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Abstract

The SET and MYND Domain (SMYD) proteins comprise a unique family of multi-domain SET histone methyltransferases that
are implicated in human cancer progression. Here we report an analysis of the crystal structure of the full length human
SMYD3 in a complex with an analog of the S-adenosyl methionine (SAM) methyl donor cofactor. The structure revealed an
overall compact architecture in which the ‘‘split-SET’’ domain adopts a canonical SET domain fold and closely assembles
with a Zn-binding MYND domain and a C-terminal superhelical 9 a-helical bundle similar to that observed for the mouse
SMYD1 structure. Together, these structurally interlocked domains impose a highly confined binding pocket for histone
substrates, suggesting a regulated mechanism for its enzymatic activity. Our mutational and biochemical analyses confirm
regulatory roles of the unique structural elements both inside and outside the core SET domain and establish a previously
undetected preference for trimethylation of H4K20.
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Introduction

SET domain histone methyltransferases (HMTases) mediate

epigenetic post-translational histone modifications that govern

transcriptional activity, in part by modulating chromatin structure

and accessibility of transcription factors and RNA polymerase II

(pol Il) to promoters [1]. Pol II promoters are typically repressed

by histone H3 lysine 9 trimethylation (H3K9me3), H3 lysine 27

trimethylation (H3K27me3), and/or H4 lysine 20 di- and tri-

methylation (H4K20me2, H4K20me3). In contrast, active pol II

promoters are generally unmethylated [2,3] and are associated

with a permissive chromatin state enriched in histone H3 and H4

acetylation and H3 lysine 4 di- and tri-methylation (H3K4me2,

H3K4me3) [4]. Human cancer leads to both global and gene-

specific modifications of the ‘‘epigenome’’ [5,6,7,8,9]. Tumori-

genesis is often accompanied by a general loss of repressive marks

from bulk chromatin, which leads to disruption of heterochroma-

tin structure and transcriptional repression. Alternatively, promot-

er-associated CpG islands can become heavily methylated during

oncogenesis, resulting in local changes in chromatin structure (e.g.,

nucleosome repositioning) and replacement of active histone

marks by repressive ones [10,11,12,13,14,15].

SMYD3 and its 4 vertebrate paralogs (Fig. 1A) derive from an

ancient family of SET HMTases with orthologs present in plants,

animals, fungi, and some (typically parasitic) protozoa [16]. All

SMYDs have the N-terminal terminal portion of SET (N-SET),

followed by a Myeloid translocation protein 8, Nervy, and DEAF-

1 (MYND) domain, N-terminal to an intermediate or linker

sequence (I-SET) of variable length and configuration [17,18].

The remainder of the SET domain (C-SET) comes next,

sequentially, and includes critical catalytic folds. The SMYD

SET ‘‘core’’ ends in a cysteine-rich zinc binding fold (post-SET).

SMYDs 1–4 have an additional, previously uncharacterized ,150

residue C-terminal domain (CTD), whereas SMYD5 has primarily

insertions in its MYND and I-SET sequences. Most prototypic

SET active site residues are conserved in SMYDs [19,20], but

there are notable exceptions (discussed further below). SMYD1

and SMYD3 were identified as H3K4me3-specific HMTases

[5,21], whereas SMYD2 catalyzes H3K36me2 [19]. The only

previous characterization of SMYD3 HMTase was performed by
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Silva et al. [22], who reported that substrate release is facilitated by

tumor-specific proteolysis of the SMYD3 N-terminal 34 residues.

Aside from this, little has been done to establish the functional

interface of SMYD3 with its substrates or its structural

underpinnings.

Conversely, numerous studies have strongly implemented

SMYD3 as a protooncogene in hepatocellular, colon and breast

carcinoma, based on its high levels of endogenous expression,

cancer-associated promoter polymorphisms, and cell proliferative

effects produced by enforced SMYD3 over-expression in normal

cells or SMYD silencing in tumors [5,22,23,24,25]. Approximately

80 genes have been identified as targets of SMYD3 HMTase,

including Nkx2.8, a homeobox transcriptional regulator upregu-

lated in hepatocellular malignancies as well as cell cycle mediators,

oncogenes, and developmental fate determinants [5,22,23,24,25].

The considerable if not unprecedented interest in SMYD structure

and its implications for putative anti-cancer drug development is

evidenced by publication of three structures which appeared just

prior to [26,27] and during [28] the submission phase of this

manuscript (addressed in sections below). We present here, in

addition to the independent high resolution co-crystal structure of

the full length human SMYD3 with the S-adenosyl methionine

(SAM) analog Sinefungin, a detailed mutational and biochemical

assessment of SMYD3 function. We provide a structural basis for

the proposed [29,30] differential regulation of SMYD HMTase

activities via their MYND domain binding partners. We

demonstrate that SMYD3 can function as a transcriptional

repressor via MYND interactions as well as through hitherto

undetected H4K20 HMTase activity. We show that in addition to

the MYND domain, the aromatic cage structure throughout the

methyltransferase active site and the unique carboxy terminal

domain have the potential to regulate SMYD HMTase methyl-

ation state and substrate specificity.

Results and Discussion

Preferential H4K20 activity of SMYD3
Human his-tagged SMYD3 was purified following baculoviral

or bacterial expression (Fig. S1). In addition to the expected

H3K4me3 activity, SMYD3 methylated all histones to various

degrees with highest activity for histone H4 when measured on

mixed calf thymus histone acid extracts or on individual

recombinant histones (Fig. 2). Western blotting with anti-H4

antibodies indicated that the maximal activity was for H4K20me3

(Fig. 3A), which was unanticipated given that this has generally

been associated with establishment of heterochromatin. Using a

series of synthetic H4 peptides bearing mono-, di-, and tri-

methylation states at K20, we confirmed this specificity and also

observed significant activity toward H4K20me2 (Fig. 3B). It is

generally thought that the majority of H4K20 methylation occurs

in a stepwise process in which monomethylation by the SET

HMTase PR-SET7/SET8 serves as a substrate for di- and tri-

methylation by SUV420H [12,14]. That H4K20me2 served as a

far better substrate than unmethylated or monomethylated species

(Fig. 3B) indicated that SMYD3 alone, at least in vitro, is capable of

progressive methylation at this lysine mark. H4K20 methylation is

not a general property of SMYDs, as evidenced by the near

baseline activity of SMYD1 (Fig.3A).

