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Summary
1. Kindlin-3 but not talin-1 contributes to integrin inside-out signaling induced β2 integrin clustering.

2. The Pleckstrin homology domain of kindlin-3 was critical for its mediated β2 integrin clustering.
Abstract
Background Neutrophils are the most abundant leukocytes in human blood, and their recruitment is essential 
for innate immunity and inflammatory responses. The initial and critical step of neutrophil recruitment is their 
adhesion to vascular endothelium, which depends on G protein-coupled receptor (GPCR) triggered integrin inside-
out signaling that induces β2 integrin activation and clustering on neutrophils. Kindlin-3 and talin-1 are essential 
regulators for the inside-out signaling induced β2 integrin activation. However, their contribution in the inside-out 
signaling induced β2 integrin clustering is unclear because conventional assays on integrin clustering are usually 
performed on adhered cells, where integrin–ligand binding concomitantly induces integrin outside-in signaling.

Methods We used flow cytometry and quantitative super-resolution stochastic optical reconstruction microscopy 
(STORM) to quantify β2 integrin activation and clustering, respectively, in kindlin-3 and talin-1 knockout leukocytes. 
We also tested whether wildtype or Pleckstrin homology (PH) domain deleted kindlin-3 can rescue the kindlin-3 
knockout phenotypes.

Results GPCR-triggered inside-out signaling alone can induce β2 integrin clustering. As expected, both kindlin-3 
and talin-1 knockout decreases integrin activation. Interestingly, only kindlin-3 but not talin-1 contributes to integrin 
clustering in the scenario of inside-out-signaling, wherein a critical role of the PH domain of kindlin-3 was highlighted.

Conclusions Since talin was known to facilitate integrin clustering in outside-in-signaling-involved cells, our finding 
provides a paradigm shift by suggesting that the molecular mechanisms of integrin clustering upon inside-out 
signaling and outside-in signaling are different. Our data also contradict the conventional assumption that integrin 
activation and clustering are tightly inter-connected by showing separated regulation of the two during inside-out 
signaling. Our study provides a new mechanism that shows kindlin-3 regulates β2 integrin clustering and suggests 
that integrin clustering should be assessed independently, aside from integrin activation, when studying leukocyte 
adhesion in inflammatory diseases.
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Introduction
Neutrophils are the most abundant circulating leuko-
cytes in human blood and form a primary line of defense 
against pathogens [1, 2]. Congenital impairments in neu-
trophil function, such as those that occur in leukocyte 
adhesion deficiency syndromes, lead to life-threatening 
infections [3, 4]. The primary cause of fatal infections in 
individuals undergoing allogeneic hematopoietic stem 
cell transplantation is the delayed recovery of neutrophils 
[5]. Neutrophils also play a crucial role in non-infectious 
inflammatory scenarios, such as injury-induced ster-
ile inflammation [6, 7] and autoimmune conditions like 
rheumatoid arthritis [8, 9], multiple sclerosis [10, 11], and 
systemic lupus erythematosus [12]. Neutrophils circu-
late in the bloodstream but mainly fulfill their tasks out-
side the vascular system. Their exit from the circulation 
towards sites of inflammation follows a well-character-
ized adhesion cascade, including leukocyte rolling, arrest, 
intravascular crawling, and transendothelial migration 
[13–15].

β2 integrins are essential for multiple steps of the leu-
kocyte recruitment cascade [15–17]. The interaction 
of lymphocyte function-associated antigen 1 (LFA-1, 
αLβ2 integrin, CD11a/CD18) and macrophage-1 antigen 
(Mac-1, αMβ2 integrin, CD11b/CD18) with endothelial 
intercellular adhesion molecules (ICAMs) are crucial 
for human neutrophil arrest [18, 19] — the firm adhe-
sion on vascular endothelium. Neutrophil arrest can be 
induced by chemoattractant N-formylmethionine-leucyl-
phenylalanine (fMLP) [20] and chemokine interleu-
kin 8 (IL-8) [21], which both trigger G protein-coupled 
receptor (GPCR)-initiated integrin inside-out signaling 
[22]. Upon inside-out signaling stimulation, β2 integrins 
undergo activation to up-regulate their ligand binding 
affinity through conformational changes in their ectodo-
main [23, 24]. Meanwhile, clustering of β2 integrins could 
also occur to increase their avidity of binding where 
cooperative strength supports larger forces compared 
to sporadic integrins [25–28]. β2 integrin activation [19, 
29–31] and clustering [26–28] both significantly contrib-
ute to neutrophil adhesion. Previous studies, including 
ours, showed the conformational changes of β2 integrin 
activation [19, 32, 33] and the clustering of activated β2 
integrins [19, 32] during neutrophil adhesion. However, 
it is unclear whether the integrins are already clustered 
on circulating neutrophils, and, if so, whether the integ-
rin clustering is triggered by the inside-out signaling. In 
this study, we used super-resolution stochastic optical 
reconstruction microscopy (STORM), which provides 
a ~ 20-nm resolution to visualize and quantify integrin 

clustering to delineate β2 integrin clustering induced by 
inside-out signaling for the first time.

