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Simple Summary: The prediction of sperm output and other reproductive traits based on testicular
biometry is an important tool in the reproductive management of stallions. Nevertheless, correspond-
ing research in donkeys remains scarce. Several donkey breeds in Europe face a compromising threat
of extinction, which has been accelerated by the low renovation of populations and their inbreeding
levels. Although research on female reproductive physiology has made crucial advances, much
less is known about the physiology of the male. In the present work, two Bayesian models were
built to predict for sperm output and quality parameters in donkeys. Models included combinations
of age as a covariate and biometric and testicular measurements as independent factors. Results
evidenced that the goodness-of-fit was similar for both models—hence, the combination of biometry
and testicular factors presented improved predictive power. The application of these models may
assist in the process of making decisions in respect to the reproductive/biological, clinical, and
selection handling of the animals.

Abstract: The aim of the present study is to define and compare the predictive power of two different
Bayesian models for donkey sperm quality after the evaluation of linear and combined testicular
biometry indices and their relationship with age and body weight (BW). Testicular morphometry
was ultrasonographically obtained from 23 donkeys (six juveniles and 17 adults), while 40 ejaculates
from eight mature donkeys were analyzed for sperm output and quality assessment. Bayesian
linear regression analyses were considered to build two statistical models using gel-free volume,
concentration, total sperm number, motility, total motile sperm, and morphology as dependent
variables. Predictive model 1 comprised the covariate of age and the independent factors testicular
measurements (length, height and width), while model 2 included the covariate of age and the
factors of BW, testicular volume, and gonadosomatic ratio. Although goodness-of-fit was similar,
the combination of predictors in model 1 evidenced higher likelihood to predict gel-free volume
(mL), concentration (×106/mL), and motility (%). Alternatively, the combination of predictors
in model 2 evidenced higher predictive power for total sperm number (×109), morphologically
normal spermatozoa (%), and total motile sperm count (×109). The application of the present
models may be useful to gather relevant information that could be used hereafter for assisted
reproductive technologies.
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1. Introduction

Measuring testicular size reports an approximate measurement of the amount of tes-
ticular parenchyma present in a certain individual, which in turn determines the potential
for sperm production [1,2]. Studies on equine testicular biometry are fairly common, and
the correlation between testicular dimensions and the capacity for sperm production has
frequently been addressed in the literature, allowing the establishment of a predictive
formula for daily sperm output (DSO) [2–4]. Still, contextually, corresponding publications
on male donkey remain scarce. Besides biometric testicular data such as length, width,
and volume, other factors might be investigated as independent variables (covariates) in
DSO prediction, like age, body weight (BW), or the gonadosomatic ratio (GSI), which is the
gonadal weight/BW ratio [5]. Previous studies evidenced that knowledge from stallions
could not be directly assumed for donkeys, as their reproductive physiology may present
some specific particularities. For instance, donkeys present spermatogenesis cycles that
last for 47.2 days, with each spermatogenic stage lasting for 10.5 days [6].

The numbers of the population of the Burro de Miranda’s (Equus asinus), as it occurs
in other donkey breeds in southern Europe countries [7], dramatically fall, with a mature
male population of around 40 jackasses and 300 breeding females. Besides, reproduction
rates in such populations are low, with an excessive overuse of the same males in the
past, which derived in the occurrence of genetic bottlenecks. Although the reproductive
physiology of Miranda donkey females has already been studied [8], no research focusing
on the biometry or reproductive physiology of Miranda donkey males has been reported
to date. Considering the actual population structure, the interest in applying assisted
reproductive technologies (ARTs) have raised. However, the implementation of these
techniques requires consistent knowledge of reproductive biology in order to select the
best males for ARTs programs to be successful. Testicular biometry, due to its correlation
with sperm production, is a valuable tool to estimate male fertility and is also an essential
element of the breeding soundness evaluation (BSE). In light of the aforementioned points,
the accurate prediction of sperm output and quality parameters obtained from biometrical
and testicular morphometric parameters, will improve the effectiveness of reproductive
management in male donkeys.

In this context and bearing in mind the small but diverse mature male population,
some issues in regards the statistical approach to follow may arise. For these reasons, the
statistical tools used in this study were chosen to fit the characteristics of the data to be
analyzed. According to Oravecz and Muth [9], the popularity of growth curve modelling
(GCM) lies in its flexibility to simultaneously analyze within-individual changes (e.g.,
changes with age, change due to intervention, due to natural changes occurring along the
life of the individuals, etc.) and between-individual effects (i.e., individual differences). In
other words, GCM may be useful to model inter-individual differences and intra-individual
variation. GCM has been successfully used to model the evolution of semen parameters in
males from other species, such as boars [10].

An individual’s specific growth trajectory, specified as a mathematical function that
describes how variables reciprocally relate over time, captures how an individual uniquely
changes. GCM covers situations that range from those for which the change function is
linear to other occasions when curvilinear polynomial functions are fitted (for instance,
quadratic, cubic, etc.), which means that modelling is not limited to consider straight-line
functional growth. Beyond handling varying growth functions, GCM can flexibly handle
unbalanced designs, meaning study individuals may be measured at different occasions
and need not be excluded from the analysis, even if some of their measurements are
missing [8].

In these regards, Bayesian inference potentiates the flexibility of GCM, given Bayesian
analyses do not assume large samples, as it would happen in maximum likelihood
estimation (either it is nonparametric or parametric inference). Besides, smaller data
sets can be evaluated preventing power loss and retaining precision, as suggested by
Hox, et al. [11] and Lee and Song [12]. In small sample size conditions, the probability
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of finding significant results decreases [13]. Given power issues, this limitation often
translates into an increased hardness to obtain meaningful results [14].

According to Stoltzfus [15], the basic assumptions that must be met for the outputs
of regression analyses to be valid include independence of errors, linearity in continuous
variables, the absence of multicollinearity, and a lack of strongly influential outliers. Addi-
tionally, there should be an adequate number of events per independent variable (covariate)
to avoid an overfit model. Commonly recommended minimum “rules of thumb” range
from 10 to 20 events per covariate. This would be supported by Chen, et al. [16], who
suggested that the usual minimum number of observations for running a linear regression
to be 30 to obtain statistically significant estimates. The same authors would even state
that sometimes this requirement cannot be met, for instance when the number of individ-
uals in the sample is limited, which is common to all donkey breeds [17]. Consequently,
the general rule of thumb explains that, to succeed when conducting a linear regression
analysis, the number of observations must not be smaller than 30 or 3× (k + 1), where k
represents the number of independent variables (covariates); hence, the sample size used
in the present study fulfils all the assumptions to be used in linear regression analyses.

Contextually, Bayesian estimation methods have been reported to require a much
smaller ratio of parameters to observations (1:3 instead of 1:5); that is, Bayesian inference
maximizes the ability to determine significant effects for relatively limited sample sizes.
These sample limitations are reflected in the broadening of confidence intervals, which
must be accompanied by an acceptable Bayes factor value.

To the best of our knowledge, no previous study has reported an estimation of donkey
sperm output and quality traits using a Bayesian approach. In this context, the aims of the
present study are to define and compare the predictive power of two Bayesian predictive
models for sperm quality parameters using linear testicular measurements, combined
biometrical indices, and their relationship with age and BW as predictive factors.

2. Materials and Methods
2.1. Animals

The study was carried out in the Veterinary Teaching Hospital of University of Trás-os-
Montes and Alto Douro (VTH-UTAD, Vila Real, Portugal). Animals have been evaluated
with approval and in collaboration with the Association for Study and Protection of
the Donkey Breed Burro de Miranda (AEPGA), in the behalf of a scientific protocol of
caooperation signed between both institutions. All animal procedures were conducted
in accordance with national laws for animal welfare and experimentation as with the EU
Directive 2010/63/EU for animal experiments and the approval of the Directive Hospital
Committee (Approval Ref. 408/VTH-UTAD).

Animals were clinically examined, and the genital tract was palpated previous to
ultrasonographic (US) evaluation. Body weight (BW) (kg) was assessed using an equine
digital floor weighting scale. For the testicular morphometric evaluation, 23 Miranda
donkeys were considered. Animals were allocated to two groups by age; juvenile to
prepubertal (n = 6) (≤14 months) and mature (n = 17) (≥24 months) (Table 1). Only clinically
healthy animals with normal size and consistency symmetrical testis and epididymis
showing no echogenic changes in the testicular parenchyma were included. Epididymis
and spermatic cords were included. Either in the juvenile or adult group, only animals with
both testicles at scrotal position were considered. For the assessment of sperm, a sub-group
of eight Miranda mature donkeys was selected from the mature group for further sperm
collection and evaluation. Exams were performed during the autumn–winter season in
2018–2019 (US evaluations of the juveniles); and spring–summer in 2019 (semen collections
and US examination of adult males).
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Table 1. Donkeys enrolled in the study.