While it would be ideal to have a clear structural rationale for

the substrate selectivity demonstrated here, crystal structures

available at the time of writing do not provide enough detail to

make a clear and definitive statement. Alignment of the SMYD3

(or SMYD1) structures with other structures featuring an H4

peptide fragment bound to an MTase, such as in the SET8

structure [31], shows considerable clashes between the H4 peptide

and the SMYD protein. Close inspection of the overlay indicates

that the H4 peptide forms part of the support for the SAM binding

Figure 1. Structure of SMYD3 and its paralogs. (A) Linear representation of domain structures of SMYDs1–5. The split SET domain is shown in
red (N-SET) and tan (C-SET); the MYND domain is represented in yellow and the cysteine-rich post-SET domain is displayed in pale green. Starting and
ending amino acids are indicated. (B) Ribbon representation of the structure of SMYD3-Sinefungin at 1.85Å resolution in cross-eye stereo. The SET
domain of SMYD3 is split into the N-SET (red) and the C-SET (tan) by an intervening MYND domain (yellow) and a Rubisco-LSMT-like I-SET region
(cyan). The post-SET motif (pale green) precedes a long (,150 residue) C-terminal domain (CTD, blue). Positions of Sinefungin (green carbons) and
zinc atoms (spheres) are indicated.
doi:10.1371/journal.pone.0022290.g001
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pocket in the SET8 structure, whereas the SAM binding pocket is

fully formed and stabilized in SMYD3, independent of any

substrate. Significant conformational changes would be necessary

to accommodate the H4 peptide conformation as seen in [31].

Alternatively, one could use the conformation of the H3 peptide as

seen in SET7/9 (discussed in more detail below), but the threading

of the H4 residues onto the H3 backbone (bound to SET7/9) leads

to several steric and electrostatic clashes between the modeled H4

peptide and the SMYD3 protein. Significant conformational

changes and possibly water bridges would be necessary to model

the H4/SMYD3 or H4/SMYD1 interaction in this peptide

conformation. Further understanding of the structural roots of the

observed selectivity profile requires additional studies beyond the

scope of the current work.

In addition to PR-SET7 and SUV420H, only two additional

SET-domain-containing proteins have been previously implicated

in H4K20 methylation: The trithorax group activator Ash1 and

the nuclear receptor-binding SET domain-containing protein

(NSD1) (reviewed in [15]). As with SMYD3, Ash1 and NSD1 in

vitro methylate other histone lysines in addition to K20 [32,33].

However, whether Ash1 and NSD1 are bona fide H4K20 HMTases

has been challenged because of the questionable specificity of the

peptide antisera employed [15] and by the lack of direct

confirmation both in vitro [34,35,36] and in vivo [11]. In support

of the case of SMYD3, we observed strong di- and preferential tri-

methylation of H4K20 on the most relevant in vitro substrate, the

nucleosome (Fig. 3B). Nucleosomal H3K4me3 activity was not

detected for SMYD3 (data not shown). The in vivo relevance of

SMYD3-mediated H3K4 vs. H4K20 remains to be determined,

but we return to this issue below in the context of the crystal

structure.

Conventional SET and novel features of the SMYD3-
Sinefungin complex

Baculoviral SMYD3 was co-crystallized with the SAM analog

Sinefungin, and the structure was solved to 1.8 Å resolution

(Fig. 1B; Table 1) [37]. SMYD3-Sinefungin crystallized as 2

symmetry-related molecules/unit cell (P21). However, no convinc-

ing dimer interface exists, and the mass of the purified protein

following gel filtration was 50,187d (Fig. S1A), consistent with a

monomeric form. Thus, we confined our analysis to the monomer

of Fig. 1B.

The domains comprising the ‘‘core’’ of the split-SET (N-SET,

C-SET, post-SET) of SMYD3 and the MYND domains (Fig. 1B)

overlay with those of corresponding conventional domains (Figs.

S2A-D) [17,18,38,39,40,41,42,43,44]. Modification of the strictly

conserved and catalytically essential Y239 results in the expected

loss of function (Fig. 4A). Mutation of several residues conserved

within many conventional N-SETs (e.g., G15, G17) and C-SETs

[17,44] (e.g., C186, E192 and H206) abrogated SMYD3 HMTase

activity (Fig. 4B), confirming the functional conservation of the

split SET domain. About one third of the SMYD3 substrate

binding site is formed by the Intermediate SET spacer (I-SET)

region located C-terminal to MYND (Fig. 1). The significance of

this variable linker region in SET substrate selectivity has already

been noted [39,41,44,45]. However, the SMYD3 I-SET is

unusually long and exhibits extraordinary structural conservation,

in lieu of primary sequence similarity, with the I-SET of the

Rubisco Large Subunit Methyltransferase (RLSMT) (Fig. S2E).

The close structural similarity to other SET domains allowed us

to superimpose onto SMYD3 the H3K4 peptide coordinates from

the SET7/9 ternary complex (Fig. 5A) [41]. The peptide is bound

in the conventional manner; i.e., the methyl-lysine is oriented on

the opposite surface of SMYD3 from the SAM/Sinefungin methyl

donor, with a narrow channel connecting the two surfaces of the

SET domain. The orientation is similar to that modeled in mouse

(m)SMYD1 [26] (Fig. 5B), with selectivity opportunities on either

flank of the target lysine. The relatively conservative mutation

T184A, which contacts the N-terminal side of the peptide, confers

not only increased activity toward H4, but a striking gain of

activity toward H3. The C-terminal of the modeled peptide

clashes with the CTD, suggesting that the CTD also regulates the

specificity of substrate binding (more below).

