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Abstract: Many synthetic drugs and monoclonal antibodies are currently in use to treat Inflammatory
Bowel Disease (IBD). However, they all are implicated in causing severe side effects and long-term
use results in many complications. Numerous in vitro and in vivo experiments demonstrate
that phytochemicals and natural macromolecules from plants and animals reduce IBD-related
complications with encouraging results. Additionally, many of them modify enzymatic activity,
alleviate oxidative stress, and downregulate pro-inflammatory transcriptional factors and cytokine
secretion. Translational significance of natural nanomedicine and strategies to investigate future
natural product-based nanomedicine is discussed. Our focus in this review is to summarize the use
of phytochemicals and macromolecules encapsulated in nanoparticles for the treatment of IBD and
IBD-associated colorectal cancer.
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1. Introduction

Inflammatory bowel disease (IBD), which includes Crohn’s disease (CD) and ulcerative colitis
(UC), is a highly debilitating chronic inflammatory disorder of the small intestine and colon with
enhanced risk of colorectal cancer (CRC). IBD affects millions of people and mainly occurs in
genetically predisposed individuals having dysregulated immune response to various environmental
conditions [1–3]. The burden of IBD is quite high, both on patient’s quality of life and on the health
care system, with estimated hospitalization rates of 8.2–17 per 100,000 annually and annual treatment
costs of $6.8 billion [4]. Genetic, immunological, and environmental factors play important roles in its
etiology [5]. The most common symptoms include regular abdominal pain, fever, vomiting, diarrhea,
blood in the stool, and weight loss with enhanced risk of colorectal cancer [6,7].

The factors involved in intestinal inflammation include altered synthesis and release of
pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, and IL-12), tumor necrosis factor α (TNF-α),
interferon γ (IFN-γ), transforming growth factor (TGF)-β, and increased reactive oxygen species (ROS)
that results in excessive damage to the intestinal tissues [6,8,9]. In IBD, intestinal permeability
is predominantly abnormal with increased appearance of immune cells and increased mucus
production [10–12]. The drug therapy in IBD principally induces either remission of acute attacks or
limits the acute attacks during remission. Aminosalicylates, steroids, and immunosuppressants are
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some of the conventional anti-inflammatory drugs used for treating IBD. Although these medications
are efficient, the systemic absorption of these anti-inflammatory medications results in side effects
(short- and long-term), such as allergic responses, diarrhea, vomiting, lymphopenia, raised liver
enzymes, and inflammation of the pancreas [1,13]. In addition to these conventional therapeutics,
monoclonal antibody-based biological therapies are also recommended in IBD treatment. Several
such USFDA (U.S. Food and Drug Administration) approved TNF-α antibodies include infliximab,
adalizumab, certolizumab, vedolizumab, and golimumab, whereby infliximab was the first product
approved for the management of IBD. However, huge costs associated to biological therapies, parenteral
administration, higher number of nonresponders, and immune complications are major challenges
limiting their potential in IBD treatment [14–16]. Therefore, curative strategies that may be more safe
and effective in the treatment and management of IBD are required [5,6,17,18]

Several recent reports document use of natural phytochemicals in IBD that possess
anti-inflammatory and antioxidant activity such as flavonoids and phenolic compounds. They modulate
various inflammatory mediators, such as IL-1β, IL-6, IL-10, TNF-α, prostaglandin E2 (PGE-2),
inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) [13,19]. Additionally, natural
macromolecules are also tested in suppression of IBD-associated biochemical and molecular
inflammatory pathways. Recently, antioxidant and anti-inflammatory properties of biophenols derived
from fruits and vegetables have been considered beneficial for IBD through various in vitro and in vivo
studies [20]. Biophenols like oleuropein, hydroxytrosol, and ligstroside derived from olive trees have
been reported to possess aforesaid activities [21]. In particular, oleuropein has been widely studied for
its anti-inflammatory and immunomodulatory activities, whereby an oleuropein-treated colon biopsy
sample of a colitis patient revealed restoration of the typical microscopic damage with strong recovery
of mucin-forming goblet cells against untreated colon biopsy sample [22]. The same compound has
also resulted in a reduction of pro-inflammatory cytokine level (IL-1β, IL-6, and IL-8) in ex-vivo organ
cultures of mucosal explants from CD patients, thus demonstrating immunomodulatory activity in
IBD [23]. Similarly, polyphenols derived from green tea have great therapeutic potential against IBD
treatment due to their antioxidant properties, regulation of inflammatory mediator TNF-α, and COX-2
synthesis, thereby playing a vital role in downregulating the aberrant signaling pathways in IBD [24].
A possible barrier to this area is that the administration of natural drugs in conventional manner is
restricted because of their little solubility, permeability, and bioavailability. However, micronization
and nanonization of these natural drugs may be an acceptable strategy to improve their physical and
chemical properties to overcome the challenges faced otherwise [25]. In the following pages, we will
review encapsulated plant-based medicines and natural macromolecules in the treatment of colitis and
colitis-associated colorectal cancer (CAC).

As use of natural products is an immensely vast field in IBD, we have focused this review
on natural product-based nanomedicine in the treatment of IBD and associated CRC in preclinical
models. Though use of phytochemicals and macromolecules have been discussed in IBD and IBD-CRC
literature [26–28], the present review summarizes the studies which have used nanoparticles as a
delivery platform. Also, we will not summarize pre- and probiotics, as this has been extensively
reviewed by other investigators [29]. We performed a literature search in PubMed including the
terms “IBD”, “colitis”, “natural products”, “phytochemical”, “herbal”, “macromolecule”, “colon”,
and “inflammation” that resulted in around 900 references. We then sorted out the studies from this
pool of references that have used “nanoparticles” as a delivery platform. To keep this review brief, we
only focused on studies published during the last ten years.