N Age Range Age Percentile Median Weight Evolution Per Percentile

6 7 to 14 months 14 months (P25) 200 kg
11 15 to 95 months 40 months (P50/Median) 248 kg
6 ≥96 months 96 months (P75) 302 kg

P25: value at 25% of observations; P50: value at 50% of observations and P75: value at 75% of observations.

2.2. Testicular Morphometry Evaluation

US testicular measurements were obtained from 23 donkeys aged from 7 to 259 months
old and with 120 to 400 kg of weight (juvenile donkeys means: 11.17± 2.77 months old and
160.33 ± 24.66 kg; mature donkeys means: 79.94 ± 50.25 months old and 279.47 ± 54.43 kg,
respectively). US measurements were performed with Philips® CX30 Portable Ultrasound
(Philips®, Amsterdam, Holland) with a sectorial 3.0–7.0 MHz transducer, following the
previously described technique for stallion measurements [4]. Longitudinal and transversal
plans were performed in each testicle, being the epididymis excluded from testicular US
measurements. The electronic cursors were placed at the limit of tunica albuginea, and
after three consecutive scans, the following parameters were obtained considering the
largest measurement (cm): right and left length (L), height (H), and width (W) (cm). Right
and left testicular volume (TV) were calculated using the Lambert formula, TV = L ×W
× H × 0.5233, used to measure the volume of an ellipsoid [4]. Total testicular volume
(TTV), which represents the sum of the right and left TV, was obtained for each donkey. To
compute gonadosomatic ratio (GSI) (%), i.e., testicular weight/BW, TTV (cm3) was directly
converted into grams, based on the fact that testis volume density in mammals is very close
to one [18]. After US measurements, routine orchiectomy was performed on five juvenile
and two adult donkeys. After surgery, the extirpated testis (n = 14) were measured—the
same measurements as in vivo—using precision sliding calipers.

2.3. Semen Collection and Evaluation

A sub-group of eight jackasses, ranging between 34 and 259 months of age (214–400 kg),
was selected from the mature group for semen collection and further evaluation. A total
of 40 ejaculates (five ejaculates per jackass) was collected. Donkeys had been successfully
used in previous natural services. Before starting the experiment, sperm collections were
performed for three consecutive days to minimize the number of sperm from extra-gonadal
reserves, as it has been previously reported for donkeys [19]. Collections were performed
at two-day intervals and using an artificial vagina (AV) (Hannover model—Minitub Iberica
S.L., Tarragona, Spain) lubricated with non-spermicidal gel (ReproJelly—Minitub Iberica
S.L., Tarragona, Spain), using a jenny in heat as a mount. The AV was filled with warm
water to reach and maintain an inner temperature of 50–55 ◦C. A sterile semen collection
bottle was used in each collection. The gel fraction was removed by filtering the whole
ejaculate with a nylon filter (Minitub Iberica S.L., Tarragona, Spain). Gel-free ejaculate
was immediately evaluated for volume (mL), motility (%), concentration (×106/mL), and
percentage of morphologically normal (%). Volume was measured in a graduated semen
collection bottle. Then, each collected ejaculate was evaluated for sperm motility and con-
centration. For sperm motility evaluation, an aliquot of gel-free ejaculate was immediately
extended 1:1 (vol/vol) with INRA 96 extender at 37 ◦C. Sperm motility was blind and
subjectively estimated by the same experienced operator after the evaluation of motile
spermatozoa (%) considering five different fields under light microscopy (×200), placing a
semen droplet in a prewarmed (37 ◦C) slide covered by a cover slip. Concentration was
determined using an improved Neubauer hemocytometer. Total sperm number (TSN,
×109) was computed considering the product between the volume of gel-free ejaculates
and sperm concentration, whereas total motile sperm count (TMS, ×109) was obtained by
computing the product between motility and TSN. Sperm morphology defects (head, inter-
mediary piece, tail) were evaluated in eosin-nigrosin stained smears using light microscopy
in oil immersion objective lens (×1000), counting a total of 200 sperm cells [20].
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2.4. Statistical Analysis
2.4.1. Parametric Assumptions Testing and Approach Decision

Since sample size was a limitation in this study, parametric assumptions were tested
to decide on the most appropriate statistical approach to follow to analyse the present
data. The Shapiro–Francia W’ test (for 50 < n < 2500 samples), Shapiro–Wilk test (for n < 50
samples), and Levene’s test were used to discard gross violations of parametric assumptions
(normality and homoscedasticity). The Shapiro–Francia W’ test was performed using the
Shapiro–Francia normality routine of the test and distribution graphics package of the
Stata Version 15.0 software (StataCorp [21]. Supplementary Tables S1 and S2 report a
gross violation of normality assumption occurred in all variables of testicular biometry
and sperm parameters (p < 0.01), respectively, except for gel-free volume (mL) and sperm
concentration (×106/mL). Homoscedasticity was violated as well (p < 0.01); hence, a
nonparametric approach was suggested.

All statistical tests, including all Bayesian procedures, were performed using the
explore procedure of the descriptive statistics package in SPSS Statistics (Version 25.0, IBM
Corp., Armonk, NY, USA) [22].

2.4.2. Comparative Analysis of US and Caliper Testicular Morphometry between Juvenile
and Mature Jacks

Bayesian one-way ANOVA procedure was used to detect differences in the means
for testicular measurements between juvenile and mature jackstocks using the Bayesian
ANOVA task from the Bayesian statistics procedure of SPSS Statistics, Version 25.0, IBM
Corp. [22].

2.4.3. Analysis of US Testicular Morphometry, Age and BW

Bayesian inference of Pearson’s correlation was used to characterize the posterior
distribution of the linear correlation between age and BW, US testicular measurements,
and composite indices using the Pearson correlation task from the Bayesian statistics
procedure of SPSS Statistics, Version 25.0, IBM Corp. [22]. The correlation methods used
and discussed in this paper can be validly used even if we work with repeated measures as
we tested independent data [23]. Furthermore, in case variable pairs tested held a perfect
linear correlation rxy = 1, the integral equation to perform Bayesian inference for Pearson’s
correlation would not have converged [24].

2.4.4. Analysis of US and Caliper Testicular Morphometry

Bayesian inference of Pearson’s correlation was used to characterize the posterior dis-
tribution of the linear correlation between caliper testicular biometry variables
(n = 14 testis) and US testicular biometry variables (n = 46 testis). The Pearson’s cor-
relation coefficient measures the pairwise linear relation between the dependent variable
y and the independent variable x. When rxy = |1|, the dependent variable y is perfectly
linearly correlated with the independent variable x. Then, following a decreasing or-
der, a coefficient of |0.8| < rxy <|1| suggests a strong linear correlation; a coefficient of
|0.3| < rxy <|0.6| suggests a moderate correlation; and a coefficient of 0 < rxy < |0.3|
suggests a weak correlation, respectivelyProfillidis and Botzoris [25].

The two methods were compared to decide on whether to use US or real biometric pa-
rameters or a combination of both to build Bayesian regression models. Bayesian inference
for Pearson correlation was performed using the Pearson correlation task from the Bayesian
statistics procedure of SPSS Statistics, Version 25.0, IBM Corp. [22]. The aforementioned
test evidenced that US and caliper measuring methods were significantly correlated.

Supplementary Table S3 summarizes the estimated Pearson’s correlation pairwise
coefficients and respective Bayes factors. For all measurement pairs, the estimated Pearson’s
correlation coefficient was always higher than 0.938, with corresponding Bayes factor of
<0.001. As a result, the use of US measurements was exclusively selected to integrate the
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models for predicting sperm output, provided measurements were taken in vivo, hence
they had a higher clinical applicability.

According to Doğan [26], although correlation analyses may erroneously detect the
occurrence of incidental relationships instead of meaningful clinical/biological association,
these may be a preferable choice under certain contexts. For instance, the same authors
reported that one of the critical problems in other presumably more robust techniques
such as the Bland–Altman analysis relies on the need for the data to meet the assumption
of a normal distribution. Contrastingly, when testing Pearson’s correlations, the pairs of
continuous variables need not be normally distributed, although their differences should.
To determine the violation of this assumption, data may be tested against the normal
distribution using classical methods such as the Shapiro–Wilk test or the Kolmogorov–
Smirnov test.