The SMYD3 aromatic cage
The SMYD3 post-SET provides another commonly shared

feature—an essential aromatic residue, Y257 (see Fig. 4B), that

anchors against the conserved SET core to form the hydrophobic

channel interface with substrate (Fig. 5B). A notable difference in

SMYDs is that a critical SAM-contacting tyrosine, which occupies

Figure 2. SMYD3 preferentially catalyzes histone 4 lysine
methylation in vitro. (A, B) SMYD3 purified from baculovirus
methylates all histones (H4..H2A.H3.H2B) in vitro. Histone
methyltransferase (HMTase) assays employed mixed histones from
HeLa cells as substrate. Upper panel, fluorography showing 3H-
incorporation into H3 (17 kD) and into species smaller bands (H2A/
H2B and H4). Lower panel, Coomassie-stained SDS-PAGE gel used to
verify equal loading. (C) SMYD3 purified from bacteria methylates
histones H4..H3.H2A in vitro. Recombinant histones or mixed
histones were used, as indicated, for substrate. Fluorography is shown
and the bands corresponding to each histone are indicated.
doi:10.1371/journal.pone.0022290.g002

Structural and Functional Profiling of SMYD3
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this position in other N-SETs (e.g.., Y335 in SET9) [17], is not

conserved. To apparently compensate for the lost N-SET contact,

SMYD3 and its paralogs contain a structurally homologous and

essential (Fig. 4B) aromatic contact (F183 in SMYD3) within the b-1

of the C-SET (Figs. 1B and 5). The bracketing pi-cation interactions

of the aromatic cage [46] are likely essential for efficient MTase

Figure 3. SMYD3 trimethylates H4-K20 preferentially. (A) SMYD3 trimethylates H4-K20. Right panel: unmethylated [H4(0)], mono-[H4(1)], di-
[H4(2)], and, as a negative control, tri-methylated [H4(3)] peptides were employed in an in vitro HMTase proximity bead assay with baculoviral SMYD3
and SMYD1 (negative control). Degree of methylation was measured by scintillation counting in CPM. Left panels: Western analysis using anti-mono-
and trimethyl-specific antibodies (Upstate) confirm in vitro specificity of SMYD3 for H4-K20me3. (B) SMYD3 preferentially trimethylates H4-K20 in
reconstituted chromatin. Recombinant oocyte nucelosomes were assembled into chromatin, followed by in vitro HMTase assays and SDS-PAGE
resolution of reaction products. SMYD3 inputs were increased from 0.5 mg to 2.4 mg, (triangle above lanes), and western analyses were performed
with the indicated histone H4 methylation state-specific antibodies (middle panels), with a pan-anti-H4 (lower panel) providing a loading control for
chromatin input.
doi:10.1371/journal.pone.0022290.g003

Structural and Functional Profiling of SMYD3
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activity. Extended pi cloud interactions between aromatic side-

chains extending from the aromatic cage appear common in

MTases. For example, residue F259 interacts with the adenine ring

of Sinefungin and the Y239 of the aromatic cage, which itself packs

against Y257. F216 packs against Y198 which packs against the

F183 of the aromatic cage. A similar network may be seen in the

SMYD1 structure, with preservation of the aromatic network

around Y252, the equivalent of Y239 in SMYD3.

Table 1. Crystallization, data collection, and refinement statistics for the SMYD3/Sinefungin structure.

Space group P21

Unit Cell a = 58.175Å,b = 118.073Å,c = 82.901Å,a= c= 90u,b= 91.579u

Wavelength (Å) 1.2815

Resolution (Å) 30.0–1.85

Redundancy 7.3

Unique Reflections 94,957

Completeness (%) 99.8 (99.9)a

,I/s (I). 18.4 (4.1)

Molecules/Assym. Unit 2

R/Rwork/ Rfree
b (%) 20.1/20.0/21.6

aNumbers in parentheses refer to the highest resolution shell.
bR =S|Fo-Fc|/S|Fo|, where Fo and Fc are the observed and calculated structure factors, respectively. Rwork is calculated using the formula for R, but employing only the

95% of reflections used in the refinement and Rfree is calculated using a randomly-selected 5% subset of reflections not used in the refinement.
doi:10.1371/journal.pone.0022290.t001

Figure 4. Mutational analysis of residues critical to SMYD3 structure and function. (A) Wild-type SMYD3, but not catalytic point mutant
Y239F, methylates recombinant H3 and H4 in an in vitro HMTase assay. Upper panels: Fluorographs with bands corresponding to H3 (left) and H4
(right) indicated. Lower panels: Coomassie-stained PVDF membranes used to verify equal loading. (B) Substitution and (C) truncation mutants,
constructed in E coli as described in Methods, were compared in in vitro HMTase assays to wildtype SMYD3 and to SET7/9. Inputs (upper panels,
,500 ng) were assayed for 3H-SAM incorporation (middle panels) either on recombinant histone 4 or mixed histones, as indicated (lower panels).
Alanine substitutions of most SMYD3 residues predicted to be catalytically essential eliminate HMTase activities. An exception is T184/A which, as
described in the text, appears to affect H3-H4 substrate specificity (note change in relative ratios of H3/H4). N-terminal truncation through position 44
removes the entire N-SET domain, while truncation through position 74 eliminates both the N-SET domain and half the MYND domain.
doi:10.1371/journal.pone.0022290.g004

