations of those connections. All models were fitted to the
concatenated time series of the rest runs using generalized (Bayesian)
filtering (Li et al., 2011). To evaluate the relative evidence for each of
the 10models, we compared the (variational free energy approximation
to) log evidence. We used Bayesian Model Selection to select the model
with the greatest evidence given the data. More precisely, we used
relative log evidences, i.e. the model with the least evidence was
subtracted from each model. This fixed effects model comparison was
used because we assumed that the same model accounted for the
data generated by every participant. A difference of three between log
evidences – which corresponds to a relative evidence (Bayes factor) of
about 20:1 – was used as the criterion for model selection.

For quantitative interpretation, the changes in effective connec-
tivity under the winning DCM were computed by multiplying the
appropriate bilinear parameters with the run-specific weights as
specified above. Thus, for each participant each connection be-
tween the two regions included in the model was described by
four values, reporting the connection strength in each resting run,
relative to the first.

Non-specific adaptation between the first and second scanning day
was not modeled, because we assumed that resting state connectivity
would not show cumulative changes over successive days when
learning had only occurred on the first day. Furthermore, we emphasize
that the consolidation model did not simply represent a non-specific
change in effective connectivity on the second day: it had to change in
proportion to the learning-dependent changes on the first day.
Results

Participants showed early rapid learning of the motion task

Participants completed 400 trials of themotion task and 400 trials of
the control task. Performance was measured using inverse efficiency
(IE). The IE values of each block were fitted with an exponential
function. See Behavioral analysis for details. See Fig. 2a for an overview
of the learning. Thefitted IE values entered the analysis of the functional
neuroimaging data as a parametric modulation of the stimulus
regressors in the first level (within-subject) analysis of the learning
run. All participants who learned the task performed (as expected)
at ceiling on the control task throughout the 25 blocks (mean of all
participants over all blocks: 99% correct, range between participants:
97% to 100% correct).
Fig. 2. Behavioral learning and hippocampal activation. a) Participants learned the motion
averaged over all participants (n = 11) who learned the task successfully. Error bars show
the learning task were used for the plotted contrast. Statistics were significant at p b 0.05,
Motion task activated visual, frontal and parietal areas

After pre-processing, we first identified regions showing activity
specific to the motion task by contrasting the blocks when participants
performed themotion task with the fixation baseline. We found a bilat-
eral network of visual areas, including V5/MT, aswell as inferior parietal
and orbitofrontal cortex (all p b 0.05, FWE corrected). See Table 1 for an
overview. Next, we examined activations associated with the motion
task compared to the static control task and found these in the inferior
parietal cortex and the right insula cortex (all p b 0.05, FWE corrected),
as well as in the visual cortex extending into V5/MT and medial
temporal regions, and in the medial frontal cortex (all p b 0.001,
uncorrected). See Table 2 for an overview.

Early learning-related modulation of hippocampal activity during
task performance

Using the IE-based parametric regressor, whichmodeled participant-
specific learning on the motion task, we tested for regions whose
responses adapted with performance. This analysis identified the left
hippocampus (left subiculum, MNI coordinates (x = −15, y = −37,
z = −5), t = 9.77, p = 0.04, FWE corrected) (see Fig. 2b). The anatomy
toolbox assigned the activation to the left subiculum with a 100% proba-
bility. None of themotion-activated areas given in Tables 1 and 2 showed
any learning related changes (p b 0.001, uncorrected).

Learning-related changes in connectivity during rest

Having identified the hippocampus as the key region whose
activity changed significantly with perceptual learning (as indexed
by participant-specific changes in performance) we next explored
how the resting state connectivity of this region changed after learn-
ing. We first identified candidate regions whose connectivity with
the hippocampus changed between resting state runs using a
psychophysiological interaction analysis (Friston et al., 1997).
These regions were then used in a dynamic causal model to examine
changes in effective connectivity with the hippocampus. Using
the independently acquired resting state data, we extracted the
time series of the participant-specific hippocampal peak voxels
for all four resting state runs and tested for changes in the cou-
pling of the hippocampal region of interest with learning using
PPIs.
task. Inverse efficiency (IE) is plotted for every block of the task (n = 25). Data are
SEM. b) Learning activated the hippocampus. The fitted inverse efficiency values of

FWE corrected. Images show activation at p b 0.001 (uncorrected).

image of Fig.�2


Table 1
Main effect of the motion learning task compared to baseline.