Additionally, the same authors reported the fact that the Bland–Altman analysis is
not an appropriate method to compare items for which repeated measurements were
considered, as in the present study. In these regards, Batterham [27] would suggest that in
a spreadsheet-based simulation of calibration and validity studies, a Bland–Altman plot
of difference versus mean values for the instrument and criterion may show a systematic
proportional bias in the instrument’s readings, even though none is present. This artifac-
tual bias arises in a Bland–Altman plot of any measures with substantial random error.
In contrast, a regression analysis of the criterion versus the instrument shows no bias. In
this context, a regression analysis also provides complete statistics for recalibrating the
instrument, if bias develops, or if random error changes since the last calibration. Conse-
quently, the Bland–Altman analysis of validity should therefore be abandoned in favor of
regression, as was performed in our study.

2.4.5. Bayesian Linear Regression Modelling for Sperm Quality and Output Predictions

Gel-free volume (mL), concentration (×106/mL), TSN (×109), motility (%), morpho-
logically normal (%), morphologically abnormal (%), gonadosomatic ratio (GSI) (%), and
TMS (×109) were considered the dependent variables in our study. Two separate statistical
models were built, in which the predictive power of combinations of certain independent
factors was evaluated.

Each of the regression models used in this study followed the general equation
yi = X1β1 + . . . Xiβi + εi, where i = 1,2, . . . i is the ith number of factors; yi is the vector
of records for the aforementioned dependent variables with dimension n (217 records
belonging to 31 jacks); Xi is the appropriate incidence matrix for factors; and βi are the
standardized regression coefficients for the ith number of factors and covariates con-
sidered, respectively. The general regression equation for model 1 was Y = Intercept +
βage (months)·age (months) + βLength LT (cm)·length LT (cm) + βLength RT (cm) ·length RT (cm)
+ βHeight LT (cm)· height LT (cm) + βHeight RT (cm)· height RT (cm) + βWidth LT (cm)· width LT
(cm) + βWidth RT (cm)·width RT (cm). Oppositely, the general regression equation for model
2 was Y = Intercept + βAge (months)·Age (months) + βBW (kg)· BW (kg) + βTTV (cm3)·TTV
(cm3) + βGSI·GSI, except for gonadosomatic ratio (GSI) (%), for which the last term in the
equation was not included, provided this term refers to gonadosomatic ratio (GSI) (%)
itself (βGSI·GSI).

According to Carlin [28], Bayesian inferences are sensitive to the dependence of
variables on time (conditional on θ and x). If such dependence is large, it needs to be
modeled, or the inferences will not be appropriate. For this reason, age was considered
in the models. Under this design, time (age) plays a similar role to a blocking variable or
covariable. For example, suppose that E(y|x, θ) has a linear trend in time (age) but that
this dependence is not modeled (that is, suppose that a model is fit ignoring time (age)).
Then, posterior means of factors or covariables in the model will tend to be reasonable,
but posterior standard deviations will be too large, because this design yields treatment
assignments that, compared to complete randomization, tend to be more balanced for
time (age).
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As Brewer [29] suggested, in our case, the use of an intercept was necessary as an
empirical need for it was detected (for instance when unstandardized coefficients are used
as in the present study). In these regards, confidence intervals for the estimated intercept
were used as empirical indicators for the need of the intercept. Residual effects (εi) were
assumed to follow a normal distribution as εi|XiN

(
0, σ2

εi
)
, where Xεi is an identity matrix

and σ2
εi is residual variance, respectively. For a continuous predictor variable, such as those

in the present study, unstandardized coefficients are produced by the linear regression
model using the independent variables measured in their original scales.

Unstandardized coefficients βi can be interpreted considering what was stated by
Hayes, et al. [30]—that all other variables being held constant, an increase of one unit in
Xi is associated with an average increase of βi units in Y. In the sections below, a detailed
summary of the priors and posterior distributions used in this study is reported. A full
description of the algorithms used by SPSS to perform Bayesian Inference on Multiple
Linear Regression Models in this study can be found in the public document IBM SPSS
Statistics Algorithms v. 25.0. by IBM Corp. [24].

When large number of parameters are being considered in a model, quadratic ap-
proximation has been reported to be computationally faster in terms of discretization and
computing the likelihood over all possible parameter combinations compared to other
approximations such as the Markov Chain Monte Carlo (MCMC) methods used in this
study. However, the use of this quadratic approach was not feasible given it assumes
the posterior distribution follows a normal distribution. In the context of our data, this
assumption cannot be presumed provided the gross violation reported for the distribution
properties reported at previous assumption testing stage.

After Bayesian Pearson’s correlation coefficients across variables had been performed,
two distinct combinations of factors were evaluated. First, model 1 comprised the covariate
of age (months) and the independent factors of LLT (length of left testicle) (cm), LRT (length
of right testicle) (cm), HLT (length of left testicle) (cm), HRT (height of right testicle) (cm),
WLT (cm) (width of left testicle), and WRT (width of right testicle) (cm). Second, model
2 comprised the covariate of age (months) and the factors BW (kg), TTV (total testicular
volume) (cm3) and GSI (%). Lowest correlations were found for age and any of the rest
of variables, hence, the covariate was retained in both models. The value of almost 1 for
the correlation found between VLT (cm3) (volume of left testicle) and VRT (volume of
right testicle) (cm3) and TTV (cm3) was the basis to decide on using composite TTV (cm3),
given the reduced number of variables in model 2. BW was only considered in model 2,
given the high generalized close to or above 0.9 correlations that it held with biometric
caliper measurements. Bayesian linear regression analyses were performed using the
linear regression package from the Bayesian statistics task of SPSS Statistics, Version 25.0,
IBM Corp. [22]. The Bayesian Linear Regression test routine of the linear regression and
related package of the Stata Version 16.0 software process was used to compute posterior
distribution statistics for each factor included in each model to predict for each dependent
variable. Once the analysis had been performed, we interpreted the estimated effect of the
factors considered in the resulting predictive models, their confidence intervals, and the
posterior distribution statistics.

2.4.6. Jeffrey–Zellner–Siow (JZS) Mixture of g-Priors

For the present analyses, the Jeffrey–Zellner–Siow mixture of g-priors [31] was used.
Jeffrey–Zellner–Siow’s prior somehow appears as a data-dependent prior through its
dependence on Xi, but this has been reported not to be a drawback since regression models
are conditional on Xi. As suggested by Heck [32], JZS prior could be an alternative that
may satisfy several theoretical requirements such as the equality constraint on the test-
relevant parameters, for instance of β, which leads to the null hypothesis H0 = β = β0 [33].
The benefits of JSZ prior distribution had also been reported by Rouder, et al. [34] and
Liang, et al. [31]. Contextually, conditional on the residual variance (σ2

εi), the JZS prior
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defines a multivariate Cauchy distribution for the slope parameters of the full model,
as follows

(βi|σ2
εi) ∼ MVC

(
0P,γi

2σ2
εiCi

−1), which is defined by a P-dimensional zero vector
(location vector) and a scale matrix. The constant γi determines the amount of scaling,
which is chosen by the user a priori, the residual variance σ2

εi, and the matrix Ci = X′iXi/Ni,
which is the covariance matrix of the centred design matrix Xi.

There are qualities of the JZS prior [34] that make it especially appropriate when
performing linear regression analyses. Among these, the prior is symmetric and centered
at zero in line with the predictive matching criterion as reported by Bayarri, et al. [35].
As a result, positive and negative values of the slope parameters have a priori the same
probability to occur. Furthermore, JZS prior is scale invariant, thus the resulting Bayes
factor does not depend on the scale of both the dependent variable and factors or covariates,
hence results do not change when different unit variables are evaluated together, which is
common in field conditions studies.

This independence from the measurements of model elements is achieved by scaling
the multivariate Cauchy distribution by the residual variance σ2

εi (a priori, a larger residual
variance implies larger slopes) and by the inverse of the covariance matrix Ci (a priori,
a covariate with a larger variance implies smaller slopes). It may be worth considering
that the procedure of defining a scaled prior for unstandardized coefficients (βi) equals the
process of defining a prior for standardized coefficients (β∗i ) [34].

Third, the scale parameter γ is fixed to a constant by the user, which allows prior
beliefs to be specified about the expected effect size. IBM Corp. [24] algorithm guide reports
that the algorithm of JZS prior for linear regression analyses, to compute the Bayes Factor
uses the default value of γ = 2

√
π = 3.5, which reflects a prior belief of a medium effect

size. For a single covariate x, this choice implies that the standardized regression slope
β∗i = βi· SD(xi)/σi has an a priori probability of 53.2% of being in the range [−0.50, +0.50].