Kindlin-3 and talin-1 are critical for neutrophil β2 inte-
grin activation [34–39]. They both bind to the cytoplas-
mic tail of β2 integrin, where they cooperate to promote 
full activation of β2 integrin [40–43]. The involvement of 
kindlin and talin in integrin clustering has been studied 
in various systems. For instance, it was shown that talin 
is a critical regulator of LFA-1 clustering in human T 
cells [44] and is involved in the formation of cluster-like 
structures like focal adhesions [45–48] and podosomes 
[49] in adherent cells. In biomimetic giant unilamel-
lar vesicles in vitro, both talin and kindlin induce αIIbβ3 
integrin clustering [50]. Kindlin-3-null T cells display 
defective αLβ2 clustering after T-cell receptor stimulation 
[51]. Kindlin-3 is essential for clustering integrins within 
podosomes of osteoclasts [52], while its homolog kind-
lin-2 is important for αIIbβ3 integrin clustering in Chinese 
hamster ovary cells [53]. However, a limitation of these 
studies is that they primarily investigated adherent cells 
in which both integrin inside-out and outside-in signal-
ing (integrin-ligand-binding-triggered) contributed to 
integrin clustering, making it impossible to discriminate 
between both signals. To determine whether kindlin-3 
and talin-1 are involved in β2 integrin clustering induced 
by inside-out signaling alone, we established a method to 
independently observe neutrophil inside-out signaling 
and used STORM to visualize β2 integrin clustering on 
kindlin-3 and talin-1 knockout (KO) HL60 cells. Surpris-
ingly, we found that kindlin-3 but not talin-1 is critical 
for integrin clustering in the scenario of GPCR-triggered 
inside-out signaling. Since talin was known to facilitate 
integrin clustering in outside-in-signaling-involved cells, 
as introduced above, our finding provides a paradigm 
shift by suggesting that the molecular mechanisms of 
integrin clustering upon inside-out signaling and outside-
in signaling are separated. Our data also contrasts the 
conventional wisdom that integrin activation and clus-
tering are tightly inter-connected by showing separated 
regulation of the two during inside-out signaling. Target-
ing inside-out integrin clustering-specific molecules may 
provide a new strategy for treating inflammatory diseases 
by improving treatment specificity and reducing the side 
effects observed in pan-integrin-blocking therapies [54].

Results
Kindlin-3 and talin-1 deficiency impair β2integrin 
activation on HL60 cells
An in vitro cell model of neutrophils was established 
by treating CXCR2-expressing HL60 cells (HL60-2) 
[55] with 1.3% DMSO for seven days to stimulate their 
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differentiation to neutrophil-like cells. In some cells, 
kindlin-3 [39] or talin-1 [37] were knocked out before-
hand using CRISPR-Cas9, while β2 integrin knockout (β2-
KO) HL60-2 cells [37] were used as a negative control.

To confirm the crucial role of kindlin-3 and talin-1 in 
β2 integrin activation, we took advantage of conforma-
tion-specific antibodies mAb24 [56] and KIM127 [57]: 
mAb24 binds to an epitope in the β2 I-like domain and 
reports the high-affinity (H+) conformation [58], while 
KIM127 binds to an epitope in the extended knee of β2 
integrin, indicating the extended (E+) conformation [59]. 
Notably, mAb24 and KIM127 do not interfere with each 
other or inhibit ligand binding [19]. Using flow cytom-
etry, we found that the mAb24 medium fluorescence 
intensity (MFI) on the cell surface increased by 5.1-fold 
after IL-8 stimulation (Fig.  1A) and 4.3-fold after fMLP 
stimulation (Fig.  1C) in wild-type (WT) cells compared 
to vehicle controls. In strong contrast, kindlin-3 knock-
out (K3-KO) and talin-1 knockout (TLN1-KO) cells 
revealed almost no mAb24 binding, which was com-
parable to β2-KO cells (Fig. 1A, C). The results are con-
sistent with previous findings that both kindlin-3 and 
talin-1 are necessary for β2 integrin headpiece opening 
[23, 34]. In all groups, IL-8 and fMLP treatments induced 
no or minimal changes in overall expression of β2 inte-
grin (CD18) (Fig.  1E, F); there was also no significant 
change in GPCRs CXCR2 (for IL-8) or FPR1 (for fMLP) 
expression on K3-KO and TLN1-KO cells compared to 
WT controls (Fig.  1G, H), ruling out that the integrin 

