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Abstract

Fatty-acids (FAs) are required in the diet of many animals throughout their life. However, the mechanisms involved in the
perception of and preferences for dietary saturated and unsaturated FAs (SFAs and UFAs, respectively) remain poorly
explored, especially in insects. Using the model species Drosophila melanogaster, we measured the responses of wild-type
larvae and adults to pure SFAs (14, 16, and 18 carbons) and UFAs (C18 with 1, 2, or 3 double-bonds). Individual and group
behavioral tests revealed different preferences in larvae and adults. Larvae preferred UFAs whereas SFAs tended to induce
both a strong aversion and a persistent aggregation behavior. Adults generally preferred SFAs, and laid more eggs and had
a longer life span when ingesting these substances as compared to UFAs. Our data suggest that insects can discriminate
long-chain dietary FAs. The developmental change in preference shown by this species might reflect functional variation in
use of FAs or stage-specific nutritional requirements, and may be fundamental for insect use of these major dietary
components.
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Introduction

Animal diet is generally shaped to the availability of food

resources and to the animal ability to detect and assimilate

nutriments. Animals with highly specialized diets are often

encountered in poor environments where they have developed

peculiar physiological adaptations [1,2] such as in «plant-insect»

or «/parasitoid relationships [3,4,5]. In contrast, species with a

generalist diet such as Drosophila melanogaster often show a much

widespread ecological and geographic distribution.

To survive, animals need to ingest essential nutriments that they

cannot synthesize. This includes essential fatty-acids (FAs) such as

omega-6 FAs in human diet [6], even if their effects have not been

yet fully elucidated [7,8]. However, and despite a strong link

between severe dietary based etiologies (obesity, cancer, vascular)

and excessive FA consumption, a limited effort was brought to

explore the link between the sensory cues provided by FAs and

feeding preference [9,10,11]. Behavioral studies showed that

rodents could discriminate a number of FAs based on their quality

and concentration [12,13,14]. Insects also show contrasted

responses to FAs. For example, the adult mosquitoes Aedes aegypti

and Anopheles gambia and the nymphal bug Triatoma infestans are

attracted by specific FAs combined with L-lactic acid, which are

secreted by the human skin [15,16,17]. In contrast, adult

mosquitoes and flies may also be repulsed by FAs alone or

combined with volatile substances [18,19].

Since vertebrate and invertebrate organisms show striking

similarities in the organization and functioning of their chemo-

sensory systems [20], the fruitfly D. is a very useful model to dissect

the genetic bases of feeding behaviors. If the biological

mechanisms involved in the perception of sugar, salt, bitter

substances or amino-acids have been largely explored both in

larvae and adults [21,22], those underlying the perception of FAs

received much less attention despite their evolutionary conserva-

tion. For example, the CD36 factor required for lipid binding and

transport in mammals is also involved in the detection of a FA-

derived pheromone in D. melanogaster flies [23,24]. Moreover,

sequence similarities exist between members of the ML family of

lipid-binding proteins, present in all eukaryotes [25], and the

CHEB family of proteins specifically binding to Drosophila FA-

derived pheromones [26]. However, Drosophila response to pure

FAs was rarely explored and the few experiments were only done

in adults [27].

Using varied behavioral paradigms, involving groups and

individuals, we measured the response of wild-type D. melanogaster

larvae and adults of both sexes to six pure saturated and

unsaturated dietary FAs (from C14 to C18). We found that they

are able to discriminate these FAs and change their preference

during development.

Materials and Methods

Strains
In some preliminary tests involving grouped larvae (attraction

and repulsion tests) and individual adults (PER), we used two wild-

type strains: Canton-S (Cs), a widely used laboratory strain, and

Dijon 2000 (Di2 [28]) which was kept in our lab for more than a

decade. In the subsequent experiments, we principally used the
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Di2 strain which showed very robust behavioral performances.

Both strains were raised in 150 ml glass vials containing 50 ml of

yeast/cornmeal/agar laboratory medium and kept in a breeding

room at 24.560.5uC with 6565% humidity on a 12:12 h light/

dark cycle. Strains were transferred every two/three days to avoid

larval competition and to regularly provide abundant progeny for

testing.

