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Although lacking a nucleus, platelets are increasingly recognized not only for their

complexity, but also for their diversity. Some 50 years ago platelet subpopulations

were characterized by size and density, and these characteristics were thought to

reflect platelet aging. Since, our knowledge of platelet heterogeneity has grown to

recognize that differences in platelet biochemistry and function exist. This includes the

identification of vanguard and follower platelets, platelets with differing procoagulant

ability including “COAT-platelets” which enhance procoagulant protein retention on

their surface, and most recently, the identification of platelet subpopulations with a

differential ability to generate and respond to nitric oxide. Hence, in this mini-review,

we summarize the current knowledge of platelet subpopulation diversity focusing on

their physical, biochemical, and functional heterogeneity. In addition, we review how

platelet subpopulations may change between health and disease and how differences

among platelets may influence response to anti-platelet therapy. Finally, we look forward

and discuss some of the future directions and challenges for this growing field of

platelet research.

Keywords: platelet subpopulations, vanguard and follower platelets, COAT-platelets, eNOS-based platelet
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INTRODUCTION

Compared to leukocytes, which exist as functionally distinct subpopulations, platelets have
often been considered simple. This general apathy for platelet complexity may stem from the
fact that platelets lack nuclei and because they are so widely recognized for their roles in
hemostasis and thrombosis. However, increasingly platelets are recognized for their biochemical
and functional complexity despite being anucleate. Platelet proteome and transcriptome studies
have revealed that platelets contain nearly 4,000 different proteins (1, 2) and an abundance of
mRNA (3, 4) and miRNA (5–7). It’s also appreciated within the field that platelets play diverse
roles beyond hemostasis including contributing to wound healing, angiogenesis, and immunity
and inflammation (8–11). Pathophysiologically, they are also recognized to contribute to cancer
metastasis (12, 13), as well as to various inflammatory disorders (14, 15). To fulfill these diverse
roles the question arises whether there is predetermined biochemical diversity and functional
heterogeneity among platelets? That is, do platelets subpopulations with predetermined specialized
functions exist?
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HISTORICAL PERSPECTIVES

Initial studies into platelet subpopulations occurred 50 years ago
and focused on characterizing human platelet subpopulations
based on size and buoyant density and largely isolated these
subpopulations by density gradient centrifugation. Studies by
Karpatkin (16) showed that large, dense platelets have greater
glycogen, orthophosphate and adenine nucleotide content than
smaller less dense platelets. The biochemical processes of
glycolysis, glycogenolysis, and protein synthesis were reported
to be greater in large-dense platelets but no differences were
observed in lipid content or synthesis. Large-dense platelets
were shown to aggregate more than small-light platelets largely
due to greater ADP release and lower ADPase activity (17).
Subsequently, large-dense platelets were shown to adhere to
collagen at a faster rate and this was thought to reflect more
surface GPIa/IIa (integrin α2β1) on this subpopulation (18).
Electron microscopy examination of light platelets demonstrated
lower granule content than that of dense platelets, but not
fewer mitochondria (19). Although, currently it’s recognized that
an anuclear programmed cell death limits platelet lifespan (20,
21), the biochemical, ultrastructural, and functional differences
among platelets with differing size and density were thought
to reflect platelet aging with large-heavy platelets representing
young platelets recently released into the circulation while light-
small platelets represented older platelets that have circulated
for a number of days. Using rabbit platelets, Rand et al. (22)
demonstrated that the least dense platelets contained less sialic
acid than the densest. They suggested loss of surface sialic acid
from the least dense platelets was a mechanism by which old
platelets are recognized and removed from the circulation.

Studies by Penington et al. (23, 24) argued that in fact
megakaryocycte heterogeneity was responsible for platelet
heterogeneity and that platelet density does not change with
aging. Based on morphometric studies, they contended that the
three-ploidy classes of megakaryocytes (8n, 16n, 32n) differ in
their organelle content concentration and relate to the density of
their platelet progeny. Large-dense platelets would be expected
to arise from 8n megakaryocytes with greater granule content,
while small-light platelets arise from 32n megakaryocytes. This
view was more in line with that of Paulus that thrombopoiesis
is likely responsible for platelet heterogeneity and not aging in
circulation, but that only a single platelet population exists and
the only size heterogeneity is that inherent to the log normally
distributed population (25). Consistent with this thesis, other
studies demonstrated that in the steady state platelet density does
not change with circulatory age (26, 27), while others still showed
that platelet density may increase with time due to accumulation
of 5-hydroxytryptamine (5-HT) (28).