Authors such as Rouder and Morey [36] also reported additional theoretical advan-
tages of the JZS prior, such as its consistency in model selection (the fact that the Bayes
factor, goes to infinity as the number of observations N increases without bound-favoring
the data-generating model) or consistency in information (the Bayes factor for a certain
effect goes to infinity as the proportion of explained variance or R Squared (R2) increases
to 1). Additionally, Bayes factors for JZS prior can be relatively easily and highly precisely
computed [37] and has been adapted for the default t-test [38], ANOVA [34], and linear
regression [32].

2.4.7. Factor and Covariate Effects Bayesian Modelling (FCEBM)

Being yi, any of the effects of any of the independent variables (covariates) considered
in this study, the posterior distribution of yi in the context of the data D is

p(yi/D) =
i

∑
i = 20

p(yi|Mi, D) p(Mi|D)

This is an average of the posterior distributions of each model, weighted by the
corresponding posterior model probabilities. In the previous equation, the posterior
predictive distribution of yi given a particular model Mi is

p(yi|MiD) =
∫

p(yi|βi, Mi, D)p(βi|MiD)dβi

and the posterior probability of model Mi is given by

p(Mi|D) =
p(D|Mi)p(Mi)

∑i
i = 20 p(D|Mi)p(Mi)
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where
p(Mi|D) =

∫
p(D|βi, Mi)p(βi|Mi)dβi

is the integrated likelihood of model Mi, βi is the vector of parameters of model Mi, p(βi|Mi)
is prior density of βi under model Mi, p(D|βi|Mi) is the likelihood, and p(Mi) is the prior
probability that Mi is the true model.

For a problem with P potential covariates, the number of models, K, can be enormous
(K = 2P in the absence of other constraints). Only a small number of these models will have
much support from the data, thus be selected by SPSS for each covariate. Marginal posterior
distributions of all unknowns were estimated using the Gibbs sampling algorithm.

2.4.8. Factors and Covariate Effect Bayesian Interpretation (CEBI)

The checklist proposed by Depaoli and Van de Schoot [39] was used to detect issues
to check before estimating the model, (b) issues to check after estimating the model but
before interpreting results, (c) understanding the influence of priors, and (d) actions to take
after interpreting results.

Interpreting the effect of each particular covariate (independent variables used in this
study) can be made as follows.

First, the posterior probability p[β∗i 6= 0/D] expresses the likelihood that the factor
or covariate has an effect on each particular variable. Standard rules of thumb [40] for
interpreting this posterior probability are as follows: <50% evidence against the effect;
50–75% weak evidence for the effect; 75–95% positive evidence; 95–99% strong evidence;
>99% very strong evidence, whose results are comparable to commonly used thresholds to
define significance of evidence through Bayes factor (BF) as reported in Supplementary
Table S4.

Second, posterior distribution estimates (means) are used to measure the magnitude
of the effect of a particular factor and covariate. For continuous predictor variables (metric
covariates), such as the numeric variables used in this study, the regression coefficient
represents the difference in the predicted value of the response variable for each one-unit
change in the predictor variable, assuming all other predictor variables are held constant.
When response variables are metric and can readily be interpreted in terms of impact, such
as the ones in our study, β regression coefficients effect sizes by themselves.

Third, the 95% credibility interval shows that there is a 95% probability that these
regression coefficients (posterior distribution mean value for each covariate and factor) in
the population lie within the corresponding credibility intervals. When 0 is not contained
in the credibility interval, a significant effect for such factor is detected.

Supplementary Table S5 report a summary of posterior distribution statistics from
Bayesian unstandardized linear (β) regression coefficients for each of the aforementioned
variables considered in the analyses and a summary of Bayesian ANOVA outputs to test
for differences in the means for US and caliper testicular measurements between juvenile
(n = 6) and mature donkeys (n = 17).

2.4.9. Convergence Criterion

The rounds of iteration continued until a tolerance convergence criterion of 10−8

was reached as suggested in literature [41]. Once the convergence criterion was reached,
initial parameters were set, and model fitting properties were evaluated. The maximum
number of iteration rounds used for each analysis was 2000 as suggested in IBM SPSS
Statistics Algorithms version 25.0 by IBM Corp. [24]. This convergence criterion was chosen
provided it has been used in Bayesian ANOVA and linear regression analyses in research
contexts of limited sample sizes [42].
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2.4.10. Model Validity, Explanatory Power of Present Data, and Predictive Power of
Future Data

The process of validation and comparison of Bayesian model is fully mathematically
described in Geweke [43]. In this context, some authors [44] have suggested a correct proof
for model validation should be based on the mean square error (MSE) of the models being
evaluated. Additionally, although mean square residual or error (MSE) and minimum
mean-square residual or error (MMSE) have been used and widely reported to measure
how close a regression line is to a set of points (how good a certain model fits the data
being observed), mean square prediction error or MSPE (= RSS/no. of observations) was
chosen to measure error variation given MSE has been reported to be influenced by the
number of predictors [26] in cases of reduced sample sizes [45,46].

Residual sum of squares (RSS) measures the amount of variance in a data set that is
not explained by a regression model. That is, if we consider a regression to be a measure of
the strength of the relationship between a dependent variable and an independent variable
from a set of independent variables, then the RSS measures the amount of error remaining
between the regression function and the data set—hence, it essentially determines how
well a regression model explains or represents the data in the model. A smaller RSS figure
represents a better suitability of the regression function to model for the data that it is
intended to model.

In Bayesian inference, Monte Carlo Standard Error (MCSE) is another measure of
accuracy of the chains. It is defined as the standard deviation of the chains divided by
their effective sample size. MCSE has been reported to be the nonparametric or Bayesian
counterpart of MSPE, and has been suggested to be used as the validation criteria in
Bayesian Linear Regression model comparison studies [47].

Bayes factor (BF) provides an indirect measure of the explanatory power of the model
to describe presently observed data (in our study). Larger BFs imply higher likelihoods for
the combination of factors considered to explain the response variables being modelled.
Commonly used thresholds to define significance of evidence following the premises by
Jeffreys [48] and Lee and Wagenmakers [49] are reported in Table S4. Intrinsically related
to BF, Bayesian R2 can be considered as a data-based estimate of the proportion of variance
explained for data. Additionally, acceptance rate, efficiency, and Monte Carlo standard
error (MCSE) were used to determine the validity of the Bayesian methods implemented.
Supplementary Table S4 reports a summary of the description and interpretation of each
model validity parameter used. Bayesian statistics predictive accuracy of the model [50]
can be estimated through posterior predictive checking [51] (Supplementary Table S6).

BIC was then calculated, as it explains how well the model will predict on new data.
Bayesian information criterion (BIC) or Schwarz information criterion (also SIC, SBC, SBIC)
was computed as follows:

BIC = N ∗N ln(MSPE) + K ∗ ln(N) (1)

where MSPE is the mean squared prediction error, N is the number of observations or
records, and K is the number of independent parameters of the model.

BIC was evaluated to compare predictive power across models. To summarize, BIC
considers both the statistical goodness of fit and the number of parameters that have to
be estimated to achieve this particular degree of fit, by imposing a penalty the number
of parameters is increased [52,53]. BIC measures the trade-off between model fit and
complexity of the model to determine [54]. Lower BIC values suggest that a particular
model should have improved prediction properties in comparison to models for which
higher values have been reported. In these regards, Bayesian R2 answers a different
question as Bayesian R2 estimates the explanatory power of observed data, when the model
is regression and non-adjusted R2 is used.
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Frequently, when more variables are added, model predictive accuracy decreases.
Consequently, a model with higher R2 will have higher-hence, worse-BIC values. The
addition of “noise” variables to the fit (for which a relationship has not been suggested)
will increase R2 values, but it will also decrease predictive power of the model. Hence, the
model with more “noise” variables will have higher R2 and higher BIC.

3. Results
3.1. Descriptive Analysis for US Testicular Morphometry, Combined Biometric Indices and
Sperm Output

Table 2 reports a summary of the descriptive statistics for age, BW, ultrasonographic
(US) and caliper testicular morphometry (cm); L, H, W, TTV, GSI for juvenile and mature
donkeys (n = 46 testis). Descriptive statistics of US and caliper measurements were com-
puted for each group to perform a comparative analysis (Supplementary Table S7a,b). In
the juvenile group, mean TTV (cm3) was 17.74 ± 9.89 (n = 12 testis), while in mature group,
TTV (cm3) was 271.69 ± 133.21 (n = 34 testis).