activation defects observed in K3-KO and TLN1-KO 
cells were due to defects in β2 integrin or GPCR expres-
sion. Consistent with previous studies [34, 37], KIM127 
binding was completely abolished in TLN1 KO cells, 
while it was significantly increased in WT cells after IL-8 
and fMLP stimulation (Fig. 1B, D). Surprisingly, KIM127 
binding was strongly inhibited in Kindlin-3 KO cells after 
IL-8 stimulation (Fig. 1B) and completely abolished after 
fMLP stimulation (Fig. 1D). This indicates that similar to 
talin-1, kindlin-3 is critical for both β2 integrin headpiece 
opening and extension, which is consistent with observa-
tions made in Hoxb8 cell-derived talin-1 and kindlin-3 
KO neutrophils upon Tumor necrosis factor α (TNFα) 
and phorbol 12-myristate 13-acetate (PMA) stimulation 
[60]. These challenged the previous thought in the field 
that kindlin-3 is only important for β2 integrin headpiece 
opening but not extension [33, 34].

Kindlin-3 but not talin-1 is critical for LFA-1 and Mac-1 
clustering
To assess β2 integrin clustering after inside-out signal-
ing while avoiding outside-in signaling, we kept dif-
ferentiated HL60-2 cells in suspension and incubated 
them with vehicle control, IL-8, or fMLP, and fixed them 
for STORM imaging to quantify molecular clustering 
[32, 61–63]. These cells do not interact with endothelial 
ICAMs, and there is no involvement of integrin out-
side-in signaling, which contrasts with previous studies 
using spreading neutrophils [64–66]. STORM was used 

Fig. 1 Kindlin-3 and talin-1 are essential for β2 integrin activation. Wildtype (WT), kindlin-3 knockout (K3-KO), talin-1 knockout (TLN1-KO), and β2 integrin 
knockout (β2-KO) CXCR2-expressing HL60 (HL60-2) cells were differentiated to neutrophil-like cells. A-D, β2 integrin activation was quantified by flow cy-
tometry using conformation-specific antibodies mAb24 (A, C) and KIM127 (B, D) with or without IL-8 (A-B) or fMLP (C-D) stimulation. E-F, Total β2 integrin 
expression was quantified by flow cytometry using antibody TS1/18 with or without IL-8 (E) or fMLP (F) stimulation. G-H, Expression of CXCR2 and FPR1 
on cells. MFI, median fluorescence intensity. Means ± SD, n = 12 repeats from 3 individual experiments in A-D and G-H, n = 16 repeats from 4 individual 
experiments in E-F. ns p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 by two-way ANOVA in A-F and one-way ANOVA in G-H followed by Tukey’s 
multiple comparison test
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to quantify the clustering of LFA-1 and Mac-1 on neu-
trophil-like HL60-2 cells. We found that both IL-8 and 
fMLP stimulation effectively induced LFA-1 clustering on 
WT HL60-2 cells compared to vehicle controls (Fig. 2A-
C, S1 A-F). Quantitative analysis showed that the LFA-1 
cluster number was increased from ~ 50 to ~ 100 per cell 
after IL-8 (Fig.  2J, L) or fMLP (Fig.  2K, M) stimulation. 
However, IL-8 or fMLP stimulation did not induce LFA-1 
clustering on K3-KO HL60-2 cells (Fig.  2D-F, S1 G-I). 
The cluster number remained at ~ 50 per cell after IL-8 
(Fig. 2J) or fMLP (Fig. 2K) stimulation. These suggested 
integrin inside-out signaling already induces LFA-1 clus-
tering, which depends on kindlin-3.