In addition to categorizing platelets into subpopulations
based on size and density, platelets were also separated
into subpopulations based on volume using counterflow
centrifugation. Platelets with larger volume were shown to
have more rapid and complete aggregation, and to be slightly
denser (29). These studies argued that fundamentally platelets
of different volume have similar function but the absolute
abilities to aggregate and secrete granular contents correlates

with their volume (30). Further, it was argued that platelet
size heterogeneity likely results from their production from
megakaryocytes and that this influences platelet function
independently of time within circulation (30, 31).

Several groups attempted to unify the hypotheses that both
megakaryocyte heterogeneity and platelet time in circulationmay
contribute to platelet heterogeneity and the formation of size
and density-based subpopulations (32–34). However, it’s also
important to note that some discrepancies in characterizing size
and density-based platelet subpopulations may have occurred
due to species differences. It appears rabbit platelets decrease
in density with circulatory age, while in humans high-density
platelets may be enriched with those that may have circulated
longer and accumulated more 5-HT (28). Other characterization
discrepancies may have also occurred due to methodology, and
theoretical aspects of density separation need to be considered
when interpreting early platelet subpopulation studies. As
explained by Martin and Trowbridge if centrifugation is stopped
before equilibrium is reached platelets may be separated based
on a mixture of volume and density variation (35). This problem
appears to be greater for discontinuous vs. continuous gradients
as a greater time is needed to reach equilibrium necessary for
separation of density-based subpopulations. Further, it has been
suggested that platelets held at equilibrium between the opposing
forces of the gravitational field and medium buoyancy may cause
trauma to the platelet potentially causing secretion of granular
contents; thus, potentially changing the characteristics of the
isolated subpopulations (35).

CHARACTERIZATION OF PLATELET
SUBPOPULATIONS BASED ON
DIFFERENTIAL FUNCTION AND
BIOCHEMISTRY

In addition to being characterized by size and density, platelet
subpopulations have also been characterized based on function.
Using a biotinylation technique to label dog platelets in vivo,
it was demonstrated that reactivity to thrombin declines with
platelet circulatory age (36). Similarly, utilizing 35S-labeled
rabbit platelets Hirsh et al. (37) demonstrated that younger
platelets with lower 35S-specific activity adhered to collagen
fibers more readily than older platelets. Alike, two human
platelet subpopulations were shown to have different collagen
adhering kinetics, with 20% of platelets adhering within 1min
and with a second larger subpopulation accounting for 80%
of platelets adhering more slowly between 1 and 60min (38).
The biochemical basis of this finding was unknown; however,
several explanations were proposed. The one favored was the
existence of functionally discrete subpopulations due to the
sharp discontinuity between the two adhesion phases and the
simple kinetic behavior of the second phase. Using time-lapse
videomicroscopy and a microchamber model, Patel et al. (39)
defined platelets that first adhered and spread on collagen as
“vanguard” platelets and those that subsequently tether to and
spread on vanguard platelets or nearby collagen as “followers.”
Whether vanguard and follower platelets represent functionally
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and biochemically distinct platelets was not investigated, but
analysis of platelet deposition showed that adhesion events
occurred randomly.

In addition to characterizing based on function, some studies
characterized platelet subpopulations based on biochemical
differences including the ability to bind adenosine and release 5-
HT (40), as well as the presence or absence of acid phosphatase
although no functional differences were observed (41). However,
biochemical comparison of low vs. high density human platelets
by Opper et al. (42) revealed that low density platelets have
an enhanced intracellular Ca2+ response to thrombin, increased
ADP-ribosylation of the inhibitory G-protein (Giα1−3) and
rho A, and decreased ADP-ribosylation of the stimulatory G-
protein (Gsα), as well as lower levels of the phosphorylated
form of vasodilator-stimulated protein compared to high density
platelets. These biochemical differences likely further explain the
authors’ findings that low density platelets demonstrate enhanced
aggregation in response to thrombin, weaker inhibitory effects
and a smaller rise in cGMP to the nitric oxide (NO) donor
sodium nitroprusside, and a smaller increase in cAMP in
response to prostaglandin E1 compared to high density platelets
(43, 44). The authors proposed that the biochemical basis of
the functional heterogeneity between low and high density
platelets depends on differences in their G- and phospho-
protein signaling within stimulatory and inhibitory signaling
pathways (42). Others suggested that the increased reactivity of
low density platelets may be attributed in part due to elevated
α-granule content (45), although another study suggested α-
granule content is greater in high density platelets (46).