In the juvenile group, there was a progressive increase in all US testicular measure-
ments, namely in TTV, from seven to 24 months, which was especially noticeable after
11 months of age. At 12–14 months, mean TTV was 21.05 ± 9.30 cm3 (n = 10 testis), and at
24–26 months, TTV was 85.27 ± 18.66 cm3 (n = 4 testis) (P < 0.01). Additionally, an increase
in TTV was described after 150 kg of BW had been attained, which was verified in all
donkeys after 12 months. On the other hand, after 168 months of age, a gradual decrease in
TTV was noted. No difference between left and right testicle was found. Gonadosomatic
ratio (GSI) (%) means in juveniles was 0.11 ± 0.06 and in matures 0.95 ± 0.39. Significant
differences (p < 0.001) were found between juvenile and mature groups for all testicular
biometrical parameters (Table S5).

Results of sperm output and quality parameters (n = 40 ejaculates, observational unit);
gel-free volume (mL), motility (%), concentration (×106/mL), TSN (×109), TMS (×109),
normal and abnormal sperm morphology (%) are presented in Table 1. TSN and TMS
means was 18.453± 1.936× 109 sperm and 13.555± 1.479× 109 motile sperm, respectively.
Sperm morphological abnormalities description can be consulted in Table S8.

3.2. Statistical Analyses
3.2.1. Bayesian Pearson’s Correlation Coefficients Preliminary Testing

Following a probabilistic view of regression, it can be assumed that any dependent
variable (Y) has a certain associated variance σ2. Linear regression bases on identifying the
weight vector from observed data of a dependent variable to then use it to make predictions.
For the model to be stable enough, the variance of the weight vector (Wls) should be low.
If weight vectors variance is high, it means that the model is very sensitive to data. The
weights differ largely with observed data if the variance is high. This means that the model
might not perform well with observed data. When highly correlated covariables are used
in regression models, the variance of the weight vector will be large. This occurs because
when highly correlated features (covariates or factors) are considered, the values in the
Singular Value Decomposition “S” matrix will be small. Hence inverse square of “S” matrix
(S−2) will be large which makes the variance of Wls large. For these reasons, Pearson’s
correlation coefficients must be tested prior to performing regression analyses.

Table 3 summarizes the estimated sample Pearson’s correlation coefficient and the
Bayes factors for BW (kg), age (months), US testicular biometric parameters and composite
indices. For all variable pairs, the estimated Pearson’s correlation coefficient was always
higher than 0.461, with a corresponding Bayes factor of <0.001, in all cases. Besides,
moderate to high Bayesian inference Pearson’s correlation coefficients were found between
age, BW, and testicular biometric variables. Pearson’s correlation coefficients between
testicular biometry and BW were always >0.778, whereas Pearson’s correlation coefficients
between testicular biometry and age were >0.467.
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Table 2. Descriptive statistics for testicular US measurements in 23 donkeys (n = 46 testis, observational sample) and precision caliper after orchiectomy in seven of these donkeys (n = 14
testis, observational sample) and sperm quality parameters (n = 40 ejaculates, observational sample).

Items N Mean SEM SD Skewness Kurtosis Minimum Percentile 25 Median Percentile 75 Maximum

Body Weight (kg) 161 248.39 5.63 71.38 0.23 −0.56 120.00 200.00 248.00 302.00 400.00
Age (months) 161 62.00 4.66 59.07 1.77 3.28 7.00 14.00 40.00 96.00 259.00

US Length LT (cm) 161 6.94 0.19 2.42 −0.51 −1.07 2.80 3.87 7.50 8.76 10.60
US Length RT (cm) 161 6.81 0.20 2.51 −0.50 −1.07 2.36 4.10 7.57 8.87 10.10
US Height LT (cm) 161 4.16 0.12 1.57 −0.11 −1.07 1.50 2.63 4.51 5.50 6.93
US Height RT (cm) 161 3.96 0.12 1.48 0.15 −0.01 1.40 2.56 4.26 4.94 7.61
US Width LT (cm) 161 5.18 0.16 1.98 −0.44 −1.11 1.50 3.32 5.42 6.86 7.88
US Width RT (cm) 161 5.17 0.16 1.97 −0.37 −1.13 1.60 3.07 5.69 6.69 8.40

US Volume LT (cm3) 161 106.60 6.56 83.22 0.45 −0.82 3.30 17.95 95.58 175.20 283.91
US Volume RT (cm3) 161 98.88 6.13 77.80 0.65 −0.10 2.93 19.28 91.39 136.63 297.64

US TTV (cm3) 161 205.44 12.62 160.08 0.52 −0.53 6.23 37.23 185.30 329.08 581.54
US GSI (%) 161 0.73 0.04 0.50 0.37 −0.60 0.04 0.22 0.72 1.09 1.86

Caliper Length LT (cm) 49 4.70 0.27 1.86 1.24 −0.06 3.30 3.50 3.70 6.40 8.50
Caliper Length RT (cm) 49 4.83 0.29 2.06 1.13 −0.13 3.00 3.20 4.00 6.60 9.00
Caliper Height LT (cm) 49 3.13 0.13 0.94 0.61 −1.37 2.20 2.30 2.70 4.50 4.50
Caliper Height RT (cm) 49 3.06 0.15 1.05 0.51 −1.46 2.00 2.00 2.50 4.50 4.60
Caliper Width LT (cm) 49 3.23 0.20 1.41 1.00 −0.37 1.90 2.00 2.50 4.50 6.00
Caliper Width RT (cm) 49 3.26 0.23 1.63 1.09 −0.31 1.90 2.00 2.50 4.80 6.50

Caliper Volume LT (cm3) 49 35.55 5.73 40.10 1.34 0.25 7.94 8.35 14.13 67.81 120.10
Caliper Volume RT (cm3) 49 38.85 6.70 46.93 1.33 0.25 6.59 7.33 10.46 76.25 137.76

Caliper TTV (cm3) 49 74.40 12.43 86.99 1.34 0.26 14.53 17.89 21.46 144.06 257.86
Caliper GSI (%) 49 0.35 0.05 0.35 1.16 −0.25 0.10 0.10 0.14 0.69 1.05

Gel-free volume (mL) 40 75.09 6.49 41.07 0.51 0.19 12.00 38.25 75.25 103.50 189.00
Concentration (× 106/mL) 40 281.00 21.03 133.00 0.02 −0.41 45.00 213.75 282.50 363.75 540.00

TSN (× 109) sperm 40 18.45 1936.98 12,250.54 1.27 2.05 4560.00 8482.50 15,750.00 25,653.75 59,360.00
Motility (%) 40 72.13 2.60 16.44 −1.35 1.80 20.00 60.00 77.50 85.00 90.00

Morphologically normal
sperm (%) 40 87.35 1.58 9.97 −1.46 1.95 58.00 83.00 90.00 94.00 99.00

Morphologically abnormal
sperm (%) 40 12.43 1.52 9.61 1.52 2.45 1.00 6.00 10.00 17.00 42.00

TMS (× 109) sperm 40 13,555.38 1479.60 9357.81 0.91 0.76 1650.00 5607.75 11,264.50 20,300.00 42,642.00

LT—left testicle; RT—right testicle; TTV—total testicular volume; BW—body weight; TSN—total sperm number; GSI—gonadosomatic ratio; TMS—total motile sperm count.
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Table 3. Bayesian inference Pearson’s correlation output summary for BW (kg), age (months), US parameters, and
composite indices.

Body
Weight (kg)

Age
(months)

Length LT
(cm)

Length RT
(cm)

Height LT
(cm)

Height RT
(cm)

Width LT
(cm)

Width RT
(cm)

Volume LT
(cm3)

Volume RT
(cm3)

TTV
(cm3)

GSI
(%)

Body Weight (kg) 1.000 0.552 0.845 0.876 0.825 0.778 0.826 0.824 0.797 0.805 0.806 0.680
Age (months) 0.552 1.000 0.511 0.600 0.479 0.523 0.522 0.556 0.467 0.539 0.505 0.461

Length LT (cm) 0.845 0.511 1.000 0.977 0.944 0.924 0.942 0.925 0.916 0.908 0.918 0.917
Length RT (cm) 0.876 0.600 0.977 1.000 0.948 0.897 0.957 0.946 0.917 0.911 0.920 0.903
Height LT (cm) 0.825 0.479 0.944 0.948 1.000 0.908 0.940 0.926 0.962 0.922 0.949 0.939
Height RT (cm) 0.778 0.523 0.924 0.897 0.908 1.000 0.901 0.858 0.897 0.930 0.919 0.914
Width LT (cm) 0.826 0.522 0.942 0.957 0.940 0.901 1.000 0.962 0.922 0.901 0.917 0.923
Width RT (cm) 0.824 0.556 0.925 0.946 0.926 0.858 0.962 1.000 0.903 0.900 0.908 0.909

Volume LT (cm3) 0.797 0.467 0.916 0.917 0.962 0.897 0.922 0.903 1.000 0.976 0.994 0.964
Volume RT (cm3) 0.805 0.539 0.908 0.911 0.922 0.930 0.901 0.900 0.976 1.000 0.993 0.951

TTV (cm3) 0.806 0.505 0.918 0.920 0.949 0.919 0.917 0.908 0.994 0.993 1.000 0.964
GSI (%) 0.680 0.461 0.917 0.903 0.939 0.914 0.923 0.909 0.964 0.951 0.964 1.000

BF < 0.0001; GSI—gonadosomatic ratio (%).

