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Abstract

The firing of neurons throughout the brain is determined by the precise relations between

excitatory and inhibitory inputs, and disruption of their balance underlies many psychiatric

diseases. Whether or not these inputs covary over time or between repeated stimuli remains

unclear due to the lack of experimental methods for measuring both inputs simultaneously.

We developed a new analytical framework for instantaneous and simultaneous measure-

ments of both the excitatory and inhibitory neuronal inputs during a single trial under current

clamp recording. This can be achieved by injecting a current composed of two high fre-

quency sinusoidal components followed by analytical extraction of the conductances. We

demonstrate the ability of this method to measure both inputs in a single trial under realistic

recording constraints and from morphologically realistic CA1 pyramidal model cells. Future

experimental implementation of our new method will facilitate the understanding of funda-

mental questions about the health and disease of the nervous system.

Author summary

Most neurons in the brain receive synaptic inputs from both excitatory and inhibitory

neurons. Together, these inputs determine neuronal activity: excitatory synapses shift the

electrical potential across the membrane towards the threshold for generation of action

potentials, whereas inhibitory synapses lower this potential away from the threshold.

Action potentials are the rapid electrochemical signals that transmit information to other

neurons and they are critical for the information processing abilities of the brain.

Although there are many ways to measure either excitatory or inhibitory inputs, these

methods have been unable to measure both at the same time. Measuring both inputs

together is essential towards understanding how neurons integrate information. We

developed a new analytical method to measure excitatory and inhibitory inputs at the

same time from the voltage response to injection of an alternating current into a neuron.

We describe the foundation of this new method and find that it works in biologically
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realistic simulations of neurons. By using this technique in real neurons, scientists could

investigate basic principles of information processing in the healthy and diseased brain.

Introduction

Neuronal firing is orchestrated by the interplay of excitatory and inhibitory inputs. Therefore,

studying their relationship has been crucial to solving fundamental questions in cellular and

system neuroscience. Disrupted relations between these inputs were suggested to accompany

many neurological diseases and in particular epileptic seizures. It is commonly believed that

such seizures are accompanied and even caused by a disruption of excitation-inhibition ratio

and their temporal relationships [1–3].

The most widely used method to measure inhibitory and excitatory inputs in isolation is

the voltage clamp technique. To reveal excitatory synaptic currents the membrane potential is

voltage clamped near the reversal potential of inhibition (near -80 mV) and inhibitory synaptic

currents are revealed when the voltage is clamped near the excitatory reversal potential (near 0

mV). Voltage clamp recordings have been used in this manner to study mechanisms of feature

selectivity of cortical cells belonging to various modalities [4–13]. Current clamp recordings

also allow for the isolation of excitatory and inhibitory conductances, which is done by inject-

ing constant positive or negative currents which bring the membrane potential near the rever-

sal potential of these two input types [8–10,14–18].

Voltage and current clamp approaches share several similarities. In both cases, excitation

and inhibition are recorded in different trials and conductances are estimated by fitting the

averaged data with the membrane potential equation (Eq 1 below). Hence, these methods pro-

vide only an average picture and thus fail to capture the instantaneous and trial-by-trial based

insight into the relations between excitation and inhibition.

The instantaneous relation between excitation and inhibition in-vivo was revealed using a

different approach, relying on the finding that the membrane potential of nearby cortical cells

in anesthetized animals is highly synchronized [19,20]. This approach consists of depolarizing

one cell to reveal its inhibitory inputs while simultaneously hyperpolarizing a neighboring cell

to reveal its excitatory inputs. Doing this showed that excitatory and inhibitory synaptic inputs

are highly correlated in anesthetized and awake rodents [21,22] and was used to study the

degree of correlation during oscillatory neuronal activities [23]. However, this approach

depends on making the recordings from highly correlated cells, mostly observed in deeply

anesthetized animals. Methods for estimation of excitatory and inhibitory inputs of a single

cell during single trials were previously developed [24–28]. However, these methods make sig-

nificant assumptions about the dynamics and statistics of the inputs. Importantly, all these

methods rely on the occurrence of membrane potential fluctuations when estimating excit-

atory and inhibitory conductances. Clearly, changes in conductance sometimes are not accom-

panied by any change in membrane potential, as expected when a cell receives tonic shunting

synaptic input with a reversal potential near the resting potential of the cell.

We describe a new theoretical framework for simultaneously measuring both excitatory

and inhibitory conductances under current clamp in a single trial with high temporal resolu-

tion, without making statistical assumptions about the inputs. It is based on frequency analysis

of the response of neurons when injected with a current composed of two sinusoidal compo-

nents and allows measuring both the excitatory and inhibitory conductances simultaneously

with membrane potential as a function of time. We demonstrate this method in-silico using

simulations of a point neuron receiving excitatory and inhibitory synaptic inputs as well as in
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a realistic pyramidal cell model when synapses are distributed further away from the soma.

Finally, we describe the limitations of this approach in whole cell patch clamp recordings

obtained using contemporary intracellular amplifiers.

Results

Transformation of membrane potential and total conductance to E and I

conductances

We sought to develop a method that provides a way to simultaneously measure the excitatory

and inhibitory conductances in a single trial with high temporal resolution during current

clamp recording. We begin with the membrane Eq 1 for passive synaptic inputs of a point neu-

ron, which can be rearranged to isolate the excitatory and inhibitory conductances as shown

in Eq 2.