2. Nanotechnology in IBD

Nanotechnology has recently emerged as promising future therapeutics for IBD and CAC. Lack of
targeted delivery and inadequate drug availability at the select site predisposes many patients to
the need for partial or total colectomy to prevent CAC. Nanoformulation of drugs overcomes the
common barriers imposed by the colon such as a thick mucus layer, disrupted epithelium, and altered
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transit time [30]. Additionally, nano- and micro-sized drug delivery systems facilitate targeted
delivery of medicines directly to the inflamed sites, increase their effective concentration at the sites,
and reduce the side effects brought by systemic absorption of drugs [1,8,31]. Nanomedicine has
several drug delivery systems, which include transferosomes; liposomes; dendrimers; mesoporous
silica; solid lipids; microspheres; and cellular carriers like recombinant bacteria, macrophages,
and erythrocytes [32]. These systems improve stability, specificity, bioavailability, and biodistribution
of natural compounds [33]. Several nanosized systems proved effective in animal models of IBD,
but approval for clinical use in humans is still scarce [34].

3. Natural Plant-Based Products as Nanomedicine in IBD Therapy

3.1. Thymoquinone

Thymoquinone (TQ) in the seed oil extract of Nigella sativa has several anti-inflammatory and
immunomodulating activities targeting nuclear factor kappa B (NF-κB), IL-1β, and TNF-α signaling.
Liposome or nanoparticle-based formulations of TQ are effective against various diseases in animal
models [35]. Treatment of dextran sodium sulfate (DSS)-induced colitis in mice with TQ suppresses
malondialdehyde (MDA) levels and myeloperoxidase (MPO) activity with concomitant increase
in glutathione levels indicating improvement in colitis-associated tissue damage [36]. In addition,
there is significant reduction in the expression of inflammatory markers Cox-2, iNOS, Nrf2, KEAP1,
and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) both at the mRNA and protein levels [37].
In vitro treatment of HT-29 colon cancer cells with a combination of TQ and lipopolysaccharide
(LPS) also reduced inflammatory markers [38]. Further, oral administration of alginate microcapsule
encapsulated N. sativa extract (NSE) is an efficient strategy for the delivery of TQ to the colon for the
treatment of IBD [38].

3.2. Resveratrol

Resveratrol (RES) is a naturally occurring polyphenolic compound in red wine with antiplatelet,
antitumor, neuroprotective, and anti-inflammatory properties. It regulates markers of inflammation by
downregulating pro-inflammatory cytokines IL-1β, IL-6, and IL-8; TNF-α; and matrix metalloproteinase
(MMP)-2, MMP-9, MMP-3, and MMP-13 in both in vivo and in vitro IBD models [39]. However,
therapeutic use of RES is limited because of its rapid metabolism due to its little solubility in water and
chemical instability. Iglesias et al. developed chitosan-based biocompatible hydrogels–nanoparticles
(CTS–NPs) and used them as colon-specific drug delivery systems for the prolonged retention and
release of resveratrol. Encapsulation of RES into CTS-NPs improves not only its absorption but also its
distribution, metabolism, excretion, and toxicity [40].

3.3. Curcumin

Curcumin (Cur) is derived from the roots of a plant Curcuma longa, a member of the Zingiberaceae
family. It is composed of 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, a polyphenolic
hydrophobic compound, and 2%–5% turmeric, a bioactive pigment giving it a yellow color. Its anti-
inflammatory [41,42], immunomodulatory [43–45], and antioxidant [46] properties are documented in
several human diseases including cancers [47–49]. Traditional use of curcumin in the treatments is
limited because of its poor absorption in the gastrointestinal tract, poor stability, low bioavailability,
and rapid systemic elimination [50]. However, use of curcumin in nano-formulations with albumin,
histone, solid lipids, polylactide-coglycolide, liposomes, and polybutylcyanocrylate improves its
bioavailability, solubility, and stability, making it therapeutically stronger with no adverse effects [50,51].

Curcumin-primed and curcumin-encapsulated exosomes have shown profound anti-inflammatory
activities by decreasing expression of IL-6 and TNF-α in murine macrophage RAW 264.7 cells when
induced by lipopolysaccharide (LPS) [51]. Moreover, curcumin-primed and curcumin encapsulated
exosomes are promising agents in treating inflammation-related diseases by affecting NF-κB-, Nrf2-,
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and activator of transcription-3 (STAT3)-dependent signaling pathways [52]. Qiao et al. characterized
amphiphilic curcumin polymer (PCur), which is made of hydrophilic polyethylene glycol (PEG) and
hydrophobic curcumin joined together by a disulfide bond. Due to nano-scaled sizes with sufficient
solubility and neutral surface potential, PCur efficiently accumulates at the inflamed sites of the
gut. Further, low cytotoxicity and increased membrane permeability of the PCur improves its oral
bioavailability. Oral administration of PCur in DSS-induced mice results in amelioration of progression
of inflammation in the colon and possible prevention from IBD and colitis-associated cancer (CAC) [53].
In another study, water-insoluble curcumin is chemically engineered into hydrophilic mucoadhesive
chitosan and used in a preclinical dextran sodium sulfate (DSS) colitis model and azoxymethane
(AOM)-DSS-induced CAC mouse models. Orally delivered curcumin-chitosan NPs accumulate in
inflamed intestinal regions and tumor tissues. Treatment significantly protects mice from ulcerative
colitis (UC) and CAC [54].