Chemicals
SFAs (myristic, C14:0; palmitic, C16:0; stearic, C18:0) and trans-

UFAsoleic, C18:1; linoleic, C18:2; linolenic, C18:3) (Interchim,

Montluçon, France). For the larval and PER tests, 10; 100; 200;

500mg were diluted in 50ml of absolute EtOH to obtain the 4

respective concentrations Conc. 0.2, Conc. 2, Conc. 4 and Conc.

10 (given in in mg/ml). For the sake of clarity, we only show the

results obtained with the three highest concentrations correspond-

ing to the respective concentrations.

Larval Behavior
All experiments were performed with the same experimental

conditions as described for strains raising. Only early third-instar

larvae were used in our tests. To obtain larvae of a synchronized age,

they were collected from vials where gravid females had been

transferred every two hours. Since FAs cannot be mixed with the

hydrophilic buffer used for classical larval tests, a determined amount

of pure FA, diluted in 50 ml of absolute ethanol (EtOH), was spotted

on a circular zone representing 10% of the surface of the filter paper

(see above; Whatman Ashless nu42) which cover all the floor of the

observation chamber (9 cm Petri-dish covered with a transparent lid).

A few minutes after spotting the FA (and EtOH evaporation), the filter

paper was humidified with 1 ml of distilled water. At the beginning of

the experiment, ten larvae were simultaneously placed in a neutral

area (10% of the surface of the whole filter paper) representing the

departure zone at the opposite side of the target zones.

Group tests. For the attraction tests, larvae disposed on the

departure zone had the choice between two target zones (each one

= 10% of the total area) either covered with 50ml EtOH (solvent

control) or with the tested FA (diluted in EtOH; Figure 1). Control

experiments included the two target zones similarly covered with

EtOH. Experiments lasted 30 min and the number of larvae

present on each zone relatively to their total number was noted

every 5 min.

For the repulsion tests, ten larvae were simultaneously

disposed at the center of a zone covered with FA. The number

of larvae moving out of this zone was noted every 30 sec. To

measure the aggregative effect induced by FAs, the number of

inter-individual contacts (involving $3 larvae) was noted every 5

sec. We estimated the ‘‘contact index’’ parameter (CTI) as the

summed number of larvae establishing inter-individual contacts

during each 5-sec period. The experiment lasted 10 min or less

(it was interrupted when the total number of larvae was ,3).

Some of these experiments were digitally recorded during

10 min with a picture taken every 5 sec (Canon � EOS

1000D, EF-S 18–55).

Individual tests. The behavior of single larvae was also

measured in control and experimental situations similar to those

used in group attraction and repulsion tests. For the attraction test,

larval individual behavior was also digitally recorded during

10 min with a picture taken every 5 sec. We measured the

locomotor activity, the time latency to reach the FA zone (or the

control zone), the time duration on each zone, and the time to re-

visit the zone after its first exit (second visit). The locomotor

activity, the latency to reach each zone and the time spent on each

zone were calculated relatively to the control situation (without

FA). We also noted the proportion of first and second visits on

each target zone. For the repulsion test, we measured the time

taken by each larva to exit out of the test zone.

Figure 1. Attraction to fatty-acids in groups of wild-type larvae. Tests involved groups of ten larvae of two wild-type strains: Dijon2000 (Di2;
plain) and Canton-S (Cs; striped) placed in the departure zone (pictured in the upper-left cartoon). Their number in each target zone (Test/EtOH) was
scored every 5 min. Bars represent the average number of larvae found on the FA zone (Test zone, above base line) and on the control zone (EtOH
zone; below the base line) during a 30 min observation period. For each fatty-acid (indicated below the histograms), and for each strain, the three
bars correspond to the 3 concentrations used (from left to right: circle = Conc. 2, triangle = Conc. 4 and square = Conc. 10). Stars beneath the bars
indicate statistical difference (Chi-square test with a computation of significance by cell) with the control experiment (Test zone = EtOH; see the two
histograms on the left) represented by the dotted lines below and under the base line (60.59). N = 10–12 for each condition.
doi:10.1371/journal.pone.0026899.g001
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Adult behavior
Lethality on FA-enriched food. FA-rich food was prepared

with 5, 50 or 500 mg FA diluted in 500mL of EtOH with 100 mL

warmed-up standard media (to yield the respective concentrations:

Conc. 0.05, Conc. 0.5 and Conc. 5). A similar volume of EtOH

was added to the control media. The vials or Petri dishes were

filled with 3 mL of FA-rich food and used within one week. Thirty

one-day-old flies (10 females and 20 males) were introduced into a

vial containing FA-rich food and were transferred into fresh FA-

rich food vials every 2 days. The number of living flies was assessed

at each transfer.