C �
dVðtÞ
dt
¼ � gl VðtÞ � Vlð Þ þ ge tð Þ VðtÞ � Veð Þ þ gi tð Þ VðtÞ � Við Þ � I tð Þð Þ ð1Þ

Replacing V(t)−Vl, V(t)−Ve, V(t)−Vi with Vl(t), Ve(t), Vi(t) respectively and assuming that

the total conductance equals the sum of the inhibitory and excitatory conductance gs(t) = gi(t)
+ge(t) we get:

geðtÞ ¼
C � dVðtÞdt þ gl � V

lðtÞ þ gsðtÞ � ViðtÞ � IðtÞ
ðViðtÞ � VeðtÞÞ

; giðtÞ ¼ gsðtÞ � geðtÞ ð2Þ

Eq (2) shows that the two inputs can be isolated if the following parameters are known: V
(t), membrane voltage; gl, leak conductance; gs(t), total synaptic conductance; Vl, Ve, Vi, equi-

librium potentials of the individual conductances; C, membrane capacitance; I, stimulus cur-

rent. Fig 1 shows how this equation works in a simulated point neuron where these parameters
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Fig 1. Ge and gi can be obtained from V(t) and total g. A. Simulation of correlated excitatory (green) and inhibitory (red) synaptic inputs (inhibition delayed by 4 ms

after excitation), which depressed according to a mathematical description of short-term synaptic depression (STD, Markram and Tsodyks, 1997). These are the inputs

the method aims to reveal. B. Membrane potential simulation of a passive point neuron (R = 300MΩ, C = 0.15nF, Euler method, dt = 0.0005s) receiving the inputs in A,

with the total conductance shown below. We assume that these two vectors are measurable. A short test current pulse was injected at the early part of the trace. C The

result of transforming V(t), its derivative (not shown) and the total synaptic conductance into ge and gi using Eqs (1 and 2).

https://doi.org/10.1371/journal.pcbi.1009725.g001
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are indeed known. We demonstrate this transformation by showing depressing excitatory and

inhibitory inputs as well as a step change in conductance. However, it works for any type and

dynamic of excitatory and inhibitory inputs.

How do we find these parameters under experimental conditions? The equilibrium poten-

tials are generally assumed to be known and determined from intracellular and extracellular

ion concentrations. The leak conductance and membrane capacitance can be measured when

injecting hyperpolarizing current steps. The voltage is also easy to resolve during the current

clamp. However, developing a method to record the membrane potential and at the same time

also measure the conductance at each time point has been challenging. As we describe below,

we can theoretically estimate the total conductance of the cell by measuring the voltage

response during injection of a current composed of two high-frequency sinusoidal compo-

nents. We start with impedance analysis of passive circuits representing a simplified point neu-

ron with a patch clamp pipette and describing the relationships between the impedance and

cell conductance.

Impedance-conductance relationship in a passive point neuron

To develop a method that can be practically used for whole cell patch recordings, we included

the resistance of the patch pipette in our analysis. As shown below, the resistance of the elec-

trode affects the measurement of the cell’s impedance and thus cannot be ignored. We ana-

lyzed in the frequency domain the impedance of a circuit composed of a recording electrode

(Rs) and a simplified point neuron (composed of a conductance, g(t) (equal to gl+ge(t)+gi(t))
and a capacitor, C). The impedance of this circuit is given by Eq 3 (w = 2πf, j is the imaginary

unit and f is the frequency in Hertz). The cell conductance (g(t)) and the pipette resistance

(Rs(t) can vary over time, and so consequently also the impedance of the circuit (Z(t)).

Z f ; tð Þ ¼ Rs tð Þ þ
1

ðgðtÞ þ j � w � CÞ
¼ Rs tð Þ þ

gðtÞ
gðtÞ2 þ ðw � CÞ2

�
j � w � C

gðtÞ2 þ ðw � CÞ2
ð3Þ

Fig 2 illustrates the relationships between the impedance and g for various frequencies (for

constant values). It also shows that in the presence of Rs, impedance-frequency curves intersect

each other as frequency increases, resulting in a positive relationship between circuit imped-

ance and g for a large range of g (compare Fig 2A and 2C). The presence of Rs also keeps the

phase almost constant for different frequencies and g values Fig 2D). Thus the electrode resis-

tance has a prominent effect on the total impedance of this circuit and should not be ignored

when injecting high frequency sinusoidal current into cells.

The in-silico experiment

In the next sections, we show the response of a point neuron to an injection of a current (Fig

3D) composed of two sinusoidal components (Eq (4), w1 = 2πf1, w2 = 2πf2):

IðtÞ ¼ I1 � sinðw1 � tÞ þ I2 � sinðw2 � tÞ ð4Þ

can be used to measure changes in excitatory and inhibitory conductances imposed on the

model (Fig 2B) in a single trial. Although the voltage response in our simulation fluctuates

across a large range of more than 35mV (Fig 3C), most of the drop of voltage occurs on the

electrode resistor, as seen when we set Rs to zero (Fig 3E). Due to the low-pass filtering of the

input by the passive properties of the cell when injecting high frequency sinusoidal current,

the fluctuations of the voltage across the membrane itself are extremely attenuated, resulting in

less than 6mV peak to peak amplitudes. Such small fluctuations are unlikely to recruit any volt-

age-gated intrinsic current. Note that the value of the electrode resistance accounts for both

PLOS COMPUTATIONAL BIOLOGY Simultaneous measurement of excitatory and inhibitory conductances

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009725 December 28, 2021 4 / 24

https://doi.org/10.1371/journal.pcbi.1009725


10 0 10 2

Frequency (Hz)

1

10

100

200

ab
s(

Z)
 (M

Ω)
 

10 nS
30 nS
50 nS
70 nS
90 nS
110 nS

0 100 200
Cell g (nS)

0

1

2

3

4

5

6

7

8

ab
s(

Z)
 (M

Ω)

-1.5

-1

-0.5

0

0.5

1

1.5

Phase(Z) (rad)

f = [50:50:500] (Hz)

10 0 10 2

Frequency (Hz)

30

100

200

ab
s(

Z)
 (M

Ω)

10 nS
30 nS
50 nS
70 nS
90 nS
110 nS

0 100 200
Cell g (nS)

30

30.5

31

31.5

32

32.5

33

33.5

34

34.5

35

ab
s(

Z)
 (M

Ω)