3.4. Ginger

The rhizome of Zingiber officinale is a medicinal plant, which is commonly known as ginger. Edible
ginger-derived nanoparticles (GDNPs) have an average size of ~230 nm with negative zeta potential.
The GDNPs are composed of few proteins, ~125 microRNAs, high levels of lipids, and large amounts
of biologically active compounds (6-gingerol and 6-shogaol). GDNPs are shown to enhance intestinal
repair and to reduce acute colitis and CAC in DSS and AOM-DSS mouse models, respectively. Increased
survival and proliferation of intestinal epithelial cells (IECs), increased anti-inflammatory cytokines
(IL-10 and IL-22), and reduced inflammatory cytokines (TNF-α, IL-6, and IL-1β) in response to oral
GDNPs suggest its potential in decreasing damaging factors and in promoting healing effects [13].
Similarly, oral administration of siRNA-CD98/ginger-derived lipid vesicles (GDLVs) targets specifically
to colon tissues, resulting in reduced expression of CD98 in colitis [7]. Plant-derived exosome-like
nanoparticles (ELNs) that contain RNAs can alter microbiome composition and host physiology. In this
regard, ginger ELNs (GELNs) ameliorate mouse colitis via IL-22-dependent mechanisms [55].

3.5. Quercetin

Quercetin (3,3′,4′,5,7-pentahydroxyflavone), a polyphenol found in abundance in onions,
has anti-inflammatory and antioxidant activity [56]. It occurs commonly in both glycoside and
aglycone forms [57]. PEG-coated vesicles with chitosan and nutriose-loaded quercetin are most
suitable for the drug delivery in colon and thus improve and ameliorate symptoms of trinitrobenzene
sulfonic acid (TNBS)-induced colitis in rats [58]. Glycoside-rutin is proven to be very effective
in treating IBD in DSS-induced experimental animals by regulating body weight and oxidative
stress in terms of MPO and by reducing GSH (glutathione), malondialdehyde, and serum nitrous
oxide (NO) concentrations [59,60]. Lin et al. noticed that dietary quercetin alleviates the effects of
Citrobacter redentium-induced colitis in mice by inhibiting the pro-inflammatory cytokines (IL-6, IL-17,
and TNF-α) and by promoting anti-inflammatory cytokine IL-10 in colon tissues as well as by modifying
gut microbiota [61]. Moreover, quercetin has bactericidal capacity and anti-inflammatory activity in
macrophages via Heme Oxygenase-1 (HO-1)-mediated pathways and thus is useful in IBD therapy
by restoring hemostasis and by balancing the enteric commensal microflora [62]. Another study
by Dicarlo et al. revealed the benefit of quercetin in suppressing the inflammatory pathway in an
in vitro intestinal organoid model. The authors stated that such a model is a novel tool to investigate
epithelial response in models of chronic inflammation. Intestinal organoids of the Winnie model
(ulcerative colitis mice model) treated with quercetin showed suppression of inflammation through
downregulation of TNF-α and lipocalin-2 and upregulation of the heme oxygenase 1 and ferroportin
1 against the untreated model, thus mimicking the characteristics of the in vivo model in evaluating
the gut epithelial inflammatory responses [63].
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3.6. Embelin

Embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone) is a naturally occurring alkyl substituted
hydroxyl benzoquinone found abundantly in Embelia ribes plant. Embelin is used in traditional
medicine for the treatment of various diseases [64]. Its fruit tastes bitter and is used commonly
to treat fever, a variety of gastrointestinal ailments, and inflammatory diseases. Embelin possess
anti-inflammatory, analgesic [65], antioxidant [66], and wound-healing activities [67] and is reported
to inhibit TNF-α-induced activity of NF-κB, thereby impairing the inflammatory signaling. Standard
particle size of 13.5 µm of embelin-loaded microspheres helps in delayed release at the inflamed sites
and accumulation in macrophages. Embelin-loaded enteric-coated microspheres, which use both ethyl
cellulose and Eudragit S 100 polymer, also exhibit delayed release as compared to plain embelin and
exerts defensive effects in acetic acid-induced UC in rats by increasing GSH level and by reducing
MPO and MDA levels [68]. Embelin also ameliorates DSS-induced colitis in mice by attenuating
DAI (Disease Activity Index) scores and tissue MPO accumulation. It is also reported to prevent
enlargement of spleen size and shortening of colon length in a dose-dependent manner. Additionally,
Embelin exerts its anti-inflammatory activity by inhibiting secretion and abnormal expression of mRNA
of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) [69].

3.7. Grape Exosomes

In multicellular organisms, in addition to secretion of proteins, release of exosomes is another
method of intercellular communication. Exosomes can haul proteins, lipids, mRNAs, and miRNAs
from one cell to another and thus are involved in cell–cell communication. Recent research has
shown that nanosized particles of plant origin can act as exosomes [70] and are involved in cell–cell
communication, thereby regulating innate immunity [71]. The gastrointestinal tract is continuously in
contact with digested edible plant derived exosome-like nanosized particles. However, the role of
these plant-derived exosome-like nanoparticles as an interspecies messenger has never been addressed.
Ju et al. identified exosome-like nanoparticles from grapes known as grape exosome-like nanoparticles
(GELNPs) and demonstrated that GELNPs are 380.5 ± 37.47 nm in size and contain many miRNAs
and proteins [72]. However, mammalian exosomes contain even greater numbers of miRNAs and
proteins. The lipid profile of mammalian exosomes is also much different than that of GELNPs.
GELNPs are composed of 2% galactolipids (typical plant lipids) and 98% phospholipids (50% of which
is phosphatidic acid (PA)). Interaction of PA with the mammalian target of rapamycin (mTOR) is
reported to initiate cell growth and proliferation [73]. Ju et al. also demonstrated that GELNPs can
penetrate the intestinal mucus barrier and are involved in protection of colon against DSS-induced
colitis in mice. In addition, lipids from GELNPs and Liposome-like nanoparticles (LLNs) are required
for targeting nanoparticles towards intestinal stem cells. The signaling pathway mediated by β-catenin
is blocked in GELNP recipient cells, which in turn modulates renewal and remodeling of intestinal
tissues in response to pathological triggers [72].