MNI coordinates t-value P-value

x y z

BA 18 R −24 −94 13 15.43 0.001
BA18 L 15 −91 −2 14.48 0.001
Fusiform gyrus R 36 29 −2 11.35 0.011
Inferior parietal cortex L −30 −46 49 10.58 0.021
Inferior occipital cortex L/MT −45 −67 −2 10.17 0.030
BA 17/cuneus R 12 −94 13 10.10 0.032
Inferior orbital frontal cortex L −42 20 −2 9.96 0.036
Medial occipital cortex L −42 −76 7 9.85 0.040
Inferior parietal cortex L −27 −43 40 9.78 0.043

Voxel-level statistics are reported at p b 0.05, FWE corrected. BA = Brodmann area,
L = left hemisphere, R = right hemisphere.
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To test for these changes, we treated the resting state runs as a
2 × 2 factorial design. Testing for the interaction between the two
main effects of “run” (i.e. run one and three vs. run two and four)
and “day” (i.e. run one and two vs. run three and four) we found
that bilateral striatal loci showed changes in coupling with the hippo-
campus between runs that were significantly greater on the first com-
pared to the second day (MNI coordinates (x = −21, y = 8, z = 2),
t = 3.59, p = 0.002, uncorrected; MNI coordinates (x = 21, y = 14,
z = 4), t = 4.94, p b 0.001, uncorrected). No other regions showed a
run by day interaction (p b 0.001, uncorrected) and we used the
striatal region for the dynamic causal modeling.

Dynamic causal modeling

Our subsequent tests for learning-related changes in effective
connectivity (i.e. plasticity), and potential consolidation of these
changes, were based on Bayesian model comparison using stochastic
DCM (Li et al., 2011). Our models differed in terms of when
and where changes in connectivity were expressed, i.e. specifically
characterizing the forward and backward connections between the
left hippocampal and striatal regions identified by the conventional
SPM and PPI analyses. Our hypotheses were not about the existence
of connections, but whether there were changes in specific connec-
tions between these areas across the different rest runs. Therefore,
we considered four types of models: first a null model without any
changes in connectivity (null). Second, we considered non-specific
adaptation (adaptation), i.e. changes due to the main effect of “run”.
Third, a learning-specific change expressed on and only on the first
day at run two was added to the adaptation effect (learning). Finally, a
consolidationmodel (consolidation), in which learning-specific changes
on the first day did not disappear but were consolidated – at half their
level – by the second daywas added to the adaptation effect. Practically,
each of these four models was specified with modulatory (bilinear)
Table 2
Main effect of the motion learning task compared to the static control task.

MNI coordinates t-value P-value

x y z

Inferior parietal cortex R 36 −37 34 11.81 0.007a

Insula R 33 29 1 10.12 0.031a

BA 18/19 L −24 −79 13 9.31 P b 0.0001b

Inferior parietal cortex L −36 −37 40 9.31 P b 0.0001b

Medial cingulate cortex R 9 17 47 8.14 P b 0.0001b

Insula L −36 20 −5 7.61 P b 0.0001b

Precentral sulcus R 27 −7 55 6.91 P b 0.0001b

Medial frontal cortex R 45 35 31 6.78 P b 0.0001b

Inferior frontal gyrus L −57 14 28 5.86 P b 0.0001b

Caudate nucleus R 15 −4 19 5.13 P b 0.0001b

Voxel-level statistics are reported at ap b 0.05, FWE corrected or bp b 0.0001, unc.
BA = Brodmann area, L = left hemisphere, R = right hemisphere.
effects mediated by run-specific inputs that had different between run
values but were fixed over the duration of each run. These four profiles
of coupling changes between runs were applied to different permuta-
tions of connections; namely, either forward or backward or both
forward and backward between hippocampus and striatum. This pro-
duced ten unique models, because the three null models for different
architectures were identical. This model comparison is quite subtle, in
the sense that we tested for the presence or absence of changes in the
context of full connectivity—not the presence or absence of connections
per se.