Egg-laying behaviour. After mass-mating, five 4- to 5-days

old female flies were immediately introduced into a glass container

(Duran, 95 mm diameter, 100 mm high with a transparent lid)

containing two Petri dishes (Greiner bio-one, 35 mm diameter,

10 mm high) either filled with FA-rich food or with control food.

After, 20 hours, the number of eggs was determined on each egg-

laying area and the preference index calculated. While transferring

groups of adults every 2 days on fresh food to measure their

lethality (see above), we also noted the number of eggs with regard

to the number of surviving females at each transfer. The total

number of eggs was summed for the first 22 days of adult life.

Proboscis extension reflex. The proboscis extension reflex

(PER) test allowed us to measure the appetence of FAs on

individual flies using a standardized procedure [29]. Flies were

starved for 20 h before the experiment. One fore-tarsus of a fly

was stimulated with a 100 mM sucrose solution (to elicit PER) and

the contra lateral fore-tarsus was immediately touched with a small

piece of filter paper (263 mm) impregnated with FA at Conc. 10.

Statistics
Larval group tests. The larval attraction to different FA

concentrations was estimated with a Chi-square test (with a

computation of significance by cell) based on the difference

between the number of larvae present on the two target zones.

With 10 larvae, the random presence of larvae an area

representing 10% of the total test area is theoritically ‘‘1’’. Since

the observed values for Di2 and Cs strains were equal to 0.68 and

0.50, respectively, we kept the mean value (0.59) as the control

value. Consequently, higher or lower values should respectively

indicate an attractive or a repulsive effect of the tested compound.

The repulsive effect of FAs was determined based on the

median number of larvae moving out of the zone. The difference

between various conditions was tested with a Kruskal-Wallis test

completed by Conover & Iman multiple pairwise comparisons

(two-tailed with Bonferroni correction). We used the same

statistical procedure for the contact index (CTI).

Larval individual tests. The response of each larva was

analyzed using (i) a Kruskal-Wallis test (with Conover & Iman

multiple comparison) for the relative locomotor activity, the

relative time spent on each zone and the time to exit out of the test

zone, and (ii) a Fisher’s exact test to compare the number of first

and second visit on each zone.

Adult PER inhibition test. For each strain, the frequency of

PER inhibition was compared using a Chi-square test (with a

computation of significance by cell). All statistical analysis were

performed with XLSTAT 2011 software [30].

Results

We measured the behavioral response of wild-type D.

melanogaster larvae and adults to the saturated and unsaturated

fatty-acids (SFAs: C14:0, C16:0, C18:0; and UFAs: C18:1, C18:2,

C18:3, respectively) mentioned in Material and Methods. The

preliminary tests were carried out with two wild-type strains (Di2

and Cs) and the more precise tests only with Di2 strain.

Larval attraction to unsaturated FAs
We first measured the response of grouped larvae to three SFAs

three UFAs at three concentrations (Conc. 2, Conc. 4 and Conc.

10; given in mg/ml; see Methods).

The two wild-type larvae clearly preferred UFAs than SFAs

(Figure 1). They spent more time on UFAs (average number: 1 to 2.5;

Khi2(35 df) = 263.5; p,0.0001) than on SFAs or on the control zone

(EtOH; 0.3 – 1; p = ns; the dotted value ‘‘0.59’’ corresponds to the

random presence of larvae; see Methods). Moreover, larvae (and

specially Di2 larvae) showed a dose-dependent response UFAs

whereas their frequency did not change on SFAs. The time spent on

the control zone was rarely affected by the FA concurrently presented.

We investigated more precisely the response of individual Di2

larvae to FAs (Conc. 10). Single larvae showed no preference when

they had the choice between EtOH, C18:0 and/or C18:1 (Fisher

exact test; p = ns). However, in the case of ‘‘C18:3/ EtOH’’ choice,

larvae directed their first visit more often to C18:3 than to EtOH (p

= 0.04; Figure 2A). If larvae always spent more time on the FA zone

than on the control zone during the first visit, this duration increased

on UFAs compared to C18:0 (KW(11 df) = 76.2; p ,0.0001;

Figure 2B). Moreover, a majority of larvae visiting C18:3

preferentially returned on the zone impregnated with this FA

(second visit). Larval locomotor activity strongly decreased with

C18:3 and —to a much smaller extent — with EtOH (Figure S1).