Structural and Functional Profiling of SMYD3
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Despite the sequence identity and near identical backbone

placement of the aromatic residues around F182 (the equivalent to

F183 in SMYD3), the SMYD1 network assumes a very different

set of side chain conformations, driven by the insertion of the

adjacent leucine side-chain into the arrangement observed for

SMYD3 (Fig. 5B). In fact, F182 in SMYD1 is rotated away from

the catalytically competent conformation [26]. As suggested by

this geometry, SMYD1 should be, and is, a less efficient MTase

than SMYD3 in catalyzing higher methylation states of the

common H3 substrate (Fig. 6). Fig S3 shows the similarities of the

aromatic network among other lysine MTases, with the extent of

the aromatic networking trending with the amount of methylation

preferred. In general, stabilization of the biologically active

conformation of the aromatic residues forming the cage surround-

ing the target lysine of the substrate should lead to more efficient

transfer rates and therefore, indirectly, to the MTase’s proclivity

toward mono-, di-, or tri-methylation.

An intact MYND domain is required for catalysis and
transcriptional specificity

The MYND domain is the principal distinguishing element

separating the SMYDs from other SET domain-containing proteins.

MYND consists of two interlocking zinc binding folds and is present

in several transcriptional regulators where it facilitates interactions

with partner proteins through PXLXP motifs [47,48,49]. Though

unfettered by SET domain constraints, the integrity of MYND is

essential to SMYD3 basal function, as substitution of its Zn2+-ligating

residues (C49 or C87) eliminated HMTase activity (Fig. 4B). This

observation is consistent with previous analyses of the AML1/ETO

MYND domain which indicated that coordination of zinc atoms is

essential to maintain the intact conformation of that MYND domain,

with loss of zinc coordination leading to a disordered domain [49].

Loss of coordination here also likely leads to a disordered domain, but

more importantly, the lack of order affects the catalytic fidelity of

SMYD3, indicating that some constraints on the linking sequence

between the N- and C-SET domains exist.

The intact MYNDs of AML-1/ETO and SMYD3 bind a

common PXLXP-containing protein, the N-CoR transcriptional

co-repressor (Fig. 7A) [50]. That N-CoR can bind to SMYD3 and

ETO similarly is consistent with our finding that SMYD3 can act

as a MYND-dependent transcriptional repressor (Fig. 7B,C).

These data confirm that the nature of the MYND-bound ligand

influences SMYD3 transcriptional outcomes [49].

Potential contribution of SMYD3 and SMYD1 CTDs to
catalysis

SMYDs1-4 have an additional ,150 residue C-terminal

domain (CTD) whose function was recently proposed [26] to

regulate MTase activity of SMYDs. The SMYD3 CTD is a

superhelical 9 a-helical bundle which constricts the floor of the

substrate binding site opposite to the I-SET domain, preventing

the trivial insertion of substrates (Fig. 8). In fact, the CTD clamps

further down on the peptide binding space of SMYD3 than of

SMYD1, featuring a greater superhelical pitch, such that it

contacts the MYND domain (circled region of Fig. 8). The

difference in pitch is likely driven by the larger turn in the C-SET

domain of SMYD1 which significantly displaces the entire CTD

relative to its location in SMYD3. There is still a relatively large

space near the C-terminus of the modeled peptide where the inner

wall of the pocket is decorated by polar residues from the CTD

(mainly helix 4). We suggest that these polar residues would

cooperate with the post-SET residues to select for specific

sequences N- and C-terminal to the methyl-lysine, even in the

absence of a significant displacement. In this context, the CTD

could function as a cap necessary to bind substrates effectively and

selectively.

Figure 5. Model of the SMYD3-Sinefungin active site with the
H3K4me1 peptide [41] in cross-eye stereo. The peptide, colored
black, and with backbone traced in green ribbon, was taken from an
overlay with the SET9 ternary structure. (A) Ribbon representation of
the ternary complex. Substrate methyl donor and peptide are indicated
as green wire bonds and ribbons, respectively. Domain colors for
SMYD3 correspond to those in Fig. 1. The aromatic cage residues (Y239,
F183) at the end of the lysine channel are shown explicitly. (B) Overlay
of SMYD1 (magenta, PDB accession #3N71) and SMYD3 (colored by
domain) proteins in the ternary model. Numbering of residues is for
SMYD3.
doi:10.1371/journal.pone.0022290.g005

Figure 6. SMYD3 is more efficient than SMYD1 in trimethyla-
tion of their common substrate, H3-K4. In vitro assays were carried
out using bacterially expressed/purified 6XHis-SMYDs and recombinant
H3 (top and lower, respectively, Coomassie-stain panels). Center panel:
Autoradiography of the anti-H3-K4me3 (UpState) western blot.
doi:10.1371/journal.pone.0022290.g006

Structural and Functional Profiling of SMYD3
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Complexities of SMYD3 substrate entry/release
Constrictions imposed by the I-SET, post-SET and CTD