3.2.2. Bayesian Linear Regression Modelling for Sperm Quality and Output Predictions
Model Explicative Power

Bayesian determination coefficients (R2) or percentages of variance captured for each
of the two models and their respective Bayes factors are provided in Table 4. Both models
were considerably more likely than others comprising just the intercept.

Bayesian estimates of linear regression coefficients for predictive models 1 and 2 for
gel-free volume, concentration, morphologically normal or abnormal, TSN, GSI, motility, and
TMS are presented in Tables 5–7. The intercept term in the regression evidences the average
expected value for the response variable when all of the predictor variables are equal to zero.

Predictive Power and Model Validity

Posterior predictive P values for models 1 and 2 were around 0.331. The combination
of predictors in model 1 evidenced a higher likelihood to predict for gel-free volume (mL),
concentration (×106/mL), and motility (%) (BIC: 387.587 to 534.480).

Table 4. Bayes Factor Model Summary for model 1 (comprising age and testicular morphometric parameters) and model 2
(comprising age, BW, TTV, and GSI) to predict for sperm output and quality in Miranda donkey breed.

Model 1 Bayes Factor R R Squared Adjusted R Squared

Gel-free volume (mL) 406,756.54 0.855 0.731 0.682
Concentration (×106/mL) 1554.89 0.788 0.621 0.553
TSN (×109) 1308.11 0.786 0.617 0.548
Motility (%) 180.53 0.754 0.568 0.490
Morphologically normal (%) 47,305.85 0.832 0.693 0.637
Morphologically abnormal (%) 8839.07 0.812 0.660 0.598
GSI 1.38 × 1019 0.980 0.961 0.954
TMS (×109) 52,401.57 0.833 0.695 0.639

Model 2 Bayes Factor R R Squared Adjusted R Squared

Gel-free volume (mL) 252,538.00 0.794 0.630 0.599
Concentration (×106/mL) 1169.55 0.706 0.498 0.457
TSN (×109) 370.37 0.682 0.465 0.420
Motility (%) 5160.20 0.734 0.539 0.500
Morphologically normal (%) 1,907,536.17 0.819 0.670 0.643
Morphologically abnormal (%) 259,329.18 0.794 0.631 0.600
GSI 4.89 × 1044 0.999 0.998 0.998
TMS (×109) 7080.51 0.740 0.547 0.509

TSN—total sperm number; TMS—total motile sperm count; GSI—gonadosomatic ratio.

Yet, the combination of predictors in M=model 2 evidenced a higher likelihood to
predict for TSN (×109), morphologically normal and abnormal spermatozoa (%), TMS
(×109) and gonadosomatic ratio (GSI) (%), (BIC: −40.559 to 34,635.240). Age-related effects
were verified on the following parameters: gel-free volume, morphologically abnormal
spermatozoa (%), and TSN (Tables 5 and 6). The summary of the results for the parameters
of validity of both models is reported in Table 8.
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Table 5. Bayesian Estimates of Unstandardized Linear Regression Coefficients for predictive model 1 for gel-free volume (mL), concentration (×106/mL), morphologically normal (%), and
morphologically abnormal (%) sperm output in Miranda donkey breed.

Parameter Posterior 95% Credible Interval Parameter Posterior 95% Credible Interval

Gel-free volume (mL) Mean SD MCSE Lower Bound Upper Bound Morphologically normal (%) Mean SD MCSE Lower Bound Upper Bound

(Intercept) 6.750 85.650 7.882 11.940 −159.039 (Intercept) 38.820 61.999 17.656 35.535 −69.634
Age (months) 0.554 0.186 0.020 0.551 0.190 Age (months) 0.009 0.120 0.033 0.016 −0.273

Length LT (cm) −7.618 23.395 2.210 −8.748 −52.776 Length LT (cm) 7.176 15.183 4.290 8.154 −29.472
Length RT (cm) −8.047 19.952 1.350 −7.762 −45.424 Length RT (cm) −7.758 6.349 0.756 −7.367 −21.025
Height LT (cm) 39.055 10.577 0.513 39.257 16.789 Height LT (cm) 4.253 2.752 0.142 4.226 −1.076
Height RT (cm) −0.142 15.488 1.598 −0.446 −30.291 Height RT (cm) −2.344 10.261 2.868 −3.001 −20.264
Width LT (cm) −8.293 13.214 1.203 −8.355 −35.057 Width LT (cm) 2.925 5.712 1.243 3.167 −7.979
Width RT (cm) −0.867 16.024 1.877 −0.780 −32.031 Width RT (cm) 3.021 6.681 1.586 2.709 −10.081

Concentration (×
106/mL) Mean SD MCSE Lower Bound Upper Bound Morphologically abnormal (%) Mean SD MCSE Lower Bound Upper Bound

(Intercept) 119.325 95.837 6.792 120.692 −67.802 (Intercept) −92.566 4.923 1.290 −92.168 −102.543
Age (months) −1.675 0.438 0.024 −1.672 −2.510 Age (months) 0.268 0.036 0.002 0.267 0.199

Length LT (cm) −179.851 51.735 14.252 −170.219 −289.282 Length LT (cm) 28.736 4.098 0.370 28.543 21.311
Length RT (cm) 112.455 63.065 7.805 114.114 −13.492 Length RT (cm) 1.078 5.696 0.306 1.182 −10.506
Height LT (cm) −82.447 38.657 3.239 −84.282 −154.495 Height LT (cm) −5.022 2.742 0.145 −5.009 −10.399
Height RT (cm) 60.562 33.694 8.149 57.459 2.457 Height RT (cm) −22.037 2.535 0.272 −21.978 −27.089
Width LT (cm) 143.483 47.524 9.710 138.746 58.199 Width LT (cm) 8.980 3.366 0.145 8.888 2.389
Width RT (cm) 12.984 51.340 8.872 9.472 −80.658 Width RT (cm) −15.696 3.963 0.276 −15.608 −23.572

LT—left testicle; RT—right testicle.

Table 6. Bayesian Estimates of Unstandardized Linear Regression Coefficients for predictive model 1 for TSN, gonadosomatic ratio (GSI) (%), motility (%), and TMS (×109) sperm output
in Miranda donkey breed.

Parameter Posterior 95% Credible Interval Parameter Posterior 95% Credible Interval

TSN Mean SD MCSE Lower Bound Upper Bound Gonadosomatic ratio (GSI) Mean SD MCSE Lower Bound Upper Bound

(Intercept) 23,753.340 80.646 4.744 23,753.840 23,598.750 (Intercept) −0.600 0.035 0.003 −0.602 −0.670
Age (months) −1416.025 443.100 133.800 −1451.571 −2085.682 Age (months) 0.000 0.000 0.000 0.000 −0.001

Length LT (cm) 8883.943 111.914 30.604 8885.097 8667.620 Length LT (cm) 0.048 0.031 0.003 0.046 −0.014
Length RT (cm) 13,450.930 78.239 21.894 13,444.170 13,319.860 Length RT (cm) −0.086 0.036 0.004 −0.086 −0.156
Height LT (cm) −33,418.180 131.843 37.637 −33,411.060 −33,681.770 Height LT (cm) 0.154 0.029 0.003 0.153 0.099
Height RT (cm) 3060.495 62.605 4.230 3059.644 2940.727 Height RT (cm) 0.097 0.027 0.002 0.097 0.046
Width LT (cm) 19,157.550 69.930 5.174 19,157.660 19,020.890 Width LT (cm) 0.036 0.030 0.003 0.037 −0.034
Width RT (cm) −17,716.000 24.807 1.749 −17,716.020 −17,763.690 Width RT (cm) 0.072 0.025 0.002 0.071 0.026

Motility (%) Mean SD MCSE Lower Bound Upper Bound TMS (× 109) Mean SD MCSE Lower Bound Upper Bound

(Intercept) −12.707 90.778 13.158 −11.443 −185.472 (Intercept) −782.074 1094.008 328.918 −1260.849 −1857.071
Age (months) −0.069 0.175 0.022 −0.070 −0.390 Age (months) −612.420 250.955 74.637 −643.819 −958.823

Length LT (cm) 16.644 21.823 3.203 15.668 −24.687 Length LT (cm) −3816.467 87.995 16.210 −3819.298 −3982.185
Length RT (cm) 12.235 11.157 0.668 11.796 −9.577 Length RT (cm) 4859.292 206.757 60.216 4806.093 4601.664
Height LT (cm) −5.247 5.292 0.369 −5.314 −15.183 Height LT (cm) −2809.112 2318.070 702.958 −1870.947 −7896.015
Height RT (cm) −11.939 14.762 2.118 −11.310 −40.592 Height RT (cm) 536.574 140.014 15.828 524.424 295.207
Width LT (cm) 2.605 9.550 0.603 2.700 −16.521 Width LT (cm) 1678.912 2687.695 816.107 484.096 −742.483
Width RT (cm) −13.494 10.278 0.916 −13.619 −33.146 Width RT (cm) −7924.881 837.695 252.844 −7632.309 −9824.660



Animals 2021, 11, 176 15 of 23

Table 7. Bayesian Estimates of Unstandardized Linear Regression Coefficients for predictive model 2 for gel-free volume (mL), concentration (×106/mL), morphologically normal (%) and
morphologically abnormal (%), TSN, gonadosomatic ratio (GSI) (%), motility (%), and TMS (×109) sperm output in Miranda donkey breed.