Larval repulsion against saturated FAs
To measure the repulsive effect potentially induced by FAs, we

noted the rapidity for 10 larvae (Di2 or Cs) to exit the FA zone

(Figure S2). Unexpectedly, their exit on SFAs was delayed

comparatively to UFAs (Figure 3A; KW(49 df) = 180.4; p

,0.0001). This effect was particularly persistent (.10 min) with

Di2 larvae tested on the higher SFAs concentrations. A closer

examination revealed that, at the contact of SFAs, larvae

established more frequent inter-individual contacts than on UFAs,

and this may explain their delayed exit out of SFAs (Figure 3B; see

Movie S1 for EtOH, Movie S2 for C18:0 and Movie S3 for

C18:1). More precisely, the frequency of inter-individual contacts

(«contact index» CTI; see Methods) significantly increased with

the chain length of SFAs (KW(5 df) = 64.5; p ,0.0001; Figure 3C)

whereas it was not altered on EtOH and UFAs.

The behavior of single individual larvae was also measured:

their time to exit out of the FA zone strongly increased on SFAs

compared to EtOH and UFAs (KW(5 df) = 56.5; p ,0.0001;

Figure S3). This pattern was very similar to the ‘‘Contact Index’’

shown by grouped larvae on respective FAs (Figure 3C).

Adult individual appetence for FAs
Since food preference can change with aging, we also

investigated the adult responses to FAs. First, we measured the

proboscis extension reflex (PER) in individual Cs and Di2 male

and female flies. We estimated the ability of FAs to repress PER in

flies initially stimulated with sucrose the difference between (i) the

number of PER induced on flies unilaterally stimulated by sucrose

minus (ii) the number of PER on flies bilaterally stimulated by

sucrose and FAs (Figure 4).

The tested FAs (at Conc. 10) induced a sex- and strain-specific

effect. In Di2 flies, C18:3 had the strongest effect (67% females

and 36% males repressed) whereas C14:0 and C18:2 induced

a milder effect only in Di2 females (43%; Khi2(11 df) = 22.3;

p = 0.022). In Cs flies, both C18:2 and C18:3 induced the

strongest effect (55–65% repressed), whereas C14:0 and C18:0 had

Fatty-Acids Preference in Drosophila melanogaster
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a milder effect in Cs females (48%; Khi2(11 df) = 19.8; p = 0.048).

In both strains, the other FAs tested induced a weaker effect (about

30% flies repressed).

Adult preference and fitness on FAs
To further explore the adult effect of FAs, we measured egg-

laying behavior and lethality in groups of Di2 flies kept on food

enriched with C18:0, C18:1 or C18:3 (at Conc. 0.05, Conc. 0.5

and Conc. 5).

Egg-laying behaviour. Young mature females were given

the choice, during a 20 hours period, to lay eggs on two batches of

food enriched with FA (Conc. 0.5, Conc. 5) or EtOH (control).

They showed a strong avoidance against the higher UFA

concentration whereas the lower UFA concentration and C18:0

Figure 2. Attraction to fatty-acids in individual wild-type larvae. Individual Di2 larvae were given the choice between two target zones (see
cartoon): the frequency of their first and second visits (A; 1 and 2 shown below bars) and the time spend on either zone (B) were measured. (A) The
frequency of first visit was calculated from the total number of larvae visiting either zone. Therefore, the sum of the two bars (above + below the base
line = 100%) represents the total number of larvae visiting both zones. The frequency of second visit for larvae visiting a similar zone (plain bars) or a
different zone (striped bars) is shown relatively to the zone of their first visit. In this case, the total of the two bars may be ,100% since not all larvae
showed a second visit. (B) The relative time corresponds to the increased or decreased duration spent in each zone (above or below the base line,
respectively) relatively to the control situation (corresponding to the EtOH/EtOH choice: see empty bars on the left). The locomotor activity of
individual larvae was also measured (Figure S1). The different letters beneath the bars indicate the statistical difference. (A: Fisher’s exact test; B:
Kruskal-Wallis test completed by Conover & Iman multiple pairwise comparisons). N = 15–20.
doi:10.1371/journal.pone.0026899.g002
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had no effect (KW(6 df) = 76.7; p,0.0001; Figure 5A). If the