We also tested LFA-1 clustering on TLN1-KO cells. In 
discrepancy to our original hypothesis that talin is essen-
tial for integrin clustering, which was seen in adhered 
cells, both IL-8 and fMLP stimulation facilitated LFA-1 
clustering in TLN1-KO cells (Fig. 2G-I, S1 M-R). Quan-
titative analysis showed that the LFA-1 cluster number 
was increased from ~ 50 to ~ 250 or 220 per cell after 
IL-8 (Fig. 2L) or fMLP (Fig. 2M) stimulation, respectively, 

indicating talin-1 is not required for LFA-1 clustering 
upon inside-out signaling.

Our STORM imaging of Mac-1 showed results simi-
lar to those of LFA-1 (Fig.  3). IL-8 and fMLP stimula-
tion both significantly increased Mac-1 cluster number 
from ~ 150 to ~ 300–400 per WT HL60-2 cell (Fig.  3A-
C, J-M, S2 A-F), did not increase Mac-1 cluster number 
on K3-KO HL60-2 cells (remain ~ 100 per cell, Fig. 3D-F, 
J-K, S2 G-L), and significantly increased Mac-1 cluster 
number from ~ 100 to ~ 250–350 per TLN1-KO HL60-2 
cell (Fig. 3G-I, L-M, S2 M-R).

The cluster number increase may contribute to the 
increase of integrin surface expression after chemoat-
tractant stimulation. To compensate for this influence, 
we normalized the cluster number to the molecular 
localization number we acquired from each cell (Figure 
S5 A-D, S6 A-D) and found a similar trend that IL-8 or 
fMLP triggered inside-out signaling induces integrin 
clustering in WT and TLN1-KO but not K3-KO HL60-2 
cells. We also quantified the cluster size (Figure S5 E-H, 
S6 E-H) and found that chemoattractant stimulation did 
not always induce changes in cluster size. We did not find 

Fig. 2 Kindlin-3 but not talin-1 is critical for αLβ2 integrin (LFA-1) clustering. A-I, Representative STORM images of integrin αL on wildtype (WT, A-C), 
kindlin-3 knockout (K3-KO, D-F), and talin-1 knockout (TLN1-KO, G-I) differentiated HL60-2 cells without (A, D, G) or with IL-8 (B, E, H) or fMLP (C, F, I) 
stimulation after clustering analysis using Voronoi diagrams. Adjacent clusters are distinguished by different colors. Non-clustered αL are shown as gray 
dots. Scale bars are 1 μm. J-M, The number of clusters per WT, K3-KO (J-K), or TLN1-KO (L-M) HL60-2 cell without or with IL-8 (J, L) or fMLP (K, M) stimula-
tion. Means ± SD (n ≥ 50 cells from 4 individual experiments). ns, p > 0.05; * p < 0.05; ** p < 0.01; **** p < 0.0001, by two-way ANOVA followed by Tukey’s 
multiple comparison test
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a consistent variation tendency in cluster size between 
groups. Overall, these results indicated that both LFA-1 
and Mac-1 clustering upon integrin inside-out signaling 
requires kindlin-3 but not talin-1.

Kindlin-3 pleckstrin Homology (PH) domain is required for 
LFA-1 and Mac-1 clustering
To further investigate the mechanism of how kindlin-3 
regulates β2 integrin clustering, we transduced the PH 
domain-deleted kindlin-3 mutant (ΔPH-K3) or WT kind-
lin-3 (WT-K3) to K3-KO HL60-2 cells [39] and assessed 
LFA-1 and Mac-1 clustering using STORM imaging. As 
expected, WT-K3 transduction rescued the up-regula-
tion of LFA-1 clustering triggered by IL-8 or fMLP stim-
ulation (Fig.  4A-C, S3 A-F), allowing the LFA-1 cluster 
number to be significantly increased from ~ 70 to ~ 150 
per cell (Fig. 4G, H). In comparison, IL-8 or fMLP failed 
to up-regulate LFA-1 clustering on ΔPH-K3-transduced 
cells (Fig. 4D-F, S3G-L), where the LFA-1 cluster number 
remained at ~ 70 per cell (Fig. 4G, H).

Mac-1 clustering also showed similar results (Fig.  5). 
Specifically, IL-8 or fMLP stimulation significantly 
increased Mac-1 cluster number from ~ 200 to ~ 350 or 

250, respectively, per WT-K3 HL60-2 cell (Fig. 5A-C, G-
H, S4 A-F), but failed to do so on ΔPH-K3 HL60-2 cells 
(remained at ~ 200 per cell, Fig. 5D-F, G-H, S4 G-L).