Parameter Posterior 95% Credible Interval Parameter Posterior 95% Credible Interval

Gel-free volume (mL) Mean SD MCSE Lower Bound Upper Bound Morphologically normal (%) Mean SD MCSE Lower Bound Upper Bound

(Intercept) 18.027 74.948 4.027 17.645 −131.021 (Intercept) 101.165 48.993 2.230 102.862 6.593
Age (months) 0.380 0.075 0.003 0.386 0.228 Age (months) −0.088 0.028 0.001 −0.089 −0.141

BW (kg) 0.059 0.241 0.013 0.057 −0.408 BW (kg) −0.048 0.153 0.007 −0.051 −0.353
TTV (cm3) 0.229 0.206 0.011 0.237 −0.183 TTV (cm3) 0.082 0.130 0.006 0.086 −0.178

GSI −61.537 63.042 3.287 −61.751 −178.796 GSI −16.479 39.912 1.736 −17.993 −95.823

Concentration
(× 106/mL) Mean SD MCSE Lower Bound Upper Bound Morphologically abnormal (%) Mean SD MCSE Lower Bound Upper Bound

(Intercept) 34.599 87.218 4.216 29.855 −135.220 (Intercept) −34.631 48.161 2.471 −33.664 −130.104
Age (months) −1.281 0.246 0.012 −1.287 −1.751 Age (months) 0.098 0.027 0.002 0.098 0.045

BW (kg) 1.577 0.397 0.018 1.568 0.802 BW (kg) 0.151 0.151 0.008 0.147 −0.133
TTV (cm3) −0.434 0.282 0.013 −0.443 −1.002 TTV (cm3) −0.167 0.128 0.006 −0.168 −0.424

GSI 71.418 77.349 4.329 72.597 −84.034 GSI 43.228 39.364 1.902 43.112 −30.970

TSN Mean SD MCSE Lower Bound Upper Bound Gonadosomatic ratio (GSI) (%) Mean SD MCSE Lower Bound Upper Bound

(Intercept) 11,264.220 1978.212 598.275 10,786.800 8794.520 (Intercept) 1.213 0.036 0.001 1.214 1.140
Age (months) 4577.180 417.008 125.933 4671.496 3705.060 Age (months) −0.001 0.000 0.000 −0.001 −0.001

BW (kg) −5091.494 439.681 133.092 −5203.422 −5634.810 BW (kg) −0.004 0.000 0.000 −0.004 −0.004
TTV (cm3) 2606.332 220.725 66.742 2662.469 2131.406

TTV (cm3) 0.003 0.000 0.000 0.003 0.003GSI −4379.107 756.935 227.540 −4209.127 −5956.150

Motility (%) Mean SD MCSE Lower Bound Upper Bound TMS (× 109) Mean SD MCSE Lower Bound Upper Bound

(Intercept) 10.199 65.301 3.019 8.928 −114.356 (Intercept) −4076.090 195.502 54.547 −4028.317 −4586.811
Age (months) −0.116 0.043 0.002 −0.116 −0.202 Age (months) −1422.795 311.451 88.829 −1524.509 −1776.786

BW (kg) 0.223 0.206 0.010 0.221 −0.173 BW (kg) 569.508 82.412 14.404 572.642 397.312
TTV (cm3) −0.152 0.175 0.008 −0.156 −0.484 TTV (cm3) −172.885 46.034 7.844 −172.536 −261.502

GSI 51.775 53.600 2.428 54.210 −54.645 GSI 2298.200 133.412 29.547 2281.863 2070.603

TTV—total testicular volume; TSN—total sperm number; TMS—total motile sperm count; GSI—gonadosomatic ratio.
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Table 8. Model validity parameters.

Model 1 Gel-Free Volume (mL) Concentration (× 106/mL) TSN Motility (%) Morphologically
Normal (%)

Morphologically
Abnormal (%)

Gonadosomatic Ratio
(GSI) TMS (× 109)

MCMC iterations 12.500 12.500 12.500 12.500 12.500 12.500 12.500 12.500
Burn-in 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500
MCMC sample size 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000
Number of obs 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000
Acceptance rate 0.299 0.225 0.800 0.314 0.325 0.292 0.345 0.539
Min efficiency 0.007 0.001 0.001 0.005 0.001 0.001 0.015 0.001
Avg efficiency 0.023 0.010 0.011 0.019 0.008 0.029 0.037 0.002
Max efficiency 0.083 0.033 0.029 0.065 0.037 0.059 0.071 0.008
Log marginal likelihood −209.558 −259.862 −132,346.360 −186.416 −164.579 −166.624 −31.747 −5993.399
BIC 433.872 534.480 264,707.476 387.587 343.913 348.003 78.249 12,001.553

Model 2 Gel−Free Volume
(mL) Concentration (× 106/mL) TSN Motility (%) Morphologically

Normal (%)
Morphologically
Abnormal (%)

Gonadosomatic Ratio
(GSI) TMS (× 109)

MCMC iterations 12.500 12.500 12.500 12.500 12.500 12.500 12.500 12.500
Burn-in 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500
MCMC sample size 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000
Number of obs 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000
Acceptance rate 0.302 0.410 0.467 0.348 0.353 0.402 0.300 0.705
Min efficiency 0.032 0.032 0.001 0.036 0.045 0.031 0.049 0.001
Avg efficiency 0.049 0.056 0.001 0.051 0.063 0.049 0.064 0.002
Max efficiency 0.108 0.125 0.001 0.088 0.129 0.099 0.095 0.003
Log marginal likelihood −215.503 −263.929 −17,310.242 −186.604 −163.466 −163.531 27.657 −1746.014
BIC 445.762 542.613 34,635.240 387.964 341.687 341.817 −40.559 3506.783



Animals 2021, 11, 176 17 of 23

4. Discussion
4.1. Testicular Morphometry (Juveniles and Matures) and Sperm Quality Parameters in Miranda
Donkey Breed

The indication that testis biometry could provide a quantitative indication of sperm
production has been previously reported in bulls [55,56], bucks [57,58], and dogs [59,60]. In
the horse, morphometric, ultrasonographic-echotextural, and histomorphometric studies
have been carried out [3,59,60], which evidenced the relation between testicular dimensions
and sperm outputs [2] and the contribution of the ultrasonographic (US) evaluation in the
accurate evaluation of the testicular functional status [61].

Albeit less than in horses, some studies on testicular morphometry have been con-
ducted in donkey breeds such as Brazilian Pêga [6,62]; Ethiopian [63]; Egyptian [64,65];
and in the Italian breeds, Ragusano [19] and Martina Franca [66,67]. These studies have
addressed the considerable existing variation among donkey breeds, which led to the need
of investigating testicular dimensions in Miranda donkey breed. Besides, no previous
works on Bayesian approaches to predict for sperm output and quality in donkeys has
been conducted to the knowledge of the authors.

Mean US values of TTV of 271.69 cm3 (±133.21) obtained in mature Miranda donkeys
were higher than those found in Egyptian donkeys [64], similar to those in Brazilian Pêga
donkeys [62], and lower than those reported for Ethiopian donkeys [63]. In comparison
to other morphologically similar breeds to Miranda donkey, our values were similar to
slightly lower than TTV values found in Ragusano and Martina Franca donkeys [19,66].
Even if all the aforementioned breeds were medium to large-sized, differences of TTV
could still be attributed to BW, age and management conditions of the males selected for
the studies.