repulsive effect of UFAs did not negatively affect the number of

eggs laid during the 20 hour-long experiment (Figure S4), it

strongly impacted the total number of eggs laid during the 22 days

following mating. Females laid much less eggs (40) on the two

UFAs at Conc. 5 than (i) at Conc. 0.5 and (ii) on C18:0 (100–160

eggs/female; KW(9 df) = 54.2; p,0.0001; Figure 5B).

Adult survival. C18:0, C18:1 and C18:3 also very differently

affected the survival of adult females and males. The lower FA

concentration (Conc. 0.05) had no major effect with regard to the

lethal time at which 50% flies had died (LT50: 18.1 to 19 days for

females, 17.1 to 23.1 days for males). Higher UFA concentrations

induced earlier lethality: Conc. 5 of C18:1 and C18:3 practically

halved the LT50 in both sexes, as well as Conc. 0.5 of C18:1 in

females (10.4–12.9 days). Conversely, C18:0 had no (or a slight

effect) on adult survival in either sex. Our dynamic curves

(Figure 6) indicate that both UFA at Conc. 5 affected survival in

females earlier (8 day-old) than in males (12 day-old). However,

after 14 days, with the two UFAs at Conc. 0.5 and Conc. 5, males

showed a more important relative lethality than females.

Figure 3. Repulsion against fatty-acids in groups of wild-type larvae. Tests involved groups of ten larvae of two wild-type strains: Dijon2000
(Di2; plain) and Canton-S (Cs; striped) directly placed in the FA zone (see cartoon). Each test lasted 10 min, and the number of larvae out of the FA
zone was noted every 30 seconds (See Figure S2). (A) Bars represent the median number of larvae out of the FA zone. For each fatty-acid (indicated
below the histogram), and for each strain, the three bars correspond to the 3 concentrations used (from left to right: circle = Conc. 2, triangle =
Conc. 4 and square = Conc. 10). N = 10. (B) A picture was taken every min (until 4 min) to show the larval dispersion on C18:0 (top) and C18:1
(bottom; see the movies shown in the supplemental information). (C) The number of inter-individual contacts (involving $3 larvae), noted every 5
sec, was used to calculate the ‘‘contact index’’ (CTI; see Material and methods). The upper-right picture shows a typical aggregation cluster of larvae
placed on C18:0. N = 20. For B and C, we used the Conc. 10. The different letters shown above the bars indicate the significant differences. All tests (A
and C) were performed with Kruskal-Wallis test completed by Conover & Iman multiple pairwise comparisons. The repulsive effect of FAs was also
measured on the behavior of single larvae (Figure S3).
doi:10.1371/journal.pone.0026899.g003

Figure 4. Repression of appetitive behavior by fatty-acids in individual adults. Tests involved individual adults of two wild-type strains:
Dijon2000 (Di2; plain color; top) and Canton-S (Cs; striped color; bottom). Bars indicate the repression average of individual proboscis extension reflex
(PER; see cartoon) indexes in response to six FAs (shown below) at Conc. 10. Flies who extended their proboscis and opened their labellum were
counted as PER positive flies. The repression of the PER index corresponds to the frequency of individual flies, initially stimulated by the unilateral
stimulation by sucrose, whose response was repressed after the bilateral application of the FA. The different letters shown above the bars indicate the
significant differences for each strain (Chi-square test with a computation of significance by cell). N = 30 for each FA condition, strain, and sex.
doi:10.1371/journal.pone.0026899.g004
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Discussion

Drosophila larvae and flies showed very contrasted preferences to

pure FAs. Larvae clearly preferred UFAs and disliked SFAs

whereas adults showed a somewhat reciprocal preference.

Multiple roles of FAs
The essential role of FAs in the mammal’s diet may be due to

their critical role in reproduction, cold adaptation and metabolism

[6]. In insects, a change of FA content can affect female fecundity

[31] and remating [32], as well as their production of sex

pheromones [33]. The presence and composition of FAs in cell

membranes can also affect cold adaptation in Drosophila [34].