domains onto the peptide C-terminus suggest that substrate release

is a complicated process for SMYD3. Silva et al. [22] reported that

substrate release is facilitated by tumor-specific proteolysis of the

SMYD3 N-terminal 34 residues; that is, the N-SET is "auto-

inhibitory" to catalysis. To the contrary and consistent with our

structure, we found that elimination of the N-SET by truncation at

position 44 or 74 or by destabilizing its conserved first b-turn,

eliminated HMTase activity (Fig. 4B, C). We suggest, instead, that

Figure 7. An intact SMYD3 MYND domain is required for association with N-CoR and for transcriptional repression. (A) N-CoR co-
immunoprecipitates with wildtype SMYD3 but not with SMYD3 MYND domain point mutant C49/S. 293T cells were co-transfected with N-CoR, N-
terminal myc-tagged SMYD3 constructs indicated, and with empty vector (vector). 48 hours post-transfection, whole cell RIPA lysates (WCL) were
prepared. Fractions of the lysates were subjected to anti-N-CoR co-immunoprecipitation and the remaining 50% served as input. Western analysis
was performed with anti-myc antibodies. Myc-SMYD1B, previously shown to interact with N-CoR served as a positive control. (B) Schematic of GAL4-
DNA binding domain (DBD) and GAL4-fusion constructs for wild type (GAL4-SMYD3) and MYND domain-mutated (GAL4-SMYD3-C49/S) two hybrid
transcription assays. X denotes the location of the C49/S mutation. (C) GAL4-SMYD3 but not GAL4-SMYD3-C49/S represses transcription of a GAL4-
UAS containing luciferase reporter. 293T cells were transiently co-transfected with the 5XGAL4-SV40-luciferase reporter (1 mg) together with GAL4-
DBD, or with 1 or 2 mg (indicated as 1X or 2X) of GAL4-SMYD3 (black bars) or GAL4-SMYD3-C49/S (red bars). Transfection efficiencies were normalized
to co-transfected renilla luciferase, and percent GAL4 activity was determined in relation to GAL4-DBD set at 100%.
doi:10.1371/journal.pone.0022290.g007

Figure 8. Unique carboxyl terminal domain (CTD). Comparison of the CTD orientations in SMYD1 (magenta) and SMYD3 in cross-eye stereo.
The larger loop structure in SMYD1 (indicated by the arrow) forces the CTD assembly to shift such that the C-terminus no longer contacts the MYND
domain, as in SMYD3. The contacts between the two domains lie within the red circle.
doi:10.1371/journal.pone.0022290.g008

Structural and Functional Profiling of SMYD3
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substrate release will require a significant conformational change

in the CTD, which should be readily detected by differential shifts

in the geometry/contacts of unmethylated and methylated

peptides.

A 1.7 Å crystal structure of the human SMYD3-sinefungin

complex was reported by Sirinupong et al. [27] during the final

drafting of this manuscript. Despite space group/crystal packing

differences (please compare Table I of both manuscripts), the two

HMTase-substrate inhibitor complexes could be virtually super-

imposed. Indeed, a number of active site and MYND domain

residues, predicted in that paper as important for basal catalysis or

PXLXP-binding interactions, were confirmed by our mutational

(Fig. 4) and biochemical (Fig. 7) analyses. Based on the differential

geometries adopted by the CTDs of SMYD1 and SMYD3 (vide

supra), Sirinupong et al. [26,27] speculated that the CTD must

undergo a hinge-like movement to relieve its inherent auto-

inhibition of substrate entry and/or release. However, neither of

the structural analyses rules out the possibility that, at least for

basal catalysis, the CTD performs a positive enzymatic function by

stabilizing the active site. As shown previously [5], SMYD3

HMTase is stimulated by HSP90, a chaperone whose deregulation

is also strongly implicated in a broad array of malignancies

[51,52]. It will be critical to determine if HSP90 binds directly to

SMYD3, and if so, whether this interaction generates a CTD

conformational change of the nature they proposed.

Another structural analysis of SMYD3 was published by Xu

et al. [28] during the review process. Notwithstanding their

considerably lower resolution (none better than 2.8Å), their

structure overlays very closely with ours. Much as in the work of

Sirinupong et al. [26,27], Xu et al. [28] speculate on the previously

observed [5,21] association of SMYD3 with HSP90. While they

do not establish a causal link, they do help establish some of the

residues necessary for basal activity against an uncharacterized

admixture of histones. The two residues lowering activity (D241

and D332) have a structural role, making apparently key

intramolecular hydrogen bonds, while the one that does not make

any intramolecular hydrogen bonds (E192) fails to alter basal

activity. Interestingly, E192 is proximal to T184 in space,

suggesting the trajectory of the N-termini of histones lie less

towards the CTD and more towards the MYND domain, which

may explain why an intact MYND domain is essential for activity.

Given that Xu et al. [28] find weak but dose dependent SMYD3

HMTase activation with DNA binding to the MYND domain,

one might speculate that the influence of MYND domain

conformation changes may lie not only with its interactions with

the C-SET residues adjacent to the catalytic binding site but also

with the histone on the exterior surface.

Conclusions
SMYD MTases share many key features in their SAM binding

and lysine side-chain binding sites. A key beta-turn motif in the N-

SET is essential for activity, with deletion of the motif or mutation

of the superfamily signature residues G15 and G17 leading to a

complete loss of activity. This motif serves as a flap that partially

encloses the active site and provides residues that can interact with

SAM. Targeting the disruption of this loop therefore becomes a

logical objective for oncology research, as it should be sufficient to

eliminate SMYD3 activity. The residues which comprise the motif

are typically quite diverse and only modestly conserved, suggesting

that selectivity may be achieved as well. The main drawback to

targeting the loop is that the current motif features a relatively

shallow groove and inhibitors would have to induce a conforma-

tional change that cannot be visualized from the current

structures. Nevertheless, simulation methods could be used to

explore this region of the protein.

A more likely approach to targeting SMYD3 activity is to design

inhibitors that bind either the SAM- or substrate-binding pockets.

Our examination of the active site suggests that disruption of the

aromatic cage structure is likely to succeed, even if the site of

catalysis is not occupied by an inhibitor. Differences in

intramolecular aromatic-aromatic contacts lead to different

stabilizations of the catalytically competent protein conformation.

These differences in stability likely influence the MTase activity

and hence the preference for the extent of methylation conferred

on their substrates. The difference in MTase activity between

SMYD1 and SMYD3 highlights this disparity: even though the

sequences are identical, subtle changes in the packing influence the

aromatic cages, with the more active SMYD3 retaining a stronger

aromatic network than the less active SMYD1.

The MYND domain inserts into an otherwise structurally

conserved SET motif that extends back to bacteria and viruses.