-1.5

-1

-0.5

0

0.5

1

1.5

Phase(Z) (rad)

f = [50:50:500] (Hz)
A B C D

g
g

Rs

Fig 2. Impedance frequency-curves of passive electrical circuits for different conductances. A. Absolute impedance as a function of frequency for different values of

the model conductance. Note that none of the curves intersect. B. Absolute impedance curves as function of conductance together with phase curves between real and

imaginary parts of the impedance. Each line represents a different frequency (50Hz to 500Hz, steps of 50Hz, from lowest (pale blue or red) to highest (deep colors) as

indicated by the text (Fr = [50:50:500]) above. Also presented are phase curves between voltage and current for the same frequencies. C-D. The same but when the RC

circuit is also connected in series to a resistor (Rs). Note in c that curves intersect each other at high frequencies and in d that the phase is almost constant. Fixed circuit

parameters: Rs = 30MΩ, C = 0.15nF.

https://doi.org/10.1371/journal.pcbi.1009725.g002

0 1 2 3 4

-100
-75
-50
-25

0
25

V
ol

ta
ge

(m
V)

Membrane poten�al

0 1 2 3 4
Time (s)

-100
-75
-50
-25

0
25

Vo
lta

ge
 (m

V)

Recorded voltage

0 1 2 3 4

-100
-75
-50
-25

0
25

Vo
lta

ge
 (m

V)

Recorded voltage

0 1 2 3 4
-1

0

1

Cu
rr

en
t (

nA
) Current

0 1 2 3 4
Time (s)

0

10

20

30

40

50

Co
nd

uc
ta

nc
e 

(n
S

)

ge and gi inputs

0 1 2 3 4

-10

0

10

Vo
lta

ge
 (m

V)

BandPass V(f1)

0 1 2 3 4

-10

0

10

Vo
lta

ge
 (m

V)

BandPass V(f2)
0 1 2 3 4

-0.5

0

0.5

Cu
rr

en
t (

nA
) BandPass I(f1)

0 1 2 3 4
Time (s)

-0.5

0

0.5

Cu
rr

en
t (

nA
) BandPass I(f2)

A

E

C

DB

F

H

G

I
0 1 2 3 4

Time (s)

30

31

32

Im
ed

an
ce

(M
)

Impedance
J

1 = | ( (
1 ) )( (

1 ) ) | 

2 = |
( ( 2

) )

( ( 2
) )
| 

Fig 3. Measurement of total impedance in a single trial -simulation of a point neuron. A. Simulated membrane potential of a point neuron when receiving
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described in b and injected with a current composed of two sinusoidal components (d, 0.375nA, 210Hz and 315Hz). ‘Recording’ was made via an electrode of

30MΩ and thus most of the voltage drop due to the injected current occurred across the electrode. E. The actual voltage change across the membrane was small

(as ‘recorded’ when electrode resistance was set to zero). F-I. voltage and current traces when filtered at the two frequencies used to compose the current. Note

for the small fluctuations in voltage. J Impedance curves for each of the two frequencies obtained by dividing the Hilbert transform of the voltage and current
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https://doi.org/10.1371/journal.pcbi.1009725.g003
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the pipette and access resistance. In our our simulation we set the electrode resistance to

30MΩ, which is higher than for the typical access resistance in in-vitro recordings, but well

within the range of in-vivo recordings [29]. The current and the voltage are used to calculate

all the passive properties of the simulated cell in a single trial (i.e., Rs(t), g(t) and C). The com-

putations are all analytical and approximation is done only when estimating the cell’s capaci-

tance as shown below. As described above, estimating the cell’s conductance allows us to

measure the excitatory and inhibitory conductances.

Measurement of the cell’s total conductance

The first step towards measuring the cell’s excitatory and inhibitory conductances using injec-

tion of sinusoidal currents is to measure its total capacitance. The cell’s capacitance is usually

estimated from the response to a step current. Other methods for such estimation are also

available, such as using a short pulse [30,31] and variance analysis of the response to injection

of noise [32]. Here we show that a cell”s capacitance can be well estimated from the response

to either one of the two frequencies composing the sinusoidal current (Eq (4)). We rely on the

assumption that when the frequency of the current is high (w � C>> g(t)2), we can neglect g
(t)2 in the denominators of the second and third terms in Eq 3. Hence, at such frequencies the

electrode resistance (Rs) is relatively larger than the second term, and thus the second term can

be neglected. In this case, the total impedance of the circuit is mostly determined by the elec-

trode resistance and the capacitance of the cell, as the latter draws most of the sinusoidal cur-

rent that is injected into the cell. Here we ignore any stray capacitance in the recording system,

such as of the recording pipette, but below we show that this capacitance can be partially com-

pensated offline. The capacitance of the cell can be estimated from the voltage amplitude and

phase relationship between the voltage and the current. These relationships can be approxi-

mated by Eq (5) (see also the phase curves in Fig 2D) obtained from Eq 3 when w�C>>g.

Z fð Þ � Rs �
j

w � C
ð5Þ

For such an estimation to be valid (i.e., deriving Eq (5) from (3)), the frequency of each one

of the two current components has to be sufficiently high. For example, for a cell with a mean

conductance of 1/100MΩ and total capacitance of 0.15nF, recorded with 10MΩ electrode (Rs),
a ratio of ~88 between (w�C)2 and g2 will be obtained at 100Hz. Since the impedance of the sec-

ond term in Eq (3) for this example is ~1MΩ, much smaller than Rs (10MΩ), we neglect this

term. Thus, the capacitance can be obtained from Eq (5), if we can estimate the electrode resis-

tance and the phase relationship between the current and the voltage. We do this in a single

trial when sinusoidal current is injected, by first measuring the electrode resistance (Rs,est)
from the ratio of the absolute values of the fast Fourier Transform (FFT) of the voltage and the

current at the frequency of the injected current, after both traces were bandpass filtered at one

of the two frequencies (F1 or F2, using ‘bandpass’ Matlab function, implementing finite

impulse response (FIR) filter). Importantly, this calculation is performed for a time window

within which no stimulation is delivered (e.g., 1 second before stimulation). The two vectors

(FV, FI bandpass filtered voltage and current) are then used to estimate Rs. For the measure-

ment of the capacitance we provide a rough estimation of Rs, denoted with an asterisk. A more

precise estimation of Rs is provided later.