Arachidonic (C20:4) and C18:1 acids are involved in Drosophila cell

signaling by activating transient receptor potential (TRP) channels

[35,36], some of which may be required in taste transduction [37].

The metabolic state may be linked with FA preference and

ingestion: human oral hypersensitivity to FAs is associated with

lower energy and fat intake [38] whereas Drosophila larvae fed with

long chain dietary FAs show a reduced tolerance to EtOH [39].

Multiple sensory perception of FA
Previous rodent and insect studies showed that FAs could

induce contrasted behavioral effects according to their nature and

concentration. At low concentrations, C18:2 induces an appetitive

response in rodents and human whereas, at higher concentrations,

it has an unpleasant effect [12,14,38]. This effect may be related to

the activity of K+ channels in the taste cells of the fungiform

papillae which can be inhibited by long-chain polyunsturated FAs

but not by SFAs ([40]. Moreover, the textural properties of FAs

(smoothness) may be perceived by the trigeminal system of

mammals to provide a mechanosensory information complemen-

tary to olfactory and gustatory cues provided by FAs [41].

Our experiments suggests that Drosophila larvae use distinct

sensory systems to perceive FAs. The increased duration spent on

UFAs, as well as the decreased locomotor activity on C18:3,

Figure 5. Egg-laying behavior on fatty-acids. Young Di2 females recently mated were given a choice of two types of food (A; mixed with FA,
above base-line or with EtOH, below base-line) to lay eggs. The total number of eggs laid on each type of food was noted after 20 hours (Figure S4)
and after 20 days (B). For each FA, two concentrations were used: Conc. 0.5 (triangle) and Conc. 5 (square; shown below the histograms). (A) The egg-
laying preference, estimated from the difference of eggs found on each type of food, indicate a preference either for the FA (above the base line) or
for EtOH (below the base line). Letters indicate a significant effect of the food compared to the control situation (between the two dotted lines;
Kruskal-Wallis test completed by Conover & Iman multiple pairwise comparisons). N = 10 and 14–17 for experiments A and B, respectively.
doi:10.1371/journal.pone.0026899.g005
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indicate the involvement of larval taste. The significantly increased

frequency of first and second visits on C18:3 suggests respectively

that (i) larvae can smell this FA before taste contact and (ii) like this

FA since they returned on it for a second time. Larvae may also

detect high concentration of SFAs using mechanosensory organs

involved in perception of the «textural» features of FA especially

Figure 6. Adult survival on fatty-acids. The mortality induced by FA-rich food was counted every two days and during 22 days of adult life on
female and male Di2 adults (left and right, respectively). Graphs are shown relatively to same-sex flies kept on plain food (% relative mortality). For
each sex and FA (from top to bottom: C18:0, C18:1, C18:3), we used three concentrations: Conc. 0.05 (circles), Conc. 0.5 (triangles) and Conc. 5
(squares). The different letters indicate the significant differences for each genotype and FA. (Kruskal-Wallis test completed by Conover & Iman
multiple pairwise comparisons). N = 10.
doi:10.1371/journal.pone.0026899.g006
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since lipids can activate mechanosensitive channels [42,43,44].

Mechanosensory perception, possibly associated with nociceptive

perception, may explain why individual larvae spent more time on

SFAs compared to UFAs. We particularly noted that individual

and grouped larvae placed on SFAs frequently showed non-typical

behaviors (frequent turning, roll-over, standing upright) indicating

that larvae were stressed. This is the reason why we believe that

larvae grouped on SFAs increased their frequency of inter-

individual contacts to avoid ‘‘touching’’ high SFA concentrations.

However, the similarity of the behavioral patterns shown by

individual and grouped larvae (Figure S3 and Figure 3, respec-

tively), with regard to the FAs tested, indicates that individual

locomotor behavior was not affected by aggregation behavior.

Enhanced aggregation behavior in larvae could reflect a

cooperative response to a stressful situation either to increase

their protection against a predator or to increase the use of

resources ("Allee effect"; [45,46]). Based on the fact that insect

pheromones — some of which are FA-derived — can induce

aggregation behavior in adult insects (Drosophila, [47]; Cerambycid

beetles, [48]), and in their larvae (Potato beetle, [49]; Triatomid

bugs, [50]; Codling moth, [51]), we postulate that D. melanogaster

larvae emit aggregation pheromones in response to the stress

induced by SFAs. In adult insect, the emission of aggregation

pheromones in response of a food source was mainly described in

bark beetle species of the two genera Ips and Dendroctomus [52].