We established that SMYD3 function is dependent on a properly

folded MYND domain, suggesting that its role is not only in

attracting particular binding partners but also in influencing the

conformation of the N- and C-SET domains. Consistent with this

hypothesis, T184 is on the far end of a beta sheet connected to the

MYND domain. We establish that the rather conservative

mutation of that residue to alanine leads to increased activity

and promiscuity. This result suggests that small changes in the

chemistry and position of the threonine side chain can lead to

significant changes in catalytic activity and preference. Such

changes may be possible through propagated changes in MYND

domain conformation on the substrate binding pocket or may arise

from changes in its direct association with a portion of the histone.

More research is needed to refine these possibilities and to clarify

which other residues confer the substrate preference for H4K20.

Although the MYND domain helps provide functional

selectivity toward SMYD substrates, the CTD may also regulate

the level of HMTase activity, serving as a cap necessary to bind

substrates effectively and selectively. More experimentation is

necessary to clarify the roles played by the CTD of SMYD3. New

opportunities to design potent and selective agents may arise from

the further characterization of these two domains and their

interrelatedness to the SET domains.

Nevertheless, how do we explain the apparent biologic

paradox that the oncogenic SMYD3 catalyzes histone lysine

marks that promote both localized promoter activation

(H3K4me3) and, even more aggressively, the repressive stabili-

zation of heterochromatin (H4K20me3) [10,11,13,53]? While

global reduction of H4K20 trimethylation has been suggested to

be a hallmark of human cancer [11,15], stable and heritable

H4K20-mediated repression of selected pol II genes, including

tumor suppressors, has recently become appreciated as an

epigenetic feature of cancer [4,11]. For example, the tumor

suppressor target of methylation-induced silencing (TMS1/ASC) be-

comes methylated and silenced in human breast and other

cancers [54,55,56,57]. Silencing is accompanied by a local shift

from a histone activating mark, H4K16 acetylation (Ac), to

H4K20 trimethylation [58]. Selective promoter-proximal "paus-

ing" results, such that initiated Pol II accumulates just

downstream of the transcription start site [59]. Taken together,

SMYD3 may serve both as a repressor of tumor suppressor

expression and a promoter of oncogene expression. These studies

illustrate the complexities of gene-specific regulatory mechanisms

in the epigenetic program and underscore the critical importance

of tightly regulating the targeting of SMYD3 for regional

deposition of H3K4me3 and H4K20me3.
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Materials and Methods

Crystallography
X-ray diffraction data are summarized in Table 1. Details of

protein purification and crystallization are provided below. The

data were indexed and integrated using the program MOSFLM

[60] and then merged using the program SCALA [61]. The

subsequent conversion of intensity data to structure factor

amplitudes was carried out using the program TRUNCATE

[60]. The program SnB [61] was used to determine the location of

Zn sites in the protein using the Bijvoet differences in data

collected at the Zn peak wavelength. The refinement of the Zn

sites and the calculation of the initial set of phases were carried out

using the program MLPHARE [60]. The electron density map

resulting from this phase set was improved by density modification

using the program DM [60]. The initial protein model was built

into the resulting map using the program ARP/Warp [62] and

XTALVIEW/XFIT [63]; (available on request from San Diego

Super Computer Center). This model was refined using the

program REFMAC [60] with interactive refitting carried out using

the program XTALVIEW/XFIT [63]; (available on request from

San Diego Super Computer Center).

Molecular biology
Immunoprecipitations, histone methyltransferase assays, and

mutagenesis were performed as previously described [19]. Details

of each of these experiments and a list of the templates and

mutagenic primers employed are provided below. Dual luciferase

assays using GAL4-DBD-SMYD3 wildtype and GAL4-DBD-

SMYD3 mutants (C49G and C87G) were performed and

normalized following transient transfection into 293T cells as

previously described [19] and are detailed below.

Cloning and baculoviral expression
The full length human SMYD3 protein (Genbank Accession

No. AAH31010; SEQ. ID NO:1) was engineered to contain a C-

terminal hexa-histidine tag. Sequence verified clones were each

transformed into DH10 BAC chemically competent cells (Invitro-

gen Corporation, Cat#10361012). The transformation was then

plated on selective media. 1-2 colonies were picked into minipreps

and bacmid DNA isolated. The bacmids were transfected and

expressed in Spotoptera frugiperda (SF9) cells using the following

standard Bac to Bac protocol (Invitrogen Corporation,

Cat.#10359-016) to generate viruses for protein expression. SF9

cells were used for 48 hr expressions in SF-900 II media.

The full length cDNA of HSP90 was cloned from Hep G2 cells

[ATCC HB-8065]. The chaperone HSP90 was co-expressed with

SMYD3 by co-infection with virus for each. Cells were collected

by centrifugation and frozen pellets were used for purification of

full length SMYD3. These procedures resulted in expression of

SMYD3 and HSP90 with 3 amino acids added to their N-terminal

end (MAL) and an additional 8 amino acids (EGHHHHH) added

to the C-terminal end of SMYD3.

Mutagenesis, cloning, and bacterial expression
Point mutants were generated using the GeneEditor in vitro Site-

Directed Mutagenesis System (Promega) according to the

instructions of the manufacturer For PCR, samples were heated

to 94uC for 5 min, subjected to amplification for 16 cycles of

0.5 min at 94uC, 0.5 min at 55uC, and 0.5 min at 68uC and

extended after the last cycle at 72uC for 7 min. Polyhistidine

(6xHis)-tagged SMYD3 wildtype, truncation and substitution

mutants were cloned into Gateway (Invitrogen) pETTM-DEST42.