Similar to what we analyzed for K3 KO and TLN1 KO 
HL60-2 cells, we also quantified normalized cluster num-
ber and cluster size in WT-K3 and ΔPH-K3 HL60-2 cells 
(Fig. S7) and found that PH domain deletion in kindlin-3 
interrupted normalized LFA-1 and Mac-1 cluster num-
ber but not cluster size. Overall, these results showed 
that PH domain deletion in kindlin-3 interrupted LFA-1 
and Mac-1 clustering, suggesting a crucial role of the PH 
domain in kindlin-3-mediated β2 integrin clustering.

Discussion
Leukocyte adhesion requires both integrin activation 
and clustering, which are conventionally believed to be 
closely linked. However, it remains unclear whether inte-
grin inside-out signaling, besides integrin activation, also 
triggers clustering. Bridging this gap, our study showed 
that the chemoattractant-triggered integrin inside-out 
signaling induces not only the activation but also the 
clustering of β2 integrins on human neutrophil-like 
(HL60) cells. We further found that talin-1 is dispensable 

Fig. 3 Kindlin-3 but not talin-1 is important for αMβ2 integrin (Mac-1) clustering. A-I, Representative STORM images of integrin αM on wildtype (WT, A-
C), K3-KO (D-F), and TLN1-KO (G-I) differentiated HL60-2 cells without (A, D, G) or with IL-8 (B, E, H) or fMLP (C, F, I) stimulation after clustering analysis 
using Voronoi diagrams. Adjacent clusters are distinguished by different colors. Non-clustered αM were shown as gray dots. Scale bars are 1 μm. J-M, The 
number of clusters per WT, K3-KO (J-K), or TLN1-KO (L-M) HL60-2 cell without or with IL-8 (J, L) or fMLP (K, M) stimulation. Means ± SD (n ≥ 50 cells from 3 
individual experiments). ns p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 by two-way ANOVA followed by Tukey’s multiple comparison test
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for inside-out signaling induced β2 integrin clustering, 
whereas kindlin-3 plays a critical role. These results are 
in contrast to a recent study that reported that kindlin 
and talin cooperate in facilitating integrin clustering [50], 
wherein talin plays a primary role while kindlin is only 
secondary. Kindlin-2 cooperates with talin to activate 
integrins and induces cell spreading by directly binding 
paxillin [67]. Since talin is known to contribute to the for-
mation of cluster-like structures, such as focal adhesions 
[45–48] and podosomes [49], in adherent spreading cells, 

our results suggest that the integrin clustering mediated 
by inside-out signaling and outside-in signaling might 
involve distinguished molecular mechanisms. Thus, our 
study advocates for the careful selection of experimental 
systems to distinguish integrin inside-out and outside-in 
signaling in future studies addressing integrin clustering.

Our discovery that talin-1 is required only for β2 inte-
grin activation but not clustering during inside-out sig-
naling suggests that integrin activation and clustering are 
regulated by different molecular signaling mechanisms. 

Fig. 5 PH domain in kindlin-3 is required for αM β2 integrin (Mac-1) clustering. A-C, Representative STORM images of integrin αM on differentiated HL60-2 
cells containing wild-type kindlin-3 (WT-K3, A-C) and PH domain-deleted kindlin-3 (ΔPH-K3, D-F) without (A, D) or with IL-8 (B, E) or fMLP (C, F) stimula-
tion after clustering analysis using Voronoi diagrams. Adjacent clusters are distinguished by different colors. Non-clustered αM are shown as gray dots. 
Scale bars are 1 μm. G-H, The number of clusters per WT-K3 or ΔPH-K3 HL60-2 cell without or with IL-8 (G) or fMLP (H) stimulation. Means ± SD (n ≥ 85 
cells from 3 individual experiments). ns p > 0.05; * p < 0.05; ** p < 0.01; **** p < 0.0001 by two-way ANOVA followed by Tukey’s multiple comparison test

 

Fig. 4 PH domain in kindlin-3 is required for αLβ2 (LFA-1) clustering. A-F, Representative STORM images of integrin αL on differentiated HL60-2 cells con-
taining wildtype kindlin-3 (WT-K3, A-C) and PH domain-deleted kindlin-3 (ΔPH-K3, D-F) without (A, D) or with IL-8 (B, E) or fMLP (C, F) stimulation after 
clustering analysis using Voronoi diagrams. Adjacent clusters are distinguished by different colors. Non-clustered αL are shown as gray dots. Scale bars 
are 1 μm. G-H, The number of clusters per WT-K3 or ΔPH-K3 HL60-2 cell without or with IL-8 (g) or fMLP (H) stimulation. Means ± SD (n ≥ 75 cells from 3 
individual experiments). ns p > 0.05; ** p < 0.01; **** p < 0.0001 by two-way ANOVA followed by Tukey’s multiple comparison test
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In support of this, a previous study demonstrated that a 
voltage-gated potassium channel KV1.3 reinforces neu-
trophil adhesion without facilitating integrin activation 
[68], suggesting that its contribution might be only via 
mediating integrin clustering. The distinctive molecular 
mechanisms underlying integrin activation and cluster-
ing deserve further investigations in the future. Notably, 
since our study only focuses on integrin inside-out sig-
naling, the possible role of talin-1 in integrin clustering 
during outside-in signaling still cannot be excluded.