Similar to the findings of Opper et al. (42), which
suggested differences in NO-signaling between low and high
density platelet subpopulations, recently we identified human
platelet subpopulations based on the presence or absence of
endothelial nitric oxide synthase (eNOS-positive and -negative
platelets) and the differential ability to produce NO (47).
We showed that eNOS-negative platelets fail to produce NO,
have a down-regulated soluble guanylate cyclase-protein kinase
G-vasodilator-stimulated protein (sGC-PKG-VASP) signaling

pathway, primarily initiate adhesion to collagen, more readily
activate integrin αIIbβ3, and secrete more of the platelet
activating protease matrix metalloproteinase-2 (MMP-2) than
their eNOS-positive counterparts. eNOS-positive platelets have
an intact eNOS-sGC-PKG-VASP signaling pathway, are more
abundant (∼80% of total platelets) and form the bulk of
an aggregate via greater cyclooxygenase-1-mediated signaling.
However, eNOS-positive platelets ultimately limit aggregate
size via NO generation. It appears that eNOS-based platelet
subpopulations are of the same circulatory age as the levels
of activated caspase-3, the downstream effector of the platelet
internal apoptotic clock (21), within them are equal. Moreover,
eNOS-negative and –positive platelet volume was found to be
equal also (47).

Based on these data, we proposed a novel model of
thrombosis and hemostasis called the seed platelet hypothesis, in
which eNOS-negative platelets initiate adhesion and aggregation
reactions (Figure 1) (47). This initial response arises from
their enhanced adhesiveness and reactivity due to an absence
of endogenous NO generation (48, 49). Decreased sGC-
PKG signaling within eNOS-negative platelets also facilitates
refractoriness to endothelial-derived NO and increases integrin
αIIbβ3 activation (50, 51), which stabilizes initial rolling and
adhesion (52). We further proposed that enhanced MMP-2
secretion by eNOS-negative platelets promotes eNOS-negative
platelet activation and recruitment of eNOS-positive platelets to
the forming aggregate (53–55). eNOS-positive platelets then form
the bulk of an aggregate/thrombus due to their higher COX-
1 content and greater thromboxane A2 generation. However,
eNOS-positive platelets ultimately limit aggregate/thrombus size
via NO generation as both increasing the ratio of eNOSneg

to eNOSpos platelets and pharmacologically inhibiting eNOS
enhances aggregation.

The differential ability of platelets to generate NO has been
shown by others (56). However, how eNOS-based platelet
subpopulations and the seed-platelet model of thrombosis and
hemostasis relate to other models, such as a core and shell
model of hemostatic plug formation by Stalker et al. (57), still

FIGURE 1 | A cartoon summarizing the “seed platelet” hypothesis in which NO-refractory eNOSneg platelets preferentially initiate platelet adhesion and aggregation,

while eNOSpos platelets form the bulk of an aggregate and limit its size. Figure S21. Radziwon-Balicka et al. (47), by permission of Oxford University Press. MMP-2,

matrix metalloproteinase-2; NO, nitric oxide, TXA2, Thromboxane A2.
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needs to be determined. Similarly, what role these subpopulations
play in coagulation and how they relate to subpopulations with
differential procoagulant ability also remains to be seen (58).