R�s;est ¼ absðfftðFVÞ=absðfftðFIÞÞ; ðat F1 or F2Þ ð6Þ

The phase between FV and FI is calculated from the Hilbert transform of FV (H operator,
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either for the F1 or F2) using the ‘hilbert’ Matlab function and averaging over time:

yest ¼ angleðHðFVÞÞ � angleðHðFIÞÞ ð7Þ

Averaging is performed for the same time window as above, within which no stimulation is

delivered (e.g., 1 second before). The trigonometric relationships between the real and imagi-

nary parts in Eq (5) are described in Eq (8), allowing to estimate the cell’s total capacitance

given that Rs and θest are measured as described in Eqs (6) and (7):

Cest ¼ 1=absðtanðyestÞ � R
�

s;est � wÞ ð8Þ

In the example shown in Figs 2 and 3, the real capacitance was set to 0.15nF and was esti-

mated as 0.149nF. Note, that estimation of C can also be obtained when setting Rs to zero at a

similar accuracy.

We then use the estimated capacitance of the cell to measure the cell’s conductance and to

obtain a more accurate measurement of the electrode resistance, both over time in a single

trial. In this computation these values will be measured based on the analytical solution of Eq

3, this time without making any approximations. Here we use the fact that the current contains

two sinusoidal components having two different frequencies (F1 and F2, e.g., 210Hz and

315Hz as used in the example). Since Z(f) decreases with increasing frequency (Fig 2), increas-

ing the frequencies, although it allows higher temporal resolution, will reduce the signal to

noise ratio in the presence of noise. The voltage and the current are then bandpass filtered at

the two frequencies (Fig 3F–3I, due to screen resolution are displayed as patches of colors).

Note the small modulations in the bandpass filtered voltage signals, which are in the order of

about 1mV. These modulations result from changes in the cell’s conductance during the simu-

lation of the synaptic inputs following the relationships between them as shown in Fig 2. For

each bandpass filtered voltage and current trace: FV1(t), FV2(t), FI1(t), FI2(t) we computed the-

hilbert transforms (HFV1(t),HFV2(t),HFI1(t),HFI2(t), using the ‘hilbert’ Matlab function).

These complex vectors are then used to calculate the impedance of the cell at the two frequen-

cies over time:

Z1ðf1; tÞ ¼ HFV1ðtÞ=HFI1ðtÞ ð9Þ

Z2ðf2; tÞ ¼ HFV2ðtÞ=HFI2ðtÞ ð10Þ

The absolute values of these complex vectors, shown in Fig 3J, demonstrate curves with a

shape that is similar to that of the total conductance of the cell (leak plus synaptic conduc-

tances). Note that when the conductance of the cell is increased during activation of these

inputs, the impedance is also elevated. This only happens in the presence of Rs, as shown in

Fig 2.

These two impedance vectors are then used together to solve Eq 3 and obtaining a solution

for Rs(t) and g(t) (when z16¼z2, C is the estimated capacitance). To this end we used Mathema-

tica (Wolfram) to solve the two equations for absolute values of z1 and z2 (“Solve[Abs (r + 1/(g

+ I�w1�c)) = = Abs (z1) && Abs (r + 1/(g + I�w2�c)) = = Abs (z2), {r, g}]”, I = imaginary unit

in Mathematica (Wolfram)) which gives the following solutions for Rs and g (here Z1 and Z2
are complex time dependent vectors, j is the imaginary unit, and C is the estimated
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capacitance):

Rs;estðtÞ ¼ ð1=ð2 � j � cðw1 � w2ÞÞÞ � ðj � cðw1 � Z1 � w2 � Z1 þ w1 � Z2 þ w2 � Z2Þ þ ðð� j � cðw1

� Z1 þ w2 � Z1 � w1 � Z2 þ w2 � Z2Þ
2
� 4 � j � cðw1 � w2ÞðZ1 � Z2 þ j � c � w1 � Z1 � Z2

� j � c � w2 � Z1 � Z2ÞÞ
0:5
Þ ð11Þ

gestðtÞ ¼ � j � ðjþ c � Rs;estðtÞ � w1 � c � w1 � Z1Þ=ðRs;estðtÞ � Z1Þ ð12Þ

In Eqs (11) and (12) z1, z2 as well as Rs,est(t) are time dependent variables. Identical estima-

tion will be obtained in Eq 12 after replacing w1 and z1 with w2 and z2. In Fig 4A, we again plot-

ted the two impedance curves and also included the electrode resistance (Rs,est(t)), which is

only slightly larger than its real value used in the simulation. The estimated total conductance

is plotted in Fig 4C. Note that the estimated total conductance is almost identical in shape and

magnitude to the sum of the leak, excitatory and inhibitory conductances used to simulate the

membrane potential in this example.

Estimation of the excitatory and inhibitory conductances from cell’s

conductance and membrane potential

After estimating the total conductance, Eqs (1) and (2) are used to compute the excitatory and

inhibitory conductances as discussed above. Since sinusoidal current is injected into the cell

(with two frequency components) we bandstop filter around each frequency (+- 5Hz) to

G(t)=f(|Z1|,|Z2|,f1,f2,c,t)

ge(t) = f(g(t),c,Vm(t))
gi(t)  = f(g(t),c,Vm(t))
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https://doi.org/10.1371/journal.pcbi.1009725.g004
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obtain a clean version of the membrane potential. Before we use Eqs (1) and (2), we need to

calculate the resting membrane potential and its corresponding leak conductance. We do this

by finding the mean voltage in the cleaned membrane potential for the lower 5th percentile of

the total conductance vector, which we assume reflects the resting state at which no synaptic

inputs are evoked (i.e, gl,est). The corresponding membrane potential values for this 5th per-

centile conductance were used to calculate the mean resting potential (Vl). The synaptic con-

ductance is simply given by: gs,est(t) = gest(t)−gl,est (the difference between total conductance

and leak conductance). In the transformation presented in Eqs (1) and (2), we assume that the

reversal potentials of excitation and inhibition are available to us (i.e., 0mV and -70mV). The

capacitance and total conductance are obtained as described above. The results of these com-

putations are shown in Fig 4D. Our calculations revealed that the estimated conductances are

almost identical to the real inputs of the simulated cell (compare Figs 3B to 4D). We note that

our method allows estimating the conductances even when tonic input exits, as demonstrated

in the step change in excitation and inhibition (shown between 3 to 4 seconds). In fact, the

Pearson correlation between the real inputs and the estimated inputs for this simulated exam-

ple were extremely high: 0.999 for excitation and 0.996 for inhibition (Fig 3E).