While the importance of kindlin-3 in β2 integrin activa-
tion is increasingly recognized [34], its specific function 
is still debated. Lefort et al. used cell-permeable consti-
tutively active Rap1a to stimulate integrin activation in 
HL60 cells and showed that kindlin-3 knockdown only 
affects β2 integrin activation to the H+ but not E+ con-
formation [34]. However, another study using kindlin-3 
KO neutrophils differentiated from Hoxb8 immortal-
ized progenitor cells showed major defects in both H+ 
and E+ activation of β2 integrins after TNFα and PMA 
stimulation [60]. The discrepancy between both studies 
may be caused by the incomplete KO in the HL60 study. 
Similarly, our previous work [39] and the current study 
also showed significant defects in β2 integrin activation 
towards both the H+ and E+ states on kindlin-3 KO HL60 
cells, suggesting that in addition to talin-1, kindlin-3 is 
also an indispensable regulator for both β2 integrin head-
piece opening and ectodomain extension.

Mutations in the FERMT3 gene encoding kindlin-3 are 
responsible for leukocyte adhesion deficiency III (LAD-
III), a disease characterized by leukocyte and platelet 
dysfunction [51, 53, 69]. Clinical research suggests that 
FERMT3 mutation results in loss of kindlin-3 expres-
sion, which causes strong defects in β2 integrin-mediated 
neutrophil adhesion and spreading [70–72]. Mechanis-
tic studies indicate that kindlin-3 deficiency disrupts 
integrin-involved osteoclast actin cytoskeleton organi-
zation and integrin-dependent erythropoiesis [72, 73]. 
In this context, our study provides a new mechanism of 
how kindlin-3 regulates leukocyte adhesiveness — not 
only through integrin activation but, as shown here, also 
through integrin clustering. This finding provides new 
insight into the understanding of LAD-III pathogenesis 
and potentially a novel path for intervention.

Furthermore, it is considered that the PH domain is 
indispensable for the induction of high-affinity activa-
tion of β2 integrins and kindlin-3 mediated cell adhesion 
[39, 74, 75]. According to the crystal structure of human 
full-length kindlin-3 [76], a PH domain is inserted in its 
F2 subdomain, which displays a binding affinity for phos-
phoinositide PI [3–5]P3 (PIP3) and induces PIP lipid 
clustering in bilayer membranes [77, 78]. PIP3 can clus-
ter around PH domains to form stable nanoscale micro-
domains in cell membranes [79, 80], which perform like 

a protein-anchoring unit and enhance interactions with 
proteins [81–84]. In this study, we found the PH domain-
deleted kindlin-3 failed to induce general clustering of 
LFA-1 and Mac-1, as seen in HL60 cells expressing WT 
kindlin-3. These results demonstrate the importance of 
the kindlin-3 PH domain to β2 integrin clustering, with 
a postulated mechanism that the PH domain facilitates 
kindlin-3 binding to PIP3 and, in turn, the anchorage of 
kindlin-3 onto the cell membrane, thereby promoting its 
capability in mediating integrin clustering.

In summary, our study provides a new mechanism that 
shows kindlin-3 regulates β2 integrin clustering upon 
inside-out signaling through its PH domain and con-
cludes that talin-1 has been mistakenly involved because 
STORM nanoscopy was needed to resolve their roles, not 
conventional technologies previously used. Our study 
also suggests that integrin clustering should be consid-
ered an independent process, aside from integrin activa-
tion, when studying leukocyte adhesion in inflammatory 
diseases. Targeting integrin clustering-specific regulating 
molecules may provide a new strategy to treat inflamma-
tory diseases without affecting integrin activation and 
basic immune functions.