High level expression was induced by IPTG in E. coli strains

MG232 (Scarab LTM) or Hsp90PlusTM (Expression Technologies

Inc). Primers and mutagenic oligos were:

Substitution mutants
G15,17A

cgccaacag ggg aaa ggg ctgcgcgccgtg + strand

cgccaacag gcg aaa gcg ctgcgcgccgtg forward

CACGGC GCGCAGC GCGTTTGCCCTGTTGGCG reverse

C49S

cgtggcgtcg tcg cgaccgctgcctt + strand

cgtggcgtcg cgc cgaccgctgcctt forward

AAGGCAGCGGTCGGCGACGACGCCACG reverse

C87A

cacaagcgggaa tgc aaatgccttaaa + strand

cacaagcgggaa gcc aaatgccttaaa forward

TTTAAGGCATTTGGCTTCCCGCTTGTG reverse

S182A

ctgatctgcaac tct ttcaccatctgt +strand

ctgatctgcaac gct ttcaccatctgt forward

ACAGATGGTGAAAGCGTTGCAGATCAC reverse

F183A

ttctgcaactct ttc accatctgtaat +strand

atctgcaactct gcc accatctgtaat forward

ATTACAGATGGTGGCAGAGTTGCAGAT reverse

T184A

tgcaactctttc acc atctgtaatgcg +strand

tgcaactctttc gcc atctgtaatgcg forward

CGCATTACAGATGGCGAAAGAGTTGCA reverse

C186A

tctttcaccatc tgt aatgcggagatg +strand

tctttcaccatc gct aatgcggagatg forward

CATCTCCGCATTAGCGATGGTGAAAGA reverse

E192A

gcggagatgcag gaa gttggtgttggc +strand

gcggagatgcag gca gttggtgttggc forward

GCCAACACCAACTGCCTGCATCTCCGC reverse

H206A

ctttgctcaat cac agctgtgacccc +strand

ctttgctcaat gcc agctgtgacccc forward

GGGGTCACAGCTGGCATTGAGCAAAGA reverse

Y257A

ctgagggaccag tac tgctttgaatgt +strand

ctgagggaccagg cct gctttgaatgt forward

CACATTCAAAGCAGGCCTGGTCCCTCAGCTA reverse

N-terminal truncations.

d44

gaattcCGTGGCGTCGTCTGCGACCGC forward

gaattcCATGGTGCCTGCTTTTTTGTACA reverse

d74

gaattcCAGAAAAAAGCTTGGCCAGA forward

gaattcCATGGTGCCTGCTTTTTTGTACA reverse

Protein purification
Frozen cells were lysed in buffer [50 mM Tris-HCl pH 7.7,

250 mM NaCl with protease inhibitor cocktail (Roche Applied

Science, Cat. #11-873-580-001)] and centrifuged to remove cell

debris. The soluble fraction was purified over an IMAC column

charged with nickel (GE Healthcare, NJ), and eluted under native

conditions with a step gradient of 10 mM, then 500 mM

imidazole. Proteins were then further purified by gel filtration

using a Superdex 200 column (GE Healthcare, NJ), into 25 mM

Tris-HCl pH 7.6, 150 mM NaCl, and 1 mM TCEP. Protein was

pooled based on SDS-PAGE and concentrated to 1-10 mg/ml.

Structural and Functional Profiling of SMYD3
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Crystal preparation
Diffraction quality crystals were obtained by hanging or sitting

drop containing 0.75 ml of protein 10 mg/ml and 1 mM

Sinefungin in 25 mM TrisHCl pH 7.6, 150 mM NaCl, 1 mM

TCEP and 0.75 mL reservoir solution: 100 mM Tris-HCl pH 8.5,

17% PEG 20 K, 100 mM Magnesium Chloride hexahydrate in a

sealed container containing 500 mL reservoir solution, incubated

overnight at 21uC. Crystals were also grown with a reservoir

solution of 100 mM HEPES pH 7.5, 16% PEG 3350, 200 mM

Magnesium Chloride.

The crystals were individually harvested from their trays and

transferred to a cryoprotectant consisting of 75–80% reservoir

solution plus 20–25% glycerol or PEG400. After ,2 min, crystals

were collected and transferred into liquid nitrogen and then

transferred to the Advanced Photon Source (Argonne National

Laboratory), where a two wavelength MAD experiment was

collected, using a Zn peak wavelength and a high energy remote

wavelength.

Immunoprecipitation (IP) and Western blotting
293T cells were transiently transfected, harvested 48 hours later,

and then lysed in RIPA buffer (150 mM NaCl, 1% NP-40, 0.5%

DOC, 50 mM Tris pH 8, 0.1% SDS) containing protease inhibitors

(Roche Molecular Biochemicals, Indianapolis, IN). Cell superna-

tants were incubated with primary anti-tag mAb or polyclonal anti-

H3 Ab (0.5–2 ug/ml) centrifuged at 4uC, and then incubated with

protein A-Sepharose/protein G PLUS-agarose (Santa Cruz Bio-

technology) at 4uC with rotation for 1 hour. Resulting immune

complexes were washed 6 times and immunoprecipitated proteins

were resolved on 8–15% SDS-PAGE. Separated proteins were

transferred to nitrocellulose (Protran BA, Schleicher and Schuell,

NH), blocked using 5% nonfat milk (10 g nonfat milk, 150 mM

NaCl, 10 mM Tris pH 8, 0.05% Tween-20) overnight at 4uC.

Membranes were incubated with 1u antibody for 1 hour at room

temperature, extensively washed, then incubated with 2u antibodies

for 1 hour at room temperature. Blots were exposed and developed

using the ECL blot detection reagent (Amersham Pharmacia

Biotech) according to the instructions of the manufacturer.

Histone methyltransferase assays
For in vitro HMTase assays, SMYD3 proteins (0.1–1 mg) +/2

equivalent amt. of human HSP90a (Assay Designs, Ann Arbor,

MI, USA, cat. no SPP-776D) were incubated with 1 mg of mixed

histones from calf thymus (Sigma) or recombinant core histones

(Upstate), or with 1 mg reconstituted chromatin generated from

oocyte nucleosomes (graciously provided by Dr. Yali Dou, Univ.