Moreover, D. melanogaster adults are know to aggregate in response

to the effect of a male pheromone (cis-vaccenyl acetate) combined

with some volatile food compounds [53].

If the results obtained in the attraction test and in the repulsion

test are not reciprocal, this apparent discrepancy may be related to

our experimental design: in the attraction test, larvae are free to

visit or to avoid the FA zone whereas in the repulsion test, larvae

have no choice. In the latter case, the stress possibly induced by

SFAs seems to disorganize the larval pathway which is chaotic

compared to the pattern shown by larvae on UFAs.

Developmental change for FA preference
Our results clearly show that the FA preference of adults is

changed compared to larvae: the higher concentrations of C18:1

and C18:3 induced a more negative effect — on PER repression,

egg-laying behavior and lethality — than C18:0. In comparison,

lower UFA concentrations had no or a lesser effect on both adult

phenotypes. If the two wild-type strains showed a somewhat

similar contrasted PER pattern to SFAs vs UFAs, Di2 flies showed

an enhanced sexual dimorphism compared to Cs flies. A strain-

specific effect in the adult response to FAs was previously reported

[27]. Since the two wild-type strains differ for their genetic

background, the divergence of their response could result of a gene

x environment interaction [54]. FAs also induced sex-specific

effect on adult lethality: males exposed to the highest UFA

concentrations died more frequently than females. If Di2 females

are less sensitive than Di2 males to the toxic effect of UFAs, the

very reduced number of eggs laid on UFA-rich food suggests that

females are strongly repulsed by these substances. Drosophila

females also show an higher ability than males to detect sucrose,

bitter substances and a FA-derived sex pheromone [55,56].

More generally, our experiments reveal a change of FA

preference during lifespan. The convergent effects obtained with

the three larval experiments, on one side, and those obtained with

the three adult experiments, on the other side, allow us to rule out

the possibility of an experimental artifact caused by (i) the design of

the behavioral assays, or (ii) the interaction between FAs and other

substances (EtOH, food) used in our tests.

Could the preference shift from larva to adult reflects different

dietary requirement during Drosophila development as shown for

different types of sugars [57]? If the effect of essential FAs varies

between insects, Lepidoptera and Hymenoptera absolutely need

C18:2 and C18:3 to achieve their complete metamorphosis [58].

Conversely, if mosquitoes do not need these FAs to survive, they

need these substances to fly [59]. If the nature and effect of

essential FAs remain unknown in Drosophila, the ingestion of yeast

influence the quantity and quality of FA stored [60,61]. A change

of FA preference could also broaden food resources and reduce

food competition. A wide physiological adaptation to varied

sources of food could partly explain why this generalist species can

survive on many food types even if larval exposure to a food source

can moderately change adult preference to this type of food [62].

In summary, we found that Drosophila show marked FA

preference which change during life. Our future aim will consist

to identify some of the genes that affect larval and/or adult

preference and measure to which extent sensory exposure can

change preference.

Supporting Information

Figure S1 Locomotor activiy of single larvae in a choice
test. Larvae were given a choice between two zones that were

either covered (i) with EtOH and a fatty-acid (C18:0, C18:1 or

C18:3), or (ii) both with EtOH (control) or (iii) both with two

different FAs (C18:0 vs. C18:1; see upper-left cartoon). Bars

represent the mean activity (6sem; in mm) shown relatively to the

activity of single larvae tested in a similar device without any

chemical (151.763.4 mm between t = 0–2.5 min; 145.465.0 mm

between t = 2.5–5.0 min; 147.465.4 mm between t = 5.0–

7.5 min; 133.165.8 mm for t = 7.5–10.0 min). Larvae were tested

in conditions similar to those described on Figure 2 with a

Kruskal-Wallis test completed by Conover & Iman multiple

pairwise comparisons. N = 15–20.

(TIF)

Figure S2 Dynamic exit out of fatty-acid zone. The

cumulated proportion of larvae moving out the zone covered with

a fatty-acid was measured every 30 sec during a total of 10 min

(see upper-left cartoon). Six fatty-acids (C14:0, C16:0, C18:0,

C18:1, C18:2, C18:3; indicated above each set of curves) were

tested at three concentrations (Conc. 0.05 = circles; Conc. 0.5 =

triangles; and Conc. 5 = squares). For methods, refer to the text

and legend of Figure 3.