Materials and methods
Reagents
For flow cytometry, KIM127 was directly labeled by 
DyLight 550 using DyLight microscale antibody (Ab) 
labeling kits (catalog no. 84531) from Thermo Fisher 
Scientific. Allophycocyanin (APC)-conjugated CD11a/
CD18 (LFA-1) mouse anti-human mAb24 Ab (catalog 
no. 363410), Alexa Fluor 700 (AF700)-conjugated mouse 
anti-human CD18 Ab (catalog no. 302123), Pacific Blue™-
conjugated mouse anti-human CXCR2 Ab (catalog no. 
320723), APC-conjugated mouse anti-human FPR1 Ab 
(catalog no. 391609), Pacific Blue™-conjugated mouse 
anti-human IgG1 Ab (catalog no. 400131), and APC-con-
jugated mouse anti-human IgG1 Ab (catalog no. 400120) 
were purchased from BioLegend. For STORM imaging, 
Alexa Fluor 647 (AF647)-conjugated mouse anti-human 
CD11a Ab (catalog no. 301218) and AF647-conjugated 
mouse anti-human CD11b Ab (catalog no. 393109) were 
purchased from BioLegend, while glucose oxidase from 
Aspergillus niger (catalog no. G2133), catalase from 
bovine liver (catalog no. C40), and cysteamine (catalog 
no. 30070) were purchased from Sigma-Aldrich.

Roswell Park Memorial Institute medium 1640 (RPMI-
1640) with (catalog no. 11875-093) or without phenol red 
(catalog no. 11835-030) and penicillin and streptomycin 
(catalog no. 15140-122) were purchased from Gibco. 
Fetal bovine serum (FBS) (catalog no. 100–106) and 25% 
human serum albumin (HSA) (catalog no. 800 − 120) were 
purchased from Gemini Bio Products. 1 × phosphate-
buffered saline (PBS) without Ca2+ and Mg2+ (catalog 
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no. SH30256.02) was purchased from Cytiva. Recombi-
nant human IL-8 was purchased (catalog no. 208-IL-050) 
from R&D Systems. fMLP (catalog no. 47729), dimethyl 
sulfoxide (DMSO) (catalog no. D2650), and 0.01% poly-
L-lysine solution (catalog no. A-005-C) were purchased 
from Sigma-Aldrich. 25% Glutaraldehyde (GA) (catalog 
no. A17876) and 16% paraformaldehyde (PFA) (catalog 
no. 043368.9  M) were purchased from Thermo Fisher 
Scientific.

Cell culture and isolation
Kindlin-3 knockout (K3-KO) [39], talin-1 knockout 
(TLN1-KO) and β2 integrin knockout (β2-KO) [37] 
cell lines were generated by CRISPR-Cas9 from sta-
ble CXCR2-expressing HL60 cells [85], K3-KO HL60 
cells transfected by wildtype kindlin-3 (WT-K3), or PH 
domain-deleted kindlin-3 (ΔPH-K3) mutant [39]. HL60 
cells were maintained in culture medium (RPMI-1640, 
10% FBS, 100 µg/mL penicillin, and 100 µg/mL strepto-
mycin) at 37℃ in a humidified atmosphere, 5% CO2 incu-
bator. HL60 cells were differentiated with 1.3% dimethyl 
sulfoxide for 6 ~ 7 days before assays.

10 mL differentiated cells were collected and centri-
fuged for 5 min at 300 × g and 20℃. After washing with 
PBS without Ca2+ and Mg2+ and centrifuging at 550 × g 
twice, cells were resuspended in RPMI 1640 without phe-
nol red plus 2% HSA and used within 4 h.

Flow cytometry
To test the expression of CD18, CXCR2, and FPR1 in 
HL60 cells (Fig.  1C, D, G, H), 2.5 × 105/mL cells were 
stained with 1  µg/mL antibodies in 100 µL of volume. 
AF700-conjugated CD18 Ab, Pacific Blue™-conjugated 
CXCR2 Ab, and APC-conjugated FPR1 Ab were used to 
test the expression of total β2 integrin, IL-8 receptor, and 
fMLP receptor. The staining of Pacific Blue™-conjugated 
IgG1 Ab and APC-conjugated IgG1 Ab were used as iso-
type controls for CXCR2 Ab and FPR1 Ab. After staining 
for 10  min, cells were fixed with 1% PFA for 10  min at 
4 ℃. Each cell sample was washed with 200 µL PBS and 
centrifuged at 550 × g twice. After resuspending cells in 
PBS, cell fluorescence was assessed with an LSRII (BD™) 
and analyzed with FlowJo software.