CHARACTERIZATION OF PLATELET
SUBPOPULATIONS BASED ON
DIFFERENTIAL PROCOAGULANT ABILITY

For a thorough review of procoagulant platelets we refer readers
to a paper by Reddy and Rand within this series of articles
on the Established and Novel Roles of Platelets in Health and
Disease. However, briefly, it has been long recognized that a
subpopulation of platelets becomes procoagulant exposing a
phosphatidylserine-(PS)-surface upon activation (59). Alberio
et al. (60) described a platelet subpopulation demonstrating
α-granule-derived surface-bound factor V (FV), which they
named COAT-platelets, due to their appearance upon collagen
and thrombin stimulation. This subpopulation accounts for
approximately 30% of platelets and was shown to utilize 5-
HT to retain other α-granule-derived procoagulant proteins
such fibrinogen and thrombospondin on the platelet surface
(58, 61). COAT-platelets may also retain factors VIII, IX,
and X (62), and they may be generated via stimulation of
platelets with thrombin alone (63). These platelets are also
sometimes referred to as “coat” or “coated” platelets due to
their surface retention of procoagulant proteins. Additionally,
heterogeneity within the procoagulant subpopulation itself may
exist wherein procoagulant platelets that are highly PS-positive
and have a sustained increase in Ca2+-signaling surprisingly
aggregate poorly, due in part to a lack of active integrin
αIIbβ3. Conversely, a COAT-platelet subpopulation with lower
intracellular Ca2+-signaling exhibits greater proaggregatory
potential (64). Using mathematical modeling to support their
experimental observations, Yakimenko Alena et al. (65) and
Abaeva et al. (66) suggested that highly PS-positive COAT-
platelets are recruited into developing aggregates by non-COAT
platelets, as a result of a high surface density of α-granule-
derived fibrinogen/fibrin retained on the COAT-platelet surface,
and largely do not bind each other. Others have demonstrated
that in fact integrin αIIbβ3 may initially activate but subsequently
deactivate, while PS surface exposure occurs more slowly in
these COAT-platelets (67). Nonetheless, a model of platelet-based
coagulation was proposed by Heemskerk et al. (68) wherein
two different subpopulations of platelets with differential roles
exist (procoagulant vs. aggregating platelets). Collagen-adhered
platelets, and later in the growing thrombus thrombin-activated
platelets, expose PS on their membranes serving as a substrate
for coagulation factors, thrombin generation, and fibrin coat
formation. Aggregating platelets, due to their activated integrin
αIIbβ3, on the other hand are proposed to be responsible for
contracting and retracting the clot by interacting with fibrin.

Whether all platelets have the capacity to become
procoagulant/COAT vs. aggregating platelet subpopulations
or whether these subpopulations are predetermined requires
further investigation. Studying platelet adhesion to glass some
have argued that all platelets can form these subpopulations

and that they simply reflect snapshots in time of a dynamic
platelet activation process (69). However, multi-parameter
flow cytometry studies of platelet responses to increasing
concentrations of thrombin and CRP-XL showed that only a
fraction of platelets can take on the procoagulant phenotype
supporting the theory of distinct platelet subpopulations (70).

CHANGES IN PLATELET
SUBPOPULATIONS BETWEEN HEALTH
AND DISEASE

Relatively little is known about how platelet subpopulations
change between physiological and pathological conditions,
although recently a number of studies have investigated
procoagulant/COAT“ed” platelet levels in stroke and transient
ischemic attack (71–78). Coated-platelets were demonstrated
to be elevated in patients with large-artery atherosclerotic
stroke compared to small artery lacunar strokes with the
authors suggesting this reflects distinct pathological processes
of ischemic stroke subtypes (71). Similarly, elevated coated-
platelet levels were reported during transient ischemic attacks
(TIA) (79). High coated-platelet levels were also reported to
be associated with early stroke recurrence in large-artery stroke
patients (72, 74); and in patients with asymptomatic carotid
artery stenosis high coat-platelet levels (≥45% of platelets)
improved stroke and TIA prediction (75). Conversely, a pilot
study reported that non-lacunar stroke patients with early
haemorrhagic transformation exhibited lower coated-platelet
levels (78). Likewise, among subarachnoid hemorrhage and
spontaneous intracerebral hemorrhage patients low coated-
platelet levels were associated with increased mortality at 1-
month (76, 77). The association of low levels of coated-platelets
with bleeding events was also noted in a study aimed at evaluating
the diagnostic utility of platelet flow cytometry analysis in
haemorrhagic diathesis patients with normal standard laboratory
workup (80).

Interestingly, a recent study utilizing a microfabricated
chip capable of measuring individual platelet contractile forces
identified platelet subpopulations with varying contractility
(81). This platelet-contraction cytometry revealed generally high
levels of highly-contractile platelets in healthy donors. These
were absent in patients with Wiskott-Aldrich syndrome, and a
subpopulation of platelets with low-contractility was also noted
among a subset of patients with chronic bleeding but normal
clinical haemostasis tests. Whether subpopulations of high- and
low-contractile platelets correspond to subpopulations of coated-
or aggregating-platelet subpopulations remains to be studied.

Older studies characterizing platelets based on buoyant
density and/or volume also demonstrated differences between
platelets of healthy controls and patients. Using continuous
gradients of Percoll to isolate platelets, it was shown that
compared to healthy controls insulin-dependent diabetics
with poor glycemic control have lower density platelets but
with apparently normal granule levels (82). The change in
density profiles was proposed to be due to abnormal platelet
subpopulations, although what appeared to be log normally
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distributed populations were observed (83). A shift toward
an increase in low-density platelet subpopulations was also
observed in patients with hypercholesterolemia and it was argued
that these platelets are more reactive in response to agonist
stimulation (83). Conversely, a small increase in platelet size with
increased surface exposure of integrin αIIbβ3 was noted following
acute myocardial infarction (84).