Computing the excitatory and inhibitory conductances of a cell embedded

in a balanced network

We asked if our approach can be used to reveal the underlying excitatory and inhibitory con-

ductances of a model cortical neuron embedded in an active network where it receives excit-

atory and inhibitory inputs. Therefore, we used a simulation of a cortical network at a

balanced asynchronous state [33] to obtain the excitatory and inhibitory synaptic inputs of a

single cell (kindly provided by Dr. Michael Okun, University of Leicester). We used these con-

ductances in a simulation of a single cell, in which we injected a current with two sinusoidal

components (210 Hz and 315Hz) via a 50MΩ electrode and measure the response of the cell,

before (Fig 5) and after filtering out the two sinusoidal components from the membrane

potential (Fig 5B, black trace, which is superimposed almost perfectly with the one obtained

without current injection, blue trace).

We then used our computations to estimate the excitatory and inhibitory conductances

(Fig 5C and 5D). Note, however, that for both inputs the estimated conductances are more

negative than expected. This is simply because the leak conductance was estimated from the

5th percentile of the total conductance of the cell, but since synaptic activity persisted through-

out the trace, the leak conductance reflects a mixture of the true leak conductance and some

baseline synaptic activity. Nevertheless, the estimated excitatory and inhibitory synaptic con-

ductances were very similar to those used as inputs (Fig 5E and 5G), and similarly to the real

inputs, estimated E and I conductances were highly correlated (Fig 5F). Our approach was also

successful in measuring E and I inputs when they are not correlated (Fig 5H and 5J, by shifting

the inhibitory input by 10 seconds relative to excitation). Indeed, as expected for this case, no

correlation was measured between the measured inputs (Fig 5I). In summary, our approach

allows accurate estimation of excitatory and inhibitory inputs in various conditions without

any need to take into account the dynamic and statistical properties of the excitatory and

inhibitory inputs.

Measurement of E and I inputs during large variations in access resistance

Changes in access resistance due to incompletely ruptured membrane or other due to move-

ment of the recorded cell and preparation, pressing the pipette onto the membrane, are well-

known limitations of whole cell patch recordings. However, one of the advantages of the
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approach is in its ability to track changes in the electrode and access resistance and taking

them into account when calculating the total conductance of the cell with a high temporal res-

olution. We demonstrate it by simulating rapid changes in the electrode resistance during the

in-silico recordings (Fig 6, identical synaptic inputs to those used in Fig 3). These variations

led to a noisy impedance measurement (Fig 6A). However, since we can measure the access
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resistance over time (Rs(t)est) and total g(t) at the same time (Eqs (11) and (12)), followed by

measurement of excitation and inhibition as described in Eq (2), the changes in the electrode

resistance had no apparent effect on the ability to accurately estimate the inhibitory and excit-

atory conductances (Fig 6D and 6E).

Measurement of E and I inputs in the presence of realistic noise

Next we asked how sensitive our measurements are in the presence of realistic noise. There-

fore, we used a typical patch electrode to record a voltage trace in a slice setup when position-

ing the electrode outside a neuron (kindly provided by Dr. Alexander Binshtok, Hebrew

University). We then added this noise to our simulated voltage prior to the measurement of

excitation and inhibition (Fig 7). A sample of the voltage in the absence of sinusoidal current

injection is shown in the inset of Fig 7A (voltage scale bar is 0.5 mV). Despite the presence of

such noise (standard deviation of 0.04mV), and a concomitantly noisier measurement (Fig

7D) of excitation and inhibition, their values closely matched those we imposed as inputs in

the simulation (Fig 7E).

Compensation for electrode capacitance

In the above computations we assumed that the recordings are made with a pipette of zero

capacitance. However, electrode capacitance can greatly affect the measurement using our

novel algorithm. Most of the stray capacitance of recording pipettes is formed by the separa-

tion of the solution inside vs. outside the glass pipettes. Experimentally, it can be reduced but

not eliminated by coating the pipette with hydrophobic material [34]. Pipette capacitance (Cp,

G(t)=f(|Z
1 |,|Z

2 |,f
1 ,f

2 ,c,t)

ge(t) = f(g(t),c,Vm(t))
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illustrated in Fig 8) can also be neutralized by the electronic circuit of the intracellular ampli-

fier, using a positive feedback circuit. In our in-silico experiment, we show that Cp can greatly

affect the measurement, as pipette capacitance draws some of the injected sinusoidal current.

As a result, the impedance measurements for the two frequencies (z1 and z2) are smaller than

expected from the cell and Rs alone (Fig 8B, Rs is 20MΩ and the curves are well below this

value). This, in turn, results in a much higher leak conductance and a completely wrong esti-

mation in the synaptic conductances based on Eqs (11) and (12). Altogether, our estimations

can be flawed, leading to negative evoked inhibitory conductance (Fig 8D).

To compensate for the impedance reduction due to the pipette capacitance we estimated

Cp and then used this value to correct the measured impedances. Here we show the theoretical

admittance (Y, Y = 1/Z) at each of the two frequencies for the equivalent circuit of a cell

recorded with a pipette that has stray capacitance, as shown in Fig 8. The second terms in the

following Equations depict the admittance of the stray capacitance (Eqs (13)–(15) were derived

from the circuit that is presented in Fig 8, G is the cell’s total conductance).