3.8. Silymarin

Silymarin, isolated from Silybum marianum (milk thistle seeds), is a mixture of several
flavanolignans (silybinin, silychristin, silydianin, and isosilyibinin) with antioxidant and anti-
inflammatory properties. The activity of antioxidant enzymes such as glutathione peroxidase,
superoxide dismutase, and catalase are affected by silymarin. In TNBS-induced murine colitis,
silymarin, has been shown to rebalance inflammatory cytokines such as TNF-α, IL-1β, and IL-6.
Similarly, silymarin and selenium NPs in combination significantly reduce expression of oxidative
stress biomarkers, NF-κB, and pro-inflammatory cytokines and the drug combination was more
effective than each one alone [74]. Varshosaz et al. on the other hand orally administered Eudragit NPs
loaded with silybinin in acetic acid-induced UC animals and noticed a significant reduction in IL-6 and
TNF-α activity, thus improving symptoms of IBD [75].
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3.9. Caffeic Acid Phenethyl Ester

Honey bee propolis is found to contain a phenolic compound Caffeic acid phenethyl ester (CAPE)
that is reported to possess anti-inflammatory activity mainly by inhibiting NF-κB [76]. In DSS-induced
experimental mouse model of colitis, CAPE is effective in suppressing pro-inflammatory cytokines
and MPO activity, which improves epithelial barrier function [77].

3.10. Piceatannol

Piceatannol (PCT) is a trans-3,4,3′,4′-tetrahydroxystilbene found in the seeds of Euphorbia lagascae
and modulates activities of transcription factors NFκB, Nrf2, and HIF-1α [78–80]. Colon-targeted PCT
regulates the production of transcription factors gene products in inflamed colonic tissues and thus
increases the efficacy of PCT against colitis [81]. However, this activity is not observed in conventional
PCT. Tambuwala et al. described the effect of albumin nano-encapsulation of CAPE and PCT on
HIF-1α and nuclear p65, the important therapeutic targets of IBD in DSS-induced colitis. They inferred
from their findings that nano-encapsulation of CAPE/PCT in albumin enhances its anti-inflammatory
property and the ability to regulate molecular pathways related to inflammation [82].

4. Natural Macromolecules as Nanomedicine in IBD Therapy

4.1. Natural Peptides

Tuftsin, a natural tetrapeptide (Thr-Lys-Pro-Arg) with immunomodulating and anti-inflammatory
activities, is a part of immunoglobulin G (IgG) heavy chain generated by enzymatic cleavage in
the spleen. Several analogs of tuftsin are affective in colitis treatment in animal models [83].
Tuftsin-phosphocholine (TPC) is responsible for maintaining normal gut microbiota in collagen-induced
arthritis model [84]. TPC immunomodulates by stimulating colon anti-inflammatory cytokines (IL-10)
and by downregulating pro-inflammatory cytokines (IL-1β, IL-17, and TNF-α) in collagen-induced
arthritis model and DSS-induced colitis model [85,86]. Lysine-proline-valine (KPV), a naturally
occurring tripeptide, attenuates inflammatory responses of colonic cells. KPV entrapped into hyaluronic
acid (HA)-functionalized polymeric nanoparticles and encapsulated in a hydrogel (chitosan/alginate)
prevents mucosa damage and downregulates TNF-α [87].

4.2. Vasoactive Intestinal Peptide

Vasoactive Intestinal Peptide (VIP), an immunomodulating and anti-inflammatory endogenous
hormone, reverses colitis and associated diarrhea in mouse models with sterically stabilized micelles
(SSM) nanoformulation [88]. The receptor for VIP (VIPR1) is expressed differentially in UC and
CD mucosa. It is expressed in CD3- and CD68-positive cells of infiltrating inflamed UC and CD
mucosa, respectively [89]. UC is generally suggested to involve T helper2 (Th2) cells, whereas CD
involves Th1 and/or Th17 cells. In the past ten years, VIP has emerged as a therapeutic candidate
to treat inflammatory diseases involving Th1 components and both VIP and VIPR systems [90].
Wu et al. demonstrated the role of VIP in the development and maintenance of epithelial barrier
integrity by promoting epithelial cell repair and homeostasis in DSS-induced colitis mouse model [91].
Immune dysfunction is a critical component of IBD pathogenesis and VIP has a very important role in
IBD pathogenesis as it modulates immune activities by maintaining the expression level of IL-10 in
regulatory B cells in the intestine that stabilizes homeostasis of immune function [92].

4.3. Natural Polysaccharides

Generally, natural polysaccharides such as cellulose, dextran, pectin, and chitosan have been used
as drug delivery systems for colon because of their ease to work, nontoxic nature, and approval by
the USFDA. The use of natural polysaccharides as delivery system also prevents premature release of
drug in the small intestine and stomach and favors selective degradation in colon. Modified apple
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polysaccharide inhibits colitis by decreasing the level of IL-22 and by increasing the expression of
IL-22BP [93]. Additionally, polysaccharide-rich extracts of Eucheuma cottonii and Acmella oleracea
modulate inflammatory response and suppress colonic damage in DSS-induced colitis [94,95]. Nie et al.
used non-starch polysaccharides to treat IBD in both in vivo and in vitro models [96]. The mechanisms
involved in amelioration of the signs and symptoms and in suppression of reoccurrence rates are
anti-inflammation, immune stimulation, and gut-microbiota modulation.