In the juveniles, studies are still scarce, but the values in our study (17.74 ± 9.89 cm3)
were similar to those described for the prepubertal Egyptian [68] and Amiata donkeys [67].
Donkeys between 10 to 14 months are still in their pubertal transition period and, which
reaches its end at 19–20 months of age, when testis have presumably completed their
descent into the scrotum [37]. In the present work, a rapid increment of TV was verified
after 11–12 months, which, besides, was simultaneous to the increase of BW. According
to the work by Rota, et al. [67], a progressive increase of testicular width was noted after
10 months, and notably after 16 months of age; however, puberty—defined by the first
presence in the ejaculate of 50×106 sperm with at least 10% of motility-, was not attained in
donkeys before 19–20 months. A previous histological work by our group evidenced that
although a rapid increase of TV could be observed after 12–14 months, spermatogenesis
was still incipient at that age [69]. Still, further studies should be carried out to precisely
determine the age of Miranda donkey at puberty.

The comparative analysis of US measurements with those obtained using a precision
caliper after orchiectomy evidenced that the former were very accurate. The precise
position and orientation of the probe during US examination and the correct handling of
the testicle, avoiding excessive tension during the exam, may have additionally contributed
to the obtention of reliable US measurements.

The quantitative and qualitative sperm parameters obtained; total sperm number
(TSN) per ejaculate, volume, concentration and morphology were within the range found
for other European Donkey breeds such as Zamorano–Leonese [70], Catalonian [71], An-
dalusian [72–74], and Amiata donkey [67]. The values of GSI obtained for mature donkeys
(0.9494) were higher than those reported in other domestic species [5]. This finding is of
great interest and application when implementing ARTs’ strategies and is consistent with
previous studies that observed the comparatively greater efficiency for sperm production
of donkeys among mammals, characterizing by a high spermatogenic efficiency and short
length of spermatogenesis [6,75].
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4.2. Bayesian Approach and Predictive Models

Comparative observations were taken at different time points, from a population
whose membership changes over time, but retains some constant members. This sample
condition is known as partially overlapping samples and for this study, it implies the
fact that not all the animals which were measured for morphometric parameters were
evaluated for semen parameters. As reported by Kay, et al. [76] in studies working with
partially overlapping samples, when there has been a gross violation of normality, as in our
study, samples should be considered independent. In a nonparametric context, the strong
subdivision of samples across the different experiments may condition results, hence, a
Bayesian approach was followed given smaller data sets that can be evaluated avoiding
power loss and retaining precision.

Posterior predictive p values (total model probability) for models 1 and 2 of around
0.331. Indicated moderately plausible good-fitting models. Similarly, the difference of more
than 3 log likelihood units can be considered as strong evidence against models 1 or 2
depending on the parameters considered. The higher value reported for this parameter
may suggest the acceptance of a more parameter-rich or simpler model accordingly. BIC
explains how well the model will fit for new data (instead of explaining the existing data,
which is measured by Adjusted R2). Models presenting lower BIC values evidence im-
proved predictions for the dependent variable or variables that they model for. Frequently,
adding more variables decreases predictive accuracy, and in that case, the model with even
higher Adjusted R2 will display higher BIC, decreasing its predictive power [52,76,77].
However, considering the higher Adjusted R2 and the lower BIC, model 1 performs better
at explaining and predicting than model 2 for gel-free volume (mL) and concentration
(×106/mL). For motility (%), model 1 was more precise to predict for future data while
slightly worse at explaining present data (0.01 lower R2). The opposite situation was
reported for TSN (×109) and TMS (×109), for which model 2 was more precise to predict
for future data, although it may be slightly worse at explaining present data (0.13 lower R2).
For morphologically normal and abnormal spermatozoa (%) and gonadosomatic ratio (GSI)
(%), model 2 suggested a higher ability to explain for present and predict for future data.

In the present research, when comparatively analyzing testis’ biometry predictive
power on spermatic parameters, some differences were found. The left testicle seems to
exert a higher influence on gel-free volume, while, on the other hand, the biometry of the
testicles seems to affect TSN differently. Concretely, the length and width of the left testicle
and the height of the right testicle seem to increase in parallel with sperm quantitative
parameters. Oppositely, as length and width of right testicle and height of the left testicle
increase, sperms output parameters seem to decrease. Hence, the negative/positive balance
between linear regression coefficients of morphometry variables (length, width and height)
suggest that testis may reciprocally react to changes in the contralateral testicle, which
affects almost all sperm outputs variables.

A previous work purposes the “compensation hypothesis” in birds, that states that
one of the testis could serve as a “back-up” for any reduced function of the other and
provides a mechanism to explain intraspecific variation in degree and direction of go-
nad asymmetry [77]. Another work relates that the degree of testicular asymmetry was
positively correlated with inbreeding coefficient and negatively correlated with the pro-
portion of normal sperm [78]. However, in the present work, testicular asymmetry was
not found in both clinical and morphometric evaluation, as both features do not meet the
inclusion criterion.

Mahmoud Ali Omar, et al. [79] reported a similar compensatory effect in the right tes-
ticle after the removal of the contralateral testicle in donkeys. Other authors have ascribed
this compensation to the increase in serum LH and FSH concentrations and, potentially
higher intratesticular testosterone [80]. Unilateral orchiectomy has been reported to in-
crease the mean diameter of seminiferous tubules by 21% and of their lumina by 51% [81].
Additionally, two events in line with our results were described. A weight compensation
was reported for the remaining testis, which has been already described [82]. Also, the
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histological examination of the testis of donkeys after unilateral orchiectomy with scrotum
suture revealed hyperplasia of Leydig and Sertoli cells [79]. This had also been reported by
Putra and Blackshaw [83], who suggested an increase in the number of Sertoli cells and
germ cells occupying the seminiferous epithelium after unilateral orchiectomy. Our results
may evidence that compensation may occur physiologically without these events, as it
has also been reported in other species [78]. Still, future works are necessary in order to
confirm these findings in donkeys.

In the present study, the age covariate, included in both predictive models, was
significantly and positively correlated with several parameters, namely with gel-free
volume and sperm output (TSN). The significant age-related positive effects on gel-free
volume and TSN agreed those in previous works in stallions [84,85]. For instance, the
influence of age in testicular dimensions of juvenile and peripubertal donkeys was verified
by Rota, et al. [67], who suggested that age markedly influenced testicular width.

On the other hand, age shows a linear association with abnormal sperm morphology
in model 1. Morphologically abnormal spermatozoa percentage slightly increases with age;
while sperm concentration and morphologically normal spermatozoa linearly decrease.
The negative impact of advanced age on morphology has been already described in stallions
and has been ascribed to testicular degeneration, abnormal epididymal function [86] or to
age-related testicular dysfunction associated with deterioration in DNA sperm motility [87].
A study in Egyptian donkeys reports that from six years onward, histological features were
indicative of spermatogenic efficiency starting to decrease [65]; however, more studies
should be performed before concluding that the same occurs in Miranda donkey breed.

In general, stronger correlations between BW and testicular biometry than between
age and testicular biometry were verified in the present study. This agrees with the
findings in a previous study conducted in stallions which emphasized the influence of
body size in testicular measurements and sperm output [2]. However, the analysis of
regression coefficients evidenced that the association of motility and total motile sperm
(TMS) with TTV was not always constant. On the contrary, sperm motility, as well as TMS
and concentration, were positively and linearly associated with gonodasomatic ratio (GSI).
Overall, this supports the fact that even if the measurements of the testicular parameters
could provide useful information about the potential sperm production, when it comes to
predict motility, these parameters should be adjusted for the BW of the donkey, as reported
by [Woodall and Johnstone [88]] when predicting for fertility in dogs. Contextually, further
investigations should allow to determine and confirm the relationship between BW and
TV in donkeys.

5. Conclusions

The results of the present work evidence the reliability of ultrasonographic measure-
ments of testis, which emphasizes its importance and value to obtain reference values of
donkey testicular volumes. Values of testicular volume and sperm output in the Miranda
donkey breed are similar to those in other affine European donkey breeds. Gonadomatic
index (GSI) is higher in the donkey than in other domestic species as previously described,
which confirms the great reproductive potential of male donkeys.

Combinations of biometrical and testicular morphometric factors (age, body weight,
testicular volume and GSI) will likely improve the predictive accuracy of Models than
using factors separately. Besides biometry, considering data such as BW and age, testicular
volume, and GSI may be systematically taken into consideration and integrated on BSE
of donkeys. The present study provides new insights into donkey reproductive biology,
which may be transferred to ARS strategies. Appropriate use of both models may be useful
to further improve knowledge on the reproductive characteristics of donkey breeds, which
may reinforce clinical purposes and maximize the outcomes from direct conservation or
selection strategies.
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