Interestingly, recent preliminary studies suggest that FACS
separated platelets into the smallest and largest 10% may differ
in some of their RNA transcripts (85). A sub-analysis of the
RNA profiles of these platelet subpopulations demonstrated a
trend in which the large-platelet subpopulation RNA profile
was associated with hemostasis and wound healing, while
the small-platelet subpopulation profile was associated with
vascular cell function likely reflecting a potential differential
ability to uptake RNA from vascular cells. The differential
uptake of RNA by platelet subpopulations may allow for
these subpopulations to serve as novel biomarkers for various
diseases. In this context, tumor-educated platelets (platelets
containing tumor-associated mRNA) have been identified
as a potential platform for blood-based liquid biopsies for
cancer (86, 87). How platelet subpopulations change in
cancer and how these changes impact their mRNA content
is unknown but likely of important significance to liquid
biopsy utility.

DIFFERENTIAL RESPONSES OF PLATELET
SUBPOPULATIONS TO ANTI-PLATELET
DRUGS

Less is still known about how various platelet subpopulations
respond to anti-platelet drugs. Using counterflow centrifugation
to isolate platelet subpopulations of different volume, Jakubowski
et al. (88) demonstrated a correlation between increasing
mean platelet volume and prostacyclin concentration necessary
to inhibit aggregation suggesting greater platelet mass is
associated with decreased inhibitory effect of prostacyclin.
Similar, a study of FACS-sorted platelets into the 20%
smallest and largest subpopulations showed that following
incubation with acetylsalicylic acid (ASA) large platelets
generate more thromboxane B2 (TXB2) compared to the small
platelet subpopulation (89). However, the percent reduction
in TXB2 generation caused by ASA tended to be greater
in the small platelet subpopulation. Potential differences in
response to anti-platelet therapy by platelet subpopulations
may be clinically important as Hoefer et al. (90) have
shown that subpopulations of drug-free/uninhibited platelets
can either intermingle with ASA-inhibited platelets within
an aggregate or form aggregate cores around which ASA-
and P2Y12-inhibited platelets may activate potentially seeding
thrombus formation.

CHALLENGES AND FUTURE DIRECTIONS

Some of the challenges with studying platelet subpopulations
are their identification, labeling and separating for functional

TABLE 1 | List of cytometry techniques conducive to platelet subpopulation

studies.

Technique Some major advantages for platelet

subpopulation studies

References

Confocal/epifluorescence

microscopy

• Visualization of discrete subpopulations

• Compatible with functional studies

(47, 56)

Flow cytometry (FC) • Rapid, multi-parameter characterization

of subpopulations

(47, 58)

Fluorescence activated

cell sorting (FACS)

• Allows for separation of platelet

subpopulations for further analysis

(47, 85)

Laser scanning

cytometry (LSC)

• Rapid measurement of fluorescence and

light scatter of slide-based specimens

• Microscope-based enables visualization

and morphological assessment

(93)

Interfacial platelet

cytometry (iPC)

• Minimal sample preparation

• Allows for studying subpopulation

interactions with protein surfaces

(94)

Platelet contraction

cytometry

• Enables measurement of contractile

forces of individual platelets adhering

on substrates

(81)

Mass cytometry • Detects multiple heavy metal

isotope-conjugated antibodies on

platelet surface

• Overcomes challenges with spectral

overlap and eliminates need for

compensation associated with FC

• Greatly increases number of parameters

that can be analyzed

(95)

FlowRNA • Enables RNA measurement within

specific cell subpopulations due to

concurrent measurement of protein

expression

• Capacity to multiplex

RNA measurement

(96)

studies. In the past these challenges were met with advances in
research methodology and technology, such as the application
of flow cytometry to platelet studies (91, 92). Recent advances
in cytometry (Table 1) that have enhanced our ability to study
platelet subpopulations include that application of fluorescence
activated cell sorting and confocal microscopy (47), laser
scanning cytometry (93), interfacial platelet cytometry (94),
platelet-contraction cytometry (81), and mass cytometry (95).
Moreover, the application of flowRNA technology to platelets
studies may further help with RNA profiling of platelet
subpopulations (96). These technologies will not only be crucial
in aiding to delineate the roles of various platelet subpopulations
in hemostasis and thrombosis, but also to understanding
their potential differing roles in wound healing, angiogenesis,
malignancy, and immunity and inflammation. Lastly, isolation
of functionally distinct platelet subpopulations may be desirable
for platelet concentrate preparation and various transfusion
medicine applications (97, 98).
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