1=Z1 ¼
1

Rs þ 1

Gþj�w1�C

þ j � w1 � Cp ð13Þ

1=Z2 ¼
1

Rs þ 1

Gþj�w2�C

þ j � w2 � Cp ð14Þ

G(t)=f(|Z
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2 |,f
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From these two equations and replacing 1=ðRs þ 1

Gþj�w1�CÞ with Y1 (and Y2), Cp is given by:

Cp ¼
ð1=Z1 � 1=Z2Þ � ðY1 � Y2Þ

jðw1 � w2Þ
ð15Þ

However, the value of Y and Y2 are unknown and are those we seek. We found, however,

that the second term (Y1-Y2) can be neglected as it is much smaller when compared to the

value of 1/Z1−1/Z2. For example, for the parameters used in this simulation, the ratio between

the latter and first terms is ~200, clearly justifying our next approximation in which we use in

the measured impedance curves, as made using Eqs (9) and (10) (shown as measured Z1 and

Z2 below, both are time dependent).

Cp;est �<
ð1=Z1 � 1=Z2Þ

jðw1 � w2Þ
> ð16Þ

We then use this estimated value of Cp (averaged for a selected time window (e.g., 1S) before

the stimulation under the assumption that synaptic inputs are silent during this time) to calcu-

late the estimated impedance of the cell and the electrode alone, as theoretically expected

(Z0 ¼ 1=Y 0 ¼ Rs tð Þ þ 1

gðtÞþj�w1�C) which is done by subtracting from the two measured Z curves

the Cp,est component following rearranging Eqs 13 and 14:

1=Z0
1
¼ 1=Z1 � j � w1 � Cp;est ð17Þ

1=Z0
2
¼ 1=Z2 � j � w2 � Cp;est ð18Þ

The new Z0 vectors are then used as the inputs as described above in Eqs (11) and (12) and the

subsequent process as described above. This approach greatly improved the measurement of
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excitation and inhibition (Fig 8E–8G). Hence, this component in the analysis, which can be switched

on and off, can help resolve the analysis of real recordings, where stray capacitance always exists.

Measuring synaptic conductances in morphologically realistic neurons

To assess how our method resolves dendritic conductances, we simulated a morphologically

realistic CA1 pyramidal cell [35]. We uniformly distribute 50 inhibitory and 50 excitatory syn-

apses proximal to the soma. We realized that due to current escape of the injected sinusoidal

current to the dendrites, the estimated leak conductance is much larger than its actual value.

In the case of proximal synaptic inputs, less current is escaping towards the dendrites during

activation of these inputs when compared to pre-stimulation conditions. We compensated for

this change by dynamically altering the strength of the leak conductance at each time point

based on the estimated total synaptic conductance before calculating the excitatory and inhibi-

tory conductances (Eqs (1) and (2)) by using this empirical equation:

g0lðtÞ ¼ glð1 � e
� ðgsðtÞ=glÞ

2

Þ ð19Þ

Such change is equivalent to a dynamic change in the electrotonic length of cells, known to

cause space clamp errors [36–38]. It shows that for weak proximal synaptic input this function

strongly reduces the newly calculated leak conductance (g0l(t)) as expected, and that this allows

to compensate for the current escape. However, when the synaptic inputs get stronger the

function increases the leak, as less current is expected to escape to the dendrites due to the

shunting effect of the input.

Although those synapses are on average 129.92μm (±47.83μm SD) away from the soma, our

method resolves the excitatory and inhibitory conductances in a single trial at least as well as

the voltage clamp measurements do during two separate trials. When the synapses are moved

further away, to an intermediate distance of 238.69μm (±39.71μm SD), our method underesti-

mates the conductance to the same extent as voltage clamp (Fig 9B). Under most biological

conditions synapses are not constrained to a narrow part of the dendrite. Therefore, we uni-

formly distributed synapses anywhere on the apical dendritic tree (Fig 9C). This resulted in

synapses with an average distance to the soma of 309.92μm (±164.46μm SD). In this case, our

method still follows the conductances but underperforms compared to voltage clamp. Because

the measurement quality seemed to decrease with distance, we did more simulations to quan-

tify the relationship between somatic distance and recording quality.

Conductance measurements of proximal inputs are stable and reliable

To investigate the relationship between measurement quality and synaptic distance to soma, we

simulated a single excitatory and a single inhibitory synapse at the same dendritic segment. As

above, we found that we can reliably isolate the conductances when the synapse pair is close to the

soma (Fig 10A). At an extremely distal synapse localization, the measurement becomes unreliable.

Even the voltage clamp ceases to follow the temporal dynamics. To quantify the extent to which

our measurement follows the temporal dynamics of the current we calculated the correlation coef-

ficient between measurement and true conductance. We found that the measurements are very

reliable for synapses below 400μm somatic distance (Fig 10C). Above that distance, the measure-

ment quality breaks down abruptly for the excitatory conductance (Fig 10B and 10C).

Discussion

We describe a novel framework to estimate the excitatory and inhibitory synaptic conduc-

tances of a neuron under current clamp in a single trial with high temporal resolution while
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https://doi.org/10.1371/journal.pcbi.1009725.g009
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tracking the trajectory of the membrane potential. We show that the method allows estimating

these inputs also in a morphologically realistic model of a neuron. The work described above

here is theoretical and lays the foundations for future experimental work.

The method is based on the theory of electrical circuit analysis over time when a cell is

injected with the sum of two sinusoidal currents. This allows us to measure excitatory and

inhibitory conductances and at the same time track the membrane potential.

We demonstrated the method in simulations of a point neuron and in realistic simulations

of a pyramidal cell, receiving proximal and uniformly distributed synaptic inputs. For the point

neuron, we showed that we could reveal the timing and magnitude of depressing excitatory and

inhibitory synaptic inputs with high temporal resolution and accuracy of above 99% (Figs 3 and

4). In another example, we used our method to reveal these inputs during an asynchronous bal-

anced cortical state and showed that excitation and inhibition dynamics can be measured with

high accuracy. Importantly, these estimations were obtained from single trials and allowed

obtaining the natural dynamics of the membrane potential by filtering out the sinusoidal com-

ponents of the response to the injected current. Therefore, our method is especially suitable for

estimation of excitation and inhibition when these inputs are not locked to stereotypical exter-

nal or internal events, such as during ongoing activity. We note that when injecting high fre-

quency current (of a couple of hundred Hertz and above), the voltage drops mostly across the

recording electrode. Here we tuned the current amplitude to produce a few millivolts sinusoidal

fluctuation across the cell membrane, which should have minimal effect on voltage-dependent

intrinsic and synaptic conductances when performing recordings in real neurons.