Fulfilling our predictions of higher evidence for the learning
or consolidation models, we found the highest log evidence for
the consolidation model with a bidirectional change in connection
strength between the hippocampus and striatum (see Fig. 3a for an
illustration). Remarkably, this was the winning model for 10 out of 11
participants (being the model with the second largest evidence for 1
participant; see Fig. 3b). Having established themodel with the highest
evidence, quantitative changes in coupling were computed for each
participant using a mixture of the run-specific changes as specified
above (i.e. adaptation and consolidation) weighted by the appropriate
run specific (bilinear) parameter estimates. These estimates (see
Fig. 4) provided a quantitative picture of the changes in coupling and
its consistency over subjects. Reflecting the characteristics of the
winning consolidation model effective connectivity changes were
largest between the first and second rest run. They were smaller
but consistent for the two rest runs on the second day of scanning,
i.e. during rest runs three and four. The same pattern was observed for
both directions, i.e. from hippocampus to striatum and vice versa.

Discussion

We investigated the neural correlates of the rapid perceptual
learning phase in a standard visual paradigm and the relationship
between learning related changes and spontaneous fluctuations in
resting state activity before and after that learning. We showed that
a random dot coherence task can be learned by naïve participants
within one training session. The task activated primarily visual and
parietal brain areas. Significant learning related changes in neural
responses were observed in the hippocampus. Furthermore, learning
of the task had consequences for resting state connectivity: the
hippocampal region changed its coupling with the striatum in a
pattern that could be best explained in terms of consolidation. More
precisely, a psychophysiological interaction analysis identified learning
dependent changes in coupling with the hippocampus that were greater
than equivalent changes on the second day without learning. Dynamic
causal modeling of the directed interactions between the hippocampal
and the striatal region showed that both forward and backward connec-
tions expressed learning dependent effects that persisted on the second
day. This even allowed non-specific adaptation between paired runs on
the two days of data acquisition.

While it is well known that performance on sensory tasks improves
with practice, the time course of learning related changes is less
established. Unlike ours, many studies do not investigate the early
phase of learning, which is usually overlooked due to a familiarization
period. This is particularly true for functional MRI studies. While some
studies use difficult tasks with training over several days, weeks or
even months (Blakemore and Campbell, 1969; Kahnt et al., 2011),
rapid learning effects in a number of visual learning tasks have been
reported after as few as 200 trials (Fiorentini and Berardi, 1981). Learn-
ing of a randomdot coherence task, as used in this study, can occur after
just 300 trials (Vaina et al., 1995). Using the same 2-alternative-
forced-choice paradigm, participants improved their performance in
a single session from scoring close to chance to almost perfect. In
a follow-up fMRI study Vaina et al. (1998) showed an increase in the
activation in V5/MT and a decreased activation of the cerebellum,
when comparing neuronal responses during the first task session with