4.4. Bacterially Derived Immunomodulants

Beneficial bacteria (Probiotics) have therapeutic use in IBD treatment. However, only modest benefit
has been reported so far in humans [97]. Enteric bacterial pathogens have coevolved with humans to
develop systems to modulate inflammatory and immunoregulatory pathways [98]. AvrA (naturally
evolved immunomodulatory protein), a member of acetyltransferases family, is produced by Salmonella
that fits in this category. AvrA performs its function by covalently modifying and inactivating
mitogen-activated protein kinase (MAPK), thus affecting growth, survival, and immune pathways
in eukaryotes. Previous findings documented that overexpression of AvrA in transfected cells block
activation of JNK (c-Jun N-terminal kinase), MAPK, NF-κB, and a range of inflammatory effector genes at
the transcriptional level. Estrada et al. used engineered AvrA to suppress inflammatory response similar
to those observed in IBD [99]. Further, cross linking of AvrA to nanoparticles (AvrA-NPs) makes their
internalization possible into epithelial and lamina porpria monocytic cells in both in vitro and in vivo
models. AvrA-NPs inhibit inflammatory pathways and reduce inflammation of tissues in murine models
of colitis, thereby making bacterial protein-NP platforms effective therapeutics to fight chronic IBD [99].

With the recent development of 16s ribosomal RNA sequencing, extensive efforts have now been
made to identify various microbiota and antigenic variation of the microbiota at the inflamed site and
to design a microbiome-targeted NP delivery system. Yan et al. demonstrated use of a pectin/zein
hydrogel bead system to deliver p40, a probiotic bacteria-derived soluble protein, to the mouse colon.
The protein p40 activates EGFR (Epidermal Growth Factor Receptor) in colon epithelial cells, which in
turn activates Akt and thereby promotes inhibition of apoptosis induced by inflammatory cytokines in
both in vitro and ex vivo models. Reduction of apoptosis of colon epithelial cells alters barrier function
and thus helps in treating intestinal injury during acute colitis induced by DSS [100].

4.5. Insect-Derived Bioactive Components

Insect-derived bioactive compounds such as Bombyx mori haemocyte, Gryllus bimaculatus extract,
Tetragonula carbonaria extract, Nasonia vitripennis venom, glycosaminoglycan, cecropin A, silk fibroin,
SibaCec, Cecropin-TY1, N-acetyldopamine dimers, papiliocin, and Melittin have been reported to be active
against inflammatory diseases. These compounds inhibit the secretion of cytokines and downregulate
expression of signaling molecules involved in the pathophysiology of inflammation [101,102]. They inhibit
activation of MAPK pathways and NF-κB, thereby acting against inflammation under both in vitro and
in vivo conditions [103]. However, the knowledge behind their regulatory activities is not sufficient.
Further studies related to their ability to cross the blood–brain barrier along with toxicological and
pharmacodynamical properties will direct them to be used as potential drugs for future clinical trials
in colitis and CAC [103].

4.6. Engineered Biomimetic Nanovesicle

In IBD, a subset of T-lymphocytes overexpresses α4β7 integrin, which helps in binding to
its receptor on the endothelial membrane. Based on this principle, biomimetic vesicles termed
leukosomes (SLKs), which are leukocyte-like carriers drugged with over-induced α4β7 integrin,
are engineered. In DSS-induced colitis model, SLK treatment reduces inflammation via affecting both
inflammation-favoring and anti-inflammatory genes. SLKs also suppress infiltration of immune cells,
which in turn enhances intestinal repair. Therefore, biomimetic nanovesicles serve both as natural
drug delivery systems as well as nanotherapeutics with inherent anti-inflammatory properties [104].
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4.7. Antibodies and Nucleic Acids

4.7.1. CD98

CD98 is chosen in the studies conducted by Xiao et al. as the therapeutic targeting molecule [105].
Earlier studies reported upregulated expression of CD98 in mice colonic tissues suffering from UC [106];
in intestinal B cells, CD4+ T cells, and CD8+ T cells from IBD patients [107]; and in colonic biopsies from
CD patients [108]. CD98 is reported to be redistributed to the apical surface of intestinal epithelium
during inflammation, resulting in loss of epithelial barrier [109,110]. Also reported are the findings
that increased expression of CD98 has an important role to play in the progression and development of
IBD [111]. Administration of chitosan/alginate hydrogel nanoparticles linked with CD98 antibody and
loaded with siRNA CD98 significantly reduces expression of CD98 in epithelial cells and macrophages.
These NPs decrease severity of colitis in mice, suggesting future use of chitosan/alginate nanoparticle
for IBD therapy [105]. Zhang et al. used natural nanoparticles known as ginger-derived lipid vehicles
(GDLVs) produced from lipids found in ginger for the delivery of siRNAs. Oral administration of
GDLVs loaded with a very low dose of siRNA-CD98 targets them specifically and effectively to colon
tissues, which results in decreasing expression of CD98. Moreover, GDLVs are biocompatible and
production on a large scale can be achieved easily, thus making them a very safe and cost-effective
delivery system for siRNA in UC treatment [7].

4.7.2. TNF-α

TNF-α is amongst the key genes involved in IBD pathogenesis, and many therapies involving use
of antibodies for reducing the activity of TNF-α have been tested in several clinical trials; however,
systemic depletion of TNF-α results in adverse effects [112–114]. Gene silencing with targeted delivery
of TNF-α siRNA encapsulated in thioketal nanoparticles (TKNs) with B gelatin enclosed in poly
ε-caprolactone (PCL) microspheres decreases TNF-αmRNA at the site of intestinal inflammation in the
DSS-induced mouse model [115,116]. Other studies reported that the TNF-α siRNA/polyethyleneimine
(PEI) nanocomplex inhibits secretion of TNF-α by macrophages whereas its oral administration in
lipopolysaccharide (LPS)-treated mouse model reduces expression of TNF-α, specifically in colon [117].