Comparisons with other methods

Measurement of average excitatory and inhibitory conductances of single cells: Excitatory and

inhibitory synaptic conductances of a single cell were measured both under voltage clamp or

current clamp recordings, focusing in-vivo on the underlying mechanisms of feature selectivity

in sensory response of cortical cells and on the role of inhibition in shaping the tuned sensory

response of mammalian cortical neurons [6,8,39]. Conductance measurement methods were

also used to reveal the underlying excitatory and inhibitory conductances during ongoing Up

and Down membrane potential fluctuations, which characterize slow-wave sleep activity

[40,41]. The advantages and caveats of these methods were reviewed in [29]. Common to these

conductance measurement methods is the requirement to average the data over multiple

repeats, triggered on a stereotypical event (such as the time of sensory stimulation or the rising

phase of an Up state) and then average trials at different holding potentials. The averaged data

is then fitted with the membrane potential equation (assuming that the reversal potentials are

known) to reveal the conductance of excitation and inhibition at each time point. However,

these methods cannot reveal inhibition and excitation simultaneously in a single trial, and

only estimate averaged relationships. Our proposed method, on the other hand, allows for

simultaneous measurements during a single trial. Importantly, since there is no need to depo-

larize or hyperpolarize the cell, our method allows measurement of synaptic conductances at

the resting potential of the cell, potentially obtaining measurements of voltage dependent con-

ductances as they progress during the voltage response to the synaptic inputs. We note that

our method shares the basic approach for the analysis of point-neurons using the theory of fre-

quency analysis of electrical circuits with capacitance measurements methods [42,43].

An alternative approach for estimating the excitatory and inhibitory conductances of a sin-

gle cell was demonstrated for retinal ganglion cells [44]. In this study the clamped voltage was

alternated between the reversal potential of excitation and inhibition at a rate of 50 Hz and the

current was measured at the end of each step. This study revealed strong correlated noise in
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the strength of both types of synaptic inputs. However, unlike the method proposed here, the

underlying conductances are not revealed simultaneously and–due to the clamping–the natu-

ral dynamics of the membrane potential is entirely unavailable, preventing examining the role

of intrinsic voltage dependent dynamics in the generation of neuronal subthreshold activity.

Single trial measurements of ge(t) and gi(t) under various assumptions on synaptic

dynamics. Theoretical and experimental approaches based on the dynamics of excitatory

and inhibitory conductances in a single trial were previously proposed. Accordingly, excitation

and inhibition are revealed from current clamp recordings in which no current is injected.

Approaches based on Bayesian methods which exploit multiple recorded trials were proposed

[25] and estimation of these inputs in a single trial were also proposed but lack the ability to

track fast changes in these conductances [24]. A group of other computational methods [26–

28] showed that excitatory and inhibitory conductances could be revealed in a single trial

when analysing the membrane potential and its distribution. Common to all these methods is

the requirement to observe clear fluctuations in the membrane potential. Our method, how-

ever, allows revealing these inputs even if no change in membrane potential due to synaptic

input is observed (except for the response to the injected sinusoidal current). Changes in con-

ductance are often expected even when the membrane potential is stable, for example when a

cell is receiving tonic input (see the step change in excitation and inhibition in Figs 3 and 4,

between 3 to 4 seconds, resulting in a constant membrane potential value) and when a con-

stant balance in excitatory and inhibitory currents exists.

Paired intracellular recordings. The substantial synchrony of the synaptic inputs among

nearby cortical cells [19,21,45,46] allows continuous monitoring of both the excitatory and

inhibitory activities in the local network during ongoing and evoked activities. A similar

approach was also used to study the relationships between these inputs in the visual cortex of

awake mice [22] as well as gamma activity in slices [4]. While paired recordings are powerful

when examining the relationships between these inputs in the local network, such recordings

do not provide definitive information about the inputs of a single cell. Moreover, although the

instantaneous relationship between excitatory and inhibitory inputs can be revealed by this

paired recording approach, the maximum inferred degree of estimated correlation between

excitation and inhibition is bounded by the amount of correlation between the cells for each

input, which may change across stimulation conditions or brain-state [47–49]. For example, a

reduction in the correlation between excitation, as measured in one cell, and inhibition mea-

sured in the other cell can truly suggest smaller correlation between these inputs for each cell,

but it can also result from a reduction of synchrony between cells, without any change in the

degree of correlation between excitation and inhibition of each cell. This caveat of paired

recordings prevents us from finding, for example, if cortical activity shifts between balanced

and unbalanced states [50,51]. Simultaneous measurement of excitatory and inhibitory con-

ductances of a single cell across states will allow these and other questions to be addressed.

Limitations

Theoretically, increasing the frequency of the sinusoidal waveforms of the injected current in

our method improves the temporal precision when measuring synaptic conductances. How-

ever, this comes at the expense of sensitivity, which reduces as frequency increases (Eq 3 and

Fig 2). In our simulations we limited the frequency of the injected current up to about 350Hz.

At this range, our simulations, depicting realistic passive cellular properties and typical sensory

evoked conductance will result in a clear modulation in voltage when injecting ~1nA sinusoi-

dal current. When bandpass filtering the voltage, the modulation is in the order of only a mV,

but is still above the equipment noise.
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We show that changes in access resistance due to incompletely ruptured membrane or

other factors, such as mechanical vibration causing the membrane to move with respect to the

pipette, can be well measured and compensated (Fig 6). Hence our approach can be imple-

mented to estimate excitatory and inhibitory inputs of a cell in these realistic conditions.