Michigan Med School) prepared as described previously [64,65].

Recombinant oocyte histones were assembled onto a 201 bp ‘601’

DNA template [66] by mixing ,1.5 mg octamers with 1 mg DNA

template in a volume of 10 ml containing 2 M NaCl, 10 mM Tris

(pH 8.0), 0.1 mM EDTA, and 10 mM b-mercaptoethanol),

followed by stepwise, 10-fold reduction of salt by addition of

Tris–EDTA to a final concentration of ,0.2 pmol nucleosome/ml

200 mM NaCl/Tris–EDTA). For radioactive based assays, 2 mCi

S-adenosyl-L–[methyl-3H] methionine (SAM; Amersham Biosci-

ences) was included as a methyl donor. All reactions were carried

out in 40 ml HMT reaction buffer (10 mM dithiothreitol, 100 mM

NaCl, 4 mM MgCl2, and 50 mM Tris-HCl at pH 8.8) at 30uC for

3 hours. An 18% SDS-PAGE gel was used to resolve the samples

and fluorography was used visualize positive methylation.

Substrate loading was visualized by Coomassie blue staining.

Specificity of SMYD3 activity was determined, following

transient transfection into 293T cells, by incubating immunopre-

cipitated proteins with recombinant histones and 20 mM unla-

belled SAM (Sigma) in 40 ml HMT reaction buffer at 30uC for

1 hour. Western blot analysis was conducted using antibodies

against H3K4me2, H3K4me3, H3K9me2, H3K9me3,

H3K27me3, H3K36me2, H3K79me2, H4K20me2, and

H4K20me3 (all from Upstate, Charlottesville, VA).

Preferential H4 methylation state catalyzed by SMYD3 was

confirmed by proximity bead HMT assays as follows: 2 mCi of 3H-

SAM (Amersham Biosciences) were incubated with 0.1 mg of

SMYD3 and 0.1 mg of histone H4 peptide, non-, mono-, di-, or tri-

methylated at K20 (sequence of the peptide: acetyl-

GGKGLGKGGAKRHRKVL-biotin). The assay was carried out

for three hours at 30uC in 20 ml HMT reaction buffer. At the end of

the incubation time, 100 ml of binding buffer (1x PBS containing

1% NP-40 and 0.1% SDS) was added. The substrate was then

precipitated using 10 ml of Streptavidin PVT SPA Scintillation

Beads (Amersham Biosciences; used as 50% slurry in binding buffer)

for one hour at room temperature on a rocking platform, followed

by five washes in binding buffer and scintillation counting.

Transcription assays
The SV40-luciferase reporter, containing five copies of the

GAL4-UAS, was obtained from J. Milbrandt [19]. pRL-TK was

purchased from Promega. The GAL4-SMYD3 WT and MYND

mutant mammalian expression vectors were constructed by PCR

amplification (59 ATG CGC GCC GAG GCC CGC; 39 TCA

GTG GCT CTC AAT CTC CTG) and restriction digestion (Not

I; Xba I) followed by subcloning into the GAL4-DBD plasmid

[20]. Dual luciferase assays were performed and normalized

following transient transfection into 293T cells as previously

described [19].

Supporting Information

Figure S1 Expression and purification of recombinant
human SMYD3. (A) Baculoviral SMYD3. 6X-his-SMYD3 was

expressed in sf9 cells as detailed in Methods, purified by Ni-NTA,

HiTrap-Q, and Superdex-75 column chromatography (left) and

confirmed for purity by mass spectrometry (right). SMYD3

purified as a monomer of predicted (50189) mass. These fractions

were suitable for crystallization and further biochemical analyses

(described in text). (B) Bacterial SMYD3. 6X-his-SMYD3 (wild-

type, catalytic mutant H206/A, and other mutants analyzed in

Suppl. Fig. 4) were cloned into Invitrogen Gateway plasmids as

described in Methods. Following IPTG-induction in Scarab

MG232 (left), proteins were purified by Ni-NTA (center) and

confirmed with polyclonal anti-SMYD3 (right).

(TIF)

Figure S2 Conventional SET and MYND domain archi-
tectures are unaltered in SMYD3. (A–C) Ribbon represen-

tations in cross-eye stereo of the N-SET(A), C-SET (B), and

POST-SET (C) domains of SMYD3 (colored by domain as in

Fig. 1) superimposed on the corresponding regions of SMYD1

(magenta), SET8 (red brown), SET9 (black), Rubisco LSMT

(white), Dim5 (green), Clr4 (blue-green), and the viral SET of the

Chlorella virus (gold). Zn locations are indicated by spheres.

Sinefungin is represented in green wireframe. (D) Structure of the

MYND domain in cross-eye stereo of SMYD3 (yellow) superim-

posed on the MYND domains of ZMYND10 (green), ETO

(white), CBFA2TI (black), and SMYD1 (magenta). Zn locations

are indicated by spheres. (E) Overlay of the complete SET domain

of SMYD3 (colored by domain as in Fig. 1) with those of SMYD1

(magenta) and Rubisco LSMT (white) in cross-eye stereo.

Sinefungin is represented in green wireframe. Of all MTase

structures currently available, only these three almost completely
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overlay, including the commonly conformationally and sequen-

tially variable I-SET region.

(TIF)

Figure S3 Aromatic residues in the catalytic site in
cross-eye stereo. Comparison of the SMYD3 catalytic site

(colored by domain) with the corresponding site in (A) SET8 (red

brown), (B) SET7/9 (black), (C) Rubisco LMST (white), (D) DIM5

(green), (E) CLR4 (blue green), and (F) the SET domain from the

Chlorella virus (gold). The modeled lysine from the SET7/9

structure (black carbons) and Sinefungin (green carbons) are

displayed for reference.

(TIF)
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