For the β2 integrin activation assay (Fig.  1A, B, E, F), 
2.5 × 105/mL HL60 cells were incubated with 1  µg/mL 
IL-8 or 100 nM fMLP for 10  min at 300 × g vibration 
and room temperature (RT) in the presence of 0.5  µg/
mL APC-conjugated mAb24 and 0.5  µg/mL DyLight 
550-labeled KIM127 Ab. Vehicles were added as controls. 
After the incubation, cells were fixed with 1% PFA for 
10 min at 4℃. Each cell sample was washed with 200 µL 
PBS and centrifuged at 550 × g twice. After resuspending 
cells in PBS, cell fluorescence was assessed with an LSRII 
(BD™) and analyzed with FlowJo software.

STORM imaging
A glass-bottomed 8-Well M-Slide imaging chamber 
(ibidi) was coated with 250 µL 0.01% poly-L-lysine at 
4℃ overnight. After 3 washes with ddH2O, the cham-
ber was ready for seeding cells. 200 µL 5 × 106 /mL cells 
were stained with 5  µg/mL AF647-conjugated anti-
human CD11a or CD11b antibodies and were incubated 
with vehicle control, 1 µg/mL IL-8, or 100 nM fMLP for 
10 min at RT on a plate vibrator (300 rpm) at the same 
time with antibody incubation. Then, cells were fixed by 
200 µL mixture of 0.05% GA and 1% PFA for 10 min at 
4 ℃. Centrifuge the plate at 500× RT for 5 min to settle 
down the cells. After 2 washes with PBS to remove float-
ing cells, samples were ready for imaging.

During STORM imaging, a special buffer will be added 
to the wells to replace PBS. STORM imaging buffer was 
prepared within 3 h prior to imaging. The STORM buf-
fer was prepared by gently adding 7 µL GLOX solution 
(14  mg glucose oxidase and 1  mg catalase dissolved in 
500 µL 10 mM Tris with 50 mM NaCl) and 70 µL 1  M 
cysteamine (77  mg cysteamine and 21 µL HCl in 1 mL 
ddH2O, or) into 620 µL of 50 mM Tris with 10 mM NaCl 
and 10% Glucose [62].

Imaging was performed by using an iX83 Olympus 
inverted microscope equipped with the SAFe Light mod-
ule (Abbelight, includes four color lasers, λ = 405  nm, 
488  nm, 532  nm, and 640  nm), sCMOS fusion cameras 
(Hamamatsu), and a 100 × NA 1.5 oil objective. The bot-
tom of labeled cells were continuously illuminated by the 
647 nm laser during image acquisition. Power on the 647-
nm lasers was adjusted to 20% to enable the collection of 
between 100 and 300 localization blinks per618 × 618-
pixel (97 nm·pixel-1, 60 × 60 μm2) camera frame in the 
center of the field at appropriate threshold settings. The 
collection was set to 10,000 frames, yielding 1–3 million 
localizations.

Clustering image processing
The STORM images of single cells were processed by 
NEO Analysis (Abbelight). The cluster number on each 
cell was calculated by Voronoï tessellation [86, 87]. Com-
pared to Density-based spatial clustering analysis with 
noise (DBSCAN) and K-Ripley functions, the Voronoï 
tessellation is less sensitive to background noise and has 
been approved for more accuracy in analyzing molecu-
lar clusters in STORM images [84]. Briefly, circles around 
the most likely centers of each LFA-1 or Mac-1 localiza-
tion were constructed to define clusters. The maximum 
diameter of the circles was set to 50 nm, which indicated 
that two localizations within 50 nm were considered to be 
in the same cluster. We also defined clusters as having at 
least 5 LFA-1 or Mac-1 localizations. The average local-
ization density of each cell was set to 28 localizations/
µm2. Then, a threshold of twice the average localization 
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density was used to determine clusters. To eliminate the 
effect of different LFA-1 or Mac-1 expression on different 
cells, we normalized the cluster number to the molecular 
localization number on each cell and showed the results 
as cluster number per 10,000 localizations.

Statistics
Statistical analysis was performed using PRISM software 
(version 9.00, GraphPad Software). Data analysis was per-
formed using one-way ANOVA followed by Tukey’s mul-
tiple comparison tests (Fig. 1D, H) or two-way ANOVA 
followed by Tukey’s multiple comparison tests (Figs. 1A-
C and E-G, 2J-M, 3J-M, 4G-H and 5G-H), which are indi-
cated in figure legends. P-values < 0.05 were considered 
significant statistically.
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