(TIF)

Figure S3 Behavior of individual larvae on fatty-acid.
Single larvae were disposed at the center of a FA zone (a filter

paper impregnated with diverse FAs at Conc.10). Bars represent

the mean (6sem) time to exit out of the test zone. N = 15. For

statistics and methods, see the legend of Figure 3.

(TIF)

Figure S4 Egg-laying behavior on fatty-acids after
20 hours. Recently mated two-days old Di2 females were given

a choice of two types of food (mixed with FA or with EtOH).

Three FAs (C18:0, C18:1 and C18:3) were tested at two

concentrations (Conc. 0.5 = triangle; Conc. 5 = square). Bars

represent the mean total number of eggs (6sem) laid during

20 hours on the two zones (FA + EtOH). These data correspond to

the results shown on Figure 5A. For methods and statistics, please

refer to the legend of Figure 5.

(TIF)

Movie S1 A group of 10 larvae was disposed in a Petri
dish at the center of a zone covered with ethanol (EtOH;

Fatty-Acids Preference in Drosophila melanogaster
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movie EtOH). One picture was taken every 10 sec for a total

duration of 10 min.

(m4v)

Movie S2 A group of 10 larvae was disposed in a Petri
dish at the center of a zone covered with stearic acid
(C18:0) at the Conc.10 concentration. One picture was taken

every 10 sec for a total duration of 10 min.

(m4v)

Movie S3 A group of 10 larvae was disposed in a Petri
dish at the center of a zone covered with oleic acid
(C18:1), at the Conc.10 concentration. One picture was

taken every 10 sec for a total duration of 10 min.

(m4v)
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25. Inohara N, Gabriel Nuñez G (2002) ML – a conserved domain involved in

innate immunity and lipid metabolism. TRENDS in Biochemical Sciences 27:

219–221.

26. Park SK, Mann KJ, Lin H, Starostina E, Kolski-Andreaco A, et al. (2006) A

Drosophila protein specific to pheromone-sensing gustatory hairs delays males’

copulation attempts. Current Biology 16: 1154–1159.

27. Narise S, Narise T (1991) Chemical communication of emigration behavior of

Drosophila melanogaster. II. Identification of chemical substances. Jpn J Genet 66:

411–420.

28. Svetec N, Ferveur JF (2005) Social experience and pheromonal perception can

change male-male interactions in Drosophila melanogaster. Journal Of

Experimental Biology 208: 891–898.

29. Inoshita T, Martin J-R, Marion-Poll F, J-F F (2011) Peripheral, central and

behavioral responses to the cuticular pheromone bouquet in Drosophila

melanogaster males. PLoS One 6: e19770.

30. Addinsoft (2011) XLSTAT 2011, Data analysis and statistics with Microsoft

Excel. Paris, France.

31. Bauerfeind SS, Fischer K, Hartstein S, Janowitz S, Martin-Creuzburg D (2007)

Effects of adult nutrition on female reproduction in a fruit-feeding butterfly: the

role of fruit decay and dietary lipids. Journal of insect physiology 53: 964–973.

32. Baer B, Morgan ED, Schmid-Hempel P (2001) A nonspecific fatty acid within

the bumblebee mating plug prevents females from remating. Proceedings of the

National Academy of Sciences of the United States of America 98: 3926–3928.

33. Ueyama M, Chertemps T, Labeur C, Wicker-Thomas C (2005) Mutations in

the desat1 gene reduces the production of courtship stimulatory pheromones

through a marked effect on fatty acids in Drosophila melanogaster. Insect

biochemistry and molecular biology 35: 911–920.

34. Overgaard J, Tomcala A, Sorensen JG, Holmstrup M, Krogh PH, et al. (2008)

Effects of acclimation temperature on thermal tolerance and membrane

phospholipid composition in the fruit fly Drosophila melanogaster. Journal of

insect physiology 54: 619–629.

35. Chyb S, Raghu P, Hardie RC (1999) Polyunsaturated fatty acids activate the

Drosophila light-sensitive channels TRP and TRPL. Nature reviews Molecular

cell biology 397: 255–259.
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