Biodegradable poly(DL-lactide-co-glycolide) nanoparticles (PLGA-NPs) loaded with nucleic acids,
for example, chitosan-modified (CS)-PLGA loaded with NF-κB decoy oligonucleotide (ODN), are shown
to be useful in treating mice with colitis [118]. Similarly, oral administration of double-stranded
decoy ODNs enclosed in CS-PLGA nanospheres (NSs) against the pro-inflammatory NF-κB gene has
curative effects on diarrhea, blood loss, colon length, and MPO activity in the DSS-induced murine UC
model [119].

4.7.3. MAPK4

Aouadi et al. revealed that mitogen-activated protein kinase 4 (MAPK4) plays an important role in
mediating the production of inflammatory cytokines in macrophages. Gene silencing by administration
of MAPK4 siRNA encapsulated in β1,3-d-glucan shells in LPS-induced mouse model suppresses the
production of TNF-α and IL-1β, thereby protecting the animals from systemic inflammation induced
by LPS [120].

4.7.4. MMPs

The architecture of intestinal tissue is disturbed in IBD during inflammation and wound healing.
Matrix metalloproteinases (MMPs) play an important role in regulating tissue remodeling during
these processes [121]. In an DSS-induced mouse model of UC, expression of MMP-3 (stromelysin-1)
and MMP-10 (stromelysin-2) increased in gut and intestinal ulcer tissues [122]. Silencing of MMP-3
and MMP-10 gene by their respective siRNA has been documented as therapeutically beneficial in
protecting damaged colonic tissues and severity of the disease [123].
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4.7.5. CyD1

Increased expression of Cyclin D1 (CyD1) is reported in epithelial and immune cells during
IBD [124]. siRNA CyD1 linked to targeted stabilized NPs (tsNPs) directed against leukocytes inhibits
CyD1 mRNA and inflammatory responses in DSS-induced mouse model of colitis. CyD1 silencing
affects induction of inflammatory cytokines TNF-α and IL-12 in TH1 cells; however, no effect on IL-10
cytokine in TH2 cells is observed [125].

4.7.6. IL-10

Anti-inflammatory IL-10 is very critical for immunosuppression in CD pathogenesis but therapeutic
efforts to enhance its action have failed so far because of systemic toxicity of IL-10 therapies and reduced
delivery of IL-10 to the intestinal tissues [126]. In a TNBS-induced acute colitis mouse model, targeted
delivery of IL-10-producing plasmid in the form of pORF5-mIL-10 plasmic DNA with type B gelatin
nanoparticles in poly ε-caprolactone resulted in enhanced expression of IL-10 followed by suppression
of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1α, IL-1β, and IL-12), thus restoring body weight,
length of colon, and beneficial clinical activity scores in animal models [127]. Lipid nanoparticles (LNPs)
are natural, efficient, safe, and non-immunogenic systems for gene manipulation in vivo. LNPs shield
RNA molecules from degradation and from eliciting any immune reaction. LNPs play a significant
role in achieving therapeutic concentration of IL10 in colons while reducing the off-target protein
expression [128]. As a therapeutic approach to treat IBD, Veiga et al. described the use of IL10-modified
mRNA encapsulated in LNPs for cell-specific delivery into Ly6c+ inflammatory leukocytes in both
in vitro and in vivo models [129].

4.7.7. IRF-8

Inhibition of Interferon Regulatory Factor-8 (IRF-8), an immunomodulatory protein, has
therapeutic potential in IBD. siRNA-loaded lipid-based nanoparticles (siLNPs) block IRF-8 mRNA
and significantly regulate differentiation, polarization, and activation of mononuclear phagocytic
cells. To silence IRF8 in vivo, siLNPs are coated with anti-Ly6C antibodies to achieve selectivity for
inflammatory leukocytes. The immunomodulatory effect is observed with a significant decrease in
pro-inflammatory cytokines [130].

4.7.8. miR-29, miR-31, and miR-146b

Fukata et al. established a microRNA (miR)-based therapy in a DSS-induced colitis model.
They used miR-29 and supercarbonate apatite (sCA) nanoparticle (sCA-miR-29) as the drug delivery
system. Both miR-29a and miR-29b prevent inflammation when injected in the tail of a murine
colitis model. RNA seq analysis revealed that inhibition of inflammatory cascade associated with
interferon is responsible for the prevention of inflammation. Additionally, sCA-miR-29b when injected
subcutaneously also inhibits inflammation by targeting CD11c+ dendritic immune cells of inflamed
mucosa and by suppressing production of IL-6, TGF-β, and IL-23 subunits, thus suggesting sCA-miR-29
as a new route in nucleic acid-based medicine for IBD treatment [131].

Levels of miR-31 are increased in Crohn’s, colitis, and CAC patients. However, knockout of miR-31
in mouse models developed severe colitis by DSS and TNBS. Analyses revealed that miR-31 regulates
IL-17, IL-7, and GP-130 (a cytokine signaling protein) mRNAs, which are upregulated in miR-31
knockout mice. Delivery of miR-31 or oxidized konjac glucomannan microspheres (OKGM)-peptosome
miR-31 mimic inhibits their expression; suppresses inflammatory response; and augments epithelial
cell proliferation, body weight, and colon length [132].