Another aspect that might reduce the sensitivity of our method is the presence of pipette

stray capacitance. We developed a modular component in the analysis that can be used to cor-

rect some of this stray capacitance (Fig 8). Importantly, no additional measurement is needed

beyond the injected sine waves, done in a single trial, to measure this stray capacitance and

compensate for its effect. Yet, when stray capacitance is much higher than was demonstrated

here, this approach fails to provide a good estimation of the synaptic conductance. Hence, spe-

cial care will still be needed to minimize any stray capacitance as much as possible.

We demonstrate in simulations of morphologically realistic neurons that we can estimate

proximal synaptic inputs in a single trial using our approach. Although we underestimated

these inputs when compared to simulated voltage-clamp experiments, their shape and rela-

tionships were preserved in our measurements if the inputs impinged on dendrites not more

distant than 400 μm from the soma of our implementation of a pyramidal cell. Even though

this limitation should be considered in real recordings, these data also suggest that the method

will provide an adequate assessment of proximal inputs.

Possible application of the method for measurement of non-synaptic

intrinsic conductances

Our method can also be used when voltage-dependent conductances evolve naturally, as we

can measure these inputs at the resting potential of the cell, as long as the sinusoidal fluctua-

tions across the membrane due to the injected current are small. Such an approach therefore

can be used when performing pharmacological tests, such as testing effects of modulators, ago-

nists and antagonists of various ion channels. Due to the ability to measure these inputs in a

single trial, the time course of the effects can be studied in rapid time scales while examining

the effects of such drugs on both inputs at the same time.

In summary, our theoretical study shows that synaptic and other conductances can be mea-

sured at high temporal resolution in a single trial when cells are recorded at their resting

potential. More research is needed to find if this approach can be used successfully during

physiological recordings from real neurons.

Feasibility of the technique in real recordings

The expected signal to noise ratio, based on the addition of realistic noise (Fig 7) is sufficiently

high to measure the excitatory and inhibitory input during in-vitro recordings. However, it is

clear that this framework has to be tested in real recordings of neurons. We fully disclose that

we made attempts to test the method in real recordings and discovered that in most of our

recordings, none shown here, measurements were unsuccessful. Following tests for impulse

response of the amplifier, we found that this results from an active feedback circuit in our intra-

cellular amplifiers. We are currently improving the amplifier circuitry and in parallel developing

algorithms that will incorporate the frequency response characteristics of these amplifiers.

Methods

Simulations

To develop the method we constructed a simple simulation of a single compartment neuron

attached to a resistor, simulating the resistance of the recording pipette (Rs is the electrode
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resistance). Im is the injected current and the other variables as shown in Eqs (1) and (2). Also

note that the capacitive current is given by: Ic = Im−k�(Vp−Vm)/Rs, where Vp is the recorded

voltage (across the recording the pipette), Vm is the voltage across the membrane only Ic is

stray current. For k = 0 we assume no stray capacitance and for k = 1, capacitance was

included. Hence at each time point we calculated (dt is the time step of the simulation):

dVm ¼
dt
c
gl Vm � Vlð Þ þ ge Vm � Veð Þ þ gi Vm � Við Þ � Im � Icð Þð Þ ð20Þ

dVp ¼ k � dt�Ic=Cp ð21Þ

Vm ¼ Vm þ dVm ð22Þ

for k ¼ 1; Vp ¼ Vp þ dVp; whereas for k ¼ 0; Vp ¼ Vm þ Im � Rs ð23Þ

To test the performance of our method in extraction of excitatory and inhibitory conduc-

tances, we simulated the response of a cell to a train of synaptic inputs which depress according

to the mathematical description of short term synaptic depression (STD, [52]) with τinact =

0.003S (inactivation time constant) for excitation and τrec = 0.5S (recovery time constant) for

excitation and the same inactivation time constant for inhibition (0.003S) but a longer recov-

ery time constant (τrec = 1.3S) but exhibiting the same utilization (0.7). The values of the pas-

sive properties of the cell and the strengths of synaptic conductances in the simulation were

chosen to be at a similar range of experimental data [8,14,15]. Namely, resting input resistance

of 150MΩ, total capacitance of 0.15nF and pipette resistance of 30MΩ. Simulations were run

using a simple Euler method with a time step of 0.1msfor all point neuron simulations except

for Fig 7 (0.025ms).

Morphologically realistic simulations

We used NEURON 7.6.7 [53] in Python 3.7.6 to simulate a CA1 pyramidal cell [35]. We loaded

this cell directly into NEURON without changes to the neuron model. 50 inhibitory and 50

excitatory were distributed on parts of the apical tree. The synaptic mechanism was a modified

version of the Tsodyks-Markram synapse [52] where we added a synaptic rise time (NEURON

mechanism available at https://github.com/danielmk/ENCoI/tree/main/Python/mechs/

tmgexp2syn.mod). The synaptic parameters are detailed in Table 1. Event frequency of both

synapses was 10Hz and events were jitter with a Gaussian distribution of 10ms SD.

All measurements were performed at the soma. To simulate an access resistor in current

clamp we added a section with a specified resistance between the current clamp point process

and the soma. The access resistance was 10MOhm. For the stimulation current we summed

two sine waves of 210Hz and 315Hz. The combined sine waves had a peak-to-peak amplitude

of 1nA. Voltage clamp was performed in separate simulations with 10MOhm access resistance

as during current clamp. While isolating the excitatory current, we clamped at the reversal

potential of inhibitory synapses (-75mV). While isolating the inhibitory current, we clamped

at the reversal potential of excitatory synapses (0mV). To convert current to conductance, we

divided the current by the clamped voltage minus the synaptic reversal potential.

To investigate the relationship between measurement quality and dendritic path distance to

soma, we moved a single excitatory and a single inhibitory synapse to the same dendritic sec-

tion. Sections were chosen by iterating through the list of apical dendrites in steps of 5. The

synaptic parameters are detailed in Table 1.
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Python simulation results were saved as.m files using SciPy [54]. Simultaneous conductance

analysis and plotting were performed in MATLAB.
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