Fig. 3. Winning model and summed (group) log evidence for all models. a) Schematic description of the model with a bidirectional connection between the hippocampus and the
striatal region. The graphic shows which connections were modified by a consolidation pattern (see Results for detailed explanation). b) The model plotted in a) showed the highest
evidence (marked in red). Plotted is the summed log evidence per model relative to the model with the least evidence. The winning model was the same for almost all participants
(10 out of 11). A = adaptation, L = learning, C = consolidation, null = no modification.
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responses during the final session. However, the authors did not
use any participant-specific performance measurement, whereas here
we specifically identified participant-specific learning-related changes
over time.
Fig. 4. Parameter estimates and model fitting reflected consolidation. Parameter estimates fo
b) striatum to hippocampus. After a big increase directly after the learning in rest run 2, t
for both rest runs (i.e. rest runs 3 and 4). Plotted are the average values for all participan
(SEM). c) Overlay of observed (gray) BOLD time-series during rest with the time-series a
for a representative participant.
In line with several previous studies, our motion learning task
activated visual areas involving V5/MT (Newsome and Salzman,
1993; Rees et al., 2000). The necessary role of the region for motion
perception has been established in macaque monkeys and in human
r the modulation of the intrinsic connection from a) hippocampus to striatum and from
he change in connectivity was preserved at a lower level on the second scanning day
ts who learned the task (n = 11), error bars indicate the standard error of the mean
s predicted by DCM (blue). The two regions included in all tested models are shown

image of Fig.�3
image of Fig.�4
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patients (Baker et al., 1991; Cowey and Marcar, 1992; Vaina et al.,
2001), as well as in healthy humans using transcranial magnetic
stimulation (TMS) (Tadin et al., 2011; Walsh et al., 1999). However,
we did not find learning related changes (at the relatively conservative
statistical threshold employed here) in any visual brain area. This might
be due to the fact that our group of learners comprised only 11 partici-
pants. Thus, a potentially small effect in visual areas may not have been
observed due to a lack of power. Importantly, our main interest here
was not the specificity of the learning related effects, but the potential
changes in connectivity during rest. For example, such changes are
seen in a fronto-parietal network after participants learn a difficult
shape identification task (Lewis et al., 2009).

Our finding that early learning dependent effects were seen in the
hippocampus supports the idea that sensory learning extends beyond
a bottom-up process that is restricted to earlier sensory areas related
to the representation of sensory stimuli. Together with previous
findings, our results suggest that different sensory learning tasks
have different neural correlates in higher level brain areas. In line
with several recent studies using electrophysiological and neuro-
imaging methods, our results are consistent with a role of non-sensory
areas in visual decisions and learning (Kahnt et al., 2011; Law and
Gold, 2009). Specifically, the role of the hippocampus as the classical
area for explicit – or declarative – memory and spatial orientation has
been challenged. For example, the MTL (including the hippocampus) is
involved in tasks during which participants are not consciously aware
of learned contingencies (Rose et al., 2011). Also, several hippocampal
and parahippocampal regions including the subiculum change their
activity in response to temporal regularities; demonstrating a role
for human MTL in statistical learning and providing insight into the
formation and evolution of memory representations (Schapiro et al.,
2012).

The “classical” distinction between implicit and explicit learning is
not straightforward for the motion tasks we used. Implicit learning
refers to the incidental learning of complex information; i.e., without
awareness of what has been learned (Sun et al., 2008). However, this
definition is not uncontroversial (Frensch and Runger, 2003). Typically,
three different stimuli structures are used to investigate implicit
learning: patterns, sequences and functions (Forkstam and Petersson,
2005). In comparison, explicit learning has been characterized as a
process similar to conscious problem-solving used for the control of
task variables (Mathews et al., 1989), which gives rise to concrete and
conscious knowledge about regularities in the environment (Reber,
1989). It is likely that the early learning phase of our task involved
both types of learning. Indeed, the mechanism of any hippocampus-
related learning processes does not appear to be sufficiently described
by the established dichotomy between explicit/implicit learning.
On the one hand, hippocampal activity is associated with perceptual
forms of associative learning (Fortin et al., 2002; Van Opstal et al.,
2008); on the other, hippocampal involvement is seen for implicit
higher-order sequence information (Lieberman et al., 2004), including
visual sequence learning (Turk-Browne et al., 2010) and transitive
inference tasks (Van Opstal et al., 2008). Furthermore, theoretical and
empirical work has characterized the hippocampus as a fast learning
system (Colgin et al., 2008; Schendan et al., 2003). We exposed our
participants to only one learning session. The observed learning is
thus classified as fast, compared to slow and usually small additional
improvements over days, weeks or months.