MiR-146b mimic on mannose-modified trimethyl chitosan (MTC)-conjugated nanoparticles
(MTC-miR146b) selectively targets intestinal macrophages for mucosal regeneration. MiR-146b strongly
inhibits M1 macrophage activation via the toll-like receptor 4 signaling pathway that results in the
repression of the induction of TNF-α, IL-6, and IL-1β [133].
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Summarized list of Phytochemicals/Macromolecules used in nano-based IBD research is included
in Table 1. This table has some additional references which are not included in the text.

5. Future Challenges in the Use of NaturalProduct-Based Nanomedicine in IBD

5.1. Novel Unproven Anti-Inflammatory Nano-Formulations and Patents in Colitis

More recently, a new terminology “nutraceutical” has emerged, which is described as “A food or
parts of food that provide medical or health benefits, including the prevention and/or treatment of
disease”. This term originated from two words: “nutrition” and “pharmaceutical”. A recent publication
summarized various novel nano-formulations and several patents, which include curcumin, resveratrol,
quercetin, epigallocattchin-3-gallate, β-carotene, fish oil, and gallic acid. These novel formulations,
which have anti-inflammatory and antioxidant activities, are fully characterized by efficacy and toxicity
in laboratory models [134]. However, these formulations have never been investigated in colitis
research. Future investigations using these novel nano-formulations and patents are warranted.

5.2. Combinatorial Nano-Formulations in IBD Treatment

Combination therapy, an emerging strategy, is under intensive preclinical investigation for the
treatment of IBD. In recent years, nutritional supplements and natural macromolecules showed
beneficial effects in IBD treatment either alone or in combination with other molecules or biologics.
In this regard, zinc oxide nanoparticles combined with mesalazine (5-ASA) enhance the therapeutic
efficacy of 5-ASA in the treatment of colitis [135]. Simultaneous delivery of CD98 siRNA in combination
with curcumin using hyaluronic acid (HA)-functionalized polymeric nanoparticles is an effective
technology to target cells for colitis therapy [136]. Nanoparticles which are pH sensitive are used to
deliver curcumin-celecoxib combination as a potential therapy for colitis [137]. Coadministration of
silymarin and nano-selenium inhibits NF-κB in the management of IBD [74]. Combination therapy
of migraine with ω-3 fatty acids and nano-curcumin should also be tested in IBD [138]. Similarly,
ω-3 polyunsaturated fatty acids loaded in resveratrol-based solid lipid nanoparticles, which suppresses
CRC in vitro models, may also reduce IBD complication [139].

5.3. Natural Nanoparticles as Delivery Platforms in IBD Treatment

Phytochemicals can act on various targets of pathogenesis and inflammation. Owing to immense
pharmacological activities, at present, the key limitations and the barriers observed with natural
molecules in IBD therapy are that the therapeutic activity is compromised before reaching to the
inflamed colon. To overcome these challenges, various synthetic polymer-based nanoparticles are
being utilized that are toxic to biological systems. To minimize the risk of side effects associated with
synthetic polymer-based nanocarriers, future studies should be aimed at delivering and/or targeting
these molecules by encapsulating them into natural protein and/or polysaccharide-based delivery
systems. Natural biopolymer-based nanoparticulate formulations can protect active phytochemical
from gastrointestinal instability, can maximize colon targeting, and can get degraded by colonic
microflora without altering their composition; hence, such a biodegradable carrier system can be
an ideal formulation for colon targeting in the future. In this regard, a natural-lipid nanoparticle
drug delivery system is created to encapsulate and release 6-shogaol (biologically active compound
of ginger) to the colon [140]. Ulva lactuca polysaccharide-selenium nanoparticles offer therapeutic
potential for reducing the symptoms of acute colitis through its anti-inflammatory actions [141].
Nanoparticles isolated from broccoli extracts provide protection against colitis by activation of
adenosine monophosphate-activated protein kinase in dendritic cells [142]. Budesonide-entrapped
krill oil-incorporated liposomes suppressed TNF-α in colitis models. This natural delivery platform
has great potential as a nanovehicle for oral delivery of IBD drugs [143]. An exhaustive discussion on
the different categories of nanocarriers is beyond the scope of this article.
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Table 1. Summarized list of Phytochemicals/Macromolecules used in nano-based Inflammatory Bowel Disease (IBD) research.

Phytochemical/Macromolecule Nanoparticles/Carrier In Vitro/In Vivo Models Reference

Thymoquinone LPS, alginate microcapsule HT-29 [38]

Resveratrol CTS-NPs in vitro [40]

Curcumin CTS NPs DSS/CAC [54]

Curcumin HA-PLGA-NPs HT-29 [144]

Curcumin C-SBLNPs DSS [145]

Curcumin Theracurmin-HP DSS [146]

Curcumin PEG DSS [53]

Curcumin CTS NPs DSS-AOM [54]

Curcumin SNEDDS, NLC, and LCSPNC DSS [1]

Ginger active compound, 6-shogaol PLGA/PLA-PEG-FA and
PLGA/PLA-PEG-FA-chitosan alginate hydrogel colon-26, Raw 264.7, and DSS [147]

Ginger GDNPs 2 RAW 264.7, Caco-2BBE, Colon-26, and AOM-DSS [13]

Quercetin PEG-coated vesicles with CTS TNBS [58]

Quercetin, Glycoside Glycoside-Rutin DSS [59,60]

Embelin Cellulose and Eudragit S 100 polymer
microspheres AA and DSS [68]

Grape Exosome GELNPs and LLNs DSS [72,73]

Silymarin Selenium NPs and Eudragit NPs TNBS and AA [74,75]

Caffeic acid phenethyl ester (CAPE) Albumin DSS [82]

Piceatannol (PCT) Albumin DSS [82]

Tuftsin Phosphocholine DSS [85,86]

Vasoactive Intestinal Peptide SSM NPs DSS [88,91]

Bacteria

Salmonella acetyltransferase, AvrA eGFP cross linked DTSSP NPs in vitro, DSS [99]

Probiotic derived protein p40 Pectin/Zein Hydrogel in vitro, ex vivo, and DSS [100]

Colonic bacteria ZnO NPs DSS [135]

Engineered Biomimetic Nanovesicles

α4β7 integrin SLKs DSS [104]
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Table 1. Cont.

Phytochemical/Macromolecule Nanoparticles/Carrier In Vitro/In Vivo Models Reference

Antibodies

Hsp60 Virus-like particles DSS [148]

Ly6C Lipid-based NPs DSS [130]

Mucosal addressin cell adhesion
molecule-1 MnO NPs DSS [149]

scCD98 CTS and alginate hydrogel DSS [105]

Tumor necrosis factor-alpha Lactococcus lactis nanobodies DSS [150]

Nucleic Acids

NF-kB decoy oligonucleotide CTS-PLGA NSs DSS [118]

Plasmid DNA containing PIAS1 TAC6 polymer-sodium polyaspartate NG DSS [151]

IL-10 containing plasmid Type B gelatin NPs-PCL TNBS [127]

IL-10 RNA LNPs in vivo [128]

IL-10 Modified mRNA LNPs RAW 264.7 DSS [129]

CD98 siRNA GDLVs Caco-2BBE, RAW 264.7, colon-26, and DSS [7]

CD98 siRNA NPs and NPs-chitosan/alginate hydrogel Colon-26, RAW 264.7, and DSS [105]

CyD1 siRNA tsNPs DSS [125]

TNF-α siRNA GC-NPs DSS [152]

TNF-α siRNA TKNs-B Gelatin-PCL DSS [115]

TNF-α siRNA TPP-PPM NPs DSS [153]

TNF-α siRNA PLA-PEG-chitosan/alginate hydrogel DSS [154]

TNFα siRNA PEI/PL/PVA MPs and LPS [117]

MAPK4 siRNA β1,3-d-glucan shells LPS [120]

miR31 OKGM DSS [132]

miR-29 sCA NPs DSS [131]

LPS, Lipopolysaccharide; CTS-NPs, Chitosan-based biocompatible hydrogel nanoparticles; CTS, Chitosan; HA-PLGA, Hyaluronan-Poly(lactide-co-glycolide)acid; cSBLNPs, Solid
binarylipid nanoparticles; SNEDDS, Self-nanoemulsifying drug delivery systems; NLC, Nanostructured lipid carriers; LCSPNC, lipid core-shell protamine nanocapsules; GDNPs,
Ginger-derived nanoparticles; PEG, Polyethylene glycol; GELNPs, Grape exosome-like NPs; LLNS, liposome-like nanospheres; SSM, Sterically stabilized micelles; LNPs, lipid NPs;
GC, Galactosylated chitosan; PLA-PEG, Poly(lactic acid)Poly(ethylene glycol); TPP-PPM NPs, Sodium triphosphate-mannosylated bioreducible cationic polymer NPs; PEI-PL-PVA,
Polyethyleneimine-polylactide-polyvinylalcohol; OKGM, Oxidized konjac glucomannan microspheres; sCA, Supercarbonate apatite NPs; TKNs, Thioketal; PCL, poly (ε-caprolactone);
PIAS1, protein inhibitor of activated STAT1; tsNPs, Targeted stabilized NPs; DTSSP, dithiobis(sulfosuccinimidylpropionate).
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5.4. Nanoparticles as Delivery Platforms in IBD Clinical Trials

Clinical literature suggests that molecules like curcumin, resveratrol, rutin, and silymarin are being
investigated in humans for treatment of IBD or CRC. Two randomized double-blind placebo-controlled
pilot studies established anti-inflammatory effects of resveratrol in colitis patients [155,156]. A review
article establishes that various clinical trials with resveratrol caused improvement in clinical symptoms,
endoscopic and histological assessment, and quality of life and reduction in adverse events [157]. In a
recent double-blind placebo-controlled trial, curcumin supplementation in colitis patients is associated
with significant improvement of the clinical outcomes and quality of life [158]. A recent review focused
on the clinical trials that assessed herbal medicinal plants in double-blind randomized controlled trials
(RCTs) [159]. In general, trials were conducted with single small RCTs and short follow-up. Further,
long-term effects and safety of their use are not yet established. Thus, appropriately sized RCTs are
important prior to recommended use of herbal medicines in therapy.

In the clinical trials discussed above, natural molecules are being used as such or as conventional
oral dosages but not as a nanoparticulate formulation. This warrants future trials encompassing these
phytochemicals into nontoxic nanoparticles to unlock their therapeutic potential for successful clinical
outcome in IBD and IBD-CRC. In this regard, it was established that PEG-functionalized nanoparticles
selectively target inflamed mucosa in IBD [160]. This could be further exploited to deliver desired
phytochemicals in the treatment of IBD.

6. Conclusions

IBD therapy with biologics is favored for mucosal healing and for maintaining clinical remission.
Invariably, biologics lead to adverse side effects, a key limitation observed in treatment of IBD.
This review demonstrates that, as an alternate, natural products when entrapped in nanoparticles
hold a huge potential in the prophylaxis, management, and treatment of IBD. In future, new untested
patents and novel nano-formulations should be investigated. Further, combinatorial mixtures of
phytochemicals or phytochemicals with macromolecules may have additive effects as compared to
single agent treatment strategy. More importantly, though limited plant-based nano-formulations have
been tested in humans, new clinical trials are urgently needed to analyse nontoxic natural nanoparticles
targeted to colon for delivery of natural products.
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