While the traditional view of the role of the hippocampus has
linked it to explicit/declarative learning (Neves et al., 2008; Penfield
and Milner, 1958; Winocur, 1985) the striatum has been associated
with implicit/non-declarative learning (Reiss et al., 2005; Wilkinson
and Jahanshahi, 2007). However, as discussed, the classical dichoto-
my may no longer be tenable for the hippocampus, and may be
obsolete for the striatum as well: first, our finding that the connectivity
between the hippocampus and the striatum changes in response to
learning during rest is in line with earlier findings suggesting that
both the hippocampus and the striatum show a dynamic interaction
during various types of learning (see Packard and Knowlton, 2002;
Poldrack and Packard, 2003 for reviews). Moreover, several neuro-
imaging studies have examined the role of the hippocampus and the
striatum during sequence learning using fMRI (Gheysen et al., 2011;
Rose et al., 2011). These results highlight the importance of the MTL
system and its connections with the striatum for perceptual learning,
independent of its nature; i.e. implicit or explicit. Our finding that
connectivity between the hippocampus and the striatum changes is
particularly interesting with regard to their role in reinforcement
learning. Reinforcement learning describes learning by trial and error
to act in a way that maximizes reward (Sutton and Barto, 1998).
Previously, several studies have investigated the theoretical and empirical
relation between perceptual learning and reinforcement signals (Seitz
andWatanabe, 2005; Smith et al., 2009). They showed that reinforcement
learning can account for the learning during performance of a visual
decision task (Law and Gold, 2009) driven by numerous cortical areas
including the striatum (Schultz, 2007).

All these findings – including our own results – indicate that some
learning related changes, and in particular early ones, involve non-
sensory areas. These might involve an enhanced readout of sensory
information as a result of behaviorally improved performance.
In other words, fast learning may arise from changes in the inter-
pretation of the respective sensory representation rather than
changes in the sensory representation itself. More than that, the
distinction between explicit and implicit learning systems seems to
become more and more outdated (Rose et al., 2011).

From a methodological perspective, we present a practical example
of the use of stochastic DCM for the analysis of fMRI resting state data. Li
et al. (2011) established the validity of this method and its ability to
model endogenous fluctuations in hidden neuronal states, thereby
providing a new perspective on how regionally specific signals in fMRI
are generated. Commonly used methods to investigate changes in con-
nectivity are often based on correlations, thereby addressing changes in
so-called functional connectivity. However, functional connectivity
does not support any conclusions about directionality, whereas DCM
allows one to model (context dependent changes in) directed and
possibly reciprocal connections between brain areas. In addition to
deterministic, i.e. “classical”DCM, the newer stochastic DCM accommo-
dates random fluctuations in hidden neuronal and physiological states.
This approach may provide a more plausible perspective on how
regionally specific signals in fMRI are generated.

In conclusion, we provide empirical evidence to show that the
coupling of spontaneous fluctuations of a brain region engaged in
early learning of a sensory task is changed during rest and that these
changes persist for at least 24 h. Previously, it has been shown that
task performance and/or learning leads to changes in the coupling
between brain regions (Seitz et al., 2005; Stevens et al., 2010).
Furthermore, performance in a novel perceptual task has been
associated with the individual variability in functional connectivity
during rest (Baldassarre et al., 2012). Here, we used recent advances in
dynamic causal modeling to examine directed changes in brain connec-
tivity in learning-related areas immediately and one day after learning.
Our key finding – that the coupling between a hippocampal and a
striatal region are best explained by a consolidation model – provides
further evidence for the idea that spontaneous fluctuations are continu-
ously updated and modified by experience dependent plasticity.
More generally, our findings support the view that the adult brain
remains plastic throughout the life-span (May, 2011).
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