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Background
The single-cell RNA sequencing (scRNA-seq) method allows to assess the transcrip-
tome of individual cells [1]. Thanks to the decreasing cost and to the simplification of 
the protocols, this technique is more and more popular. One can distinguish two classes 
of methods: the plate-based methods and the droplet-based methods (also called micro-
fluidic-based methods). The first ones often provide a better estimation of genes expres-
sion for individual cells, as the number of reads per cell is usually higher. However, the 
experimental procedure is more complicated and these methods typically generate data 
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for hundreds of cells. The second ones are more widely used and provide usually sparser 
information (less reads per cell) but for a larger number of cells (typically 50 times more) 
[2]. As a consequence, droplet-based methods are often preferred when complex tissues 
are studied. Indeed, they allow to identify more precisely pools of cells with close cellular 
identity (clusters) [3]. Gene expression within clusters are then studied in more details 
which is not possible when the number of cells is too low. However, with droplet-based 
methods, the number of reads for a given cell is very low compared to the complexity 
of the transcriptome. Therefore, lowly expressed genes are not always detected, and if 
detected, their expression level is poorly constrained. The fact that a gene for a given cell 
is not detected while it is actually expressed is sometimes called ‘dropout’ [2, 4–7]. The 
origin and modeling of the ‘dropout’ phenomenon, and more generally of the observed 
variance in scRNA-seq is debated, as reflected by the number of different models used in 
tools dedicated to differential expression analysis [8]. Here, we show that Poisson noise 
due to sampling explains very well the observed variance (dropout included) in droplet-
based scRNA-seq. We find no evidence of more complex noise sources, such as addi-
tional dropouts, negative binomial distribution, etc.

For most common applications of scRNA-seq (clustering and identification of gene 
markers, projection like tSNE or UMAP) the sparsity of the data does not have a strong 
impact [9]. However, the expression distribution of a given gene in a population of cells 
is difficult to estimate and its representation by a kernel density estimation (KDE) plot, 
like in the violin plot of Seurat [10] or Scanpy [11], can be misleading. Indeed, the sam-
pling noise strongly spread the signal, and the cells with no count appear as an artificial 
homogeneous sub-population, mixing cells with low and no expression.

Gene correlation has been extensively studied in bulk RNA-seq in order to build reg-
ulatory networks [12]. A recent study using scRNA-seq discovered gene covariations 
involving microRNA [13]. miRNA are small RNAs which regulate gene expression by 
post-transcriptional processes [14]. Such results would be difficult to obtain with bulk 
RNA-seq, showing the power of this type of study in homogenous scRNA-seq. However, 
this study has been conducted with a plate-based method on a very homogeneous popu-
lation (mouse embryonic stem cells). When using droplet-based data, the sparsity of the 
data is a major barrier to this type of analysis restricting it to genes with high expression.

Recently, [15] proposed a Bayesian normalization procedure called Sanity (SAm-
pling-Noise-corrected Inference of Transcription activitY). This method aims at cor-
recting the counts of each cell from the sampling noise. The procedure is fast and can 
be applied before clustering and projection algorithms to improve their performance. 
It also prevents spurious correlation between pairs of genes. However, in order to effi-
ciently perform these corrections, Sanity uses simplifying assumptions in the modeling 
of the genes’ expression distributions. Here, we also propose a Bayesian approach to dis-
entangle the intrinsic variability in gene expressions from the sampling noise. However, 
instead of focusing on correcting the expression level of each cell, we aim at retrieving 
accurately the underlying expression distribution of the population of cells. Our tool, 
named baredSC (Bayesian Approach to Retrieve Expression Distribution of Single-Cell 
data), approximates the expression distribution of a gene by a Gaussian mixture model 
(GMM). This tool is dedicated to studies where the distribution of few genes needs to be 
estimated precisely. It can be used to retrieve the expression distribution of a single gene, 
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but also to infer the joint distribution of two genes in order to study genetic interactions 
even when the gene expression level is low and thus the frequency of non-detection is 
high.

Using simulated data we show that it largely outperforms the classical density/violin 
representation and in most cases very accurately reproduces the original distribution, 
both in the one-dimensional and two-dimensional cases. We also show that when multi-
modal distributions are simulated it gives more accurate results than Sanity. We also 
use real biological datasets to illustrate the power of baredSC to assess the correlation 
between genes or to reveal the multi-modality of a lowly expressed gene.

Results
Poisson distribution is a good approximation for droplet‑based single‑cell RNA‑seq data

We focus our analysis on droplet-based scRNA-seq as this is where the sparsity of 
the data is a major issue. We first evaluate the variability coming from the technique 
itself, including all steps of the protocol from RNA to the gene count matrix. Indeed, 
the source of variability in droplet-based scRNA-seq is still debated. The most obvious 
source of noise comes from the sampling, i.e. the fact that only a subset of the whole 
transcriptome is sequenced. This sampling noise is especially strong for lowly expressed 
genes and when the total number of reads per cell is low. In addition to the sampling 
noise, some specific steps of the technique, like the capture of mRNA or the amplifica-
tion steps, could possibly introduce variability and/or biases [16].

The most visible consequence of the noise is the so-called ‘dropout’ effect. [2] stud-
ied this phenomenon and concluded that the fraction of cells with no count was fully 
compatible with a noise following a negative binomial distribution. However, this analy-
sis was mostly conducted ignoring the variability in the total number of counts per cell 
which has a non-negligible effect on the variability of the number of counts for a given 
gene. Nevertheless, in the Additional file  1: Fig.  S1 of [2], the use of scaled data sug-
gests that the simpler Poisson distribution could be sufficient to explain the number of 
dropouts.

Here, we reanalyze the same datasets as [2], to evaluate all the noise contributions 
(dropouts and more generally the variability), using scaled data. Following [2], we take 
advantage of published control datasets [17–20] as well as two real biological data-
sets provided by 10X genomics with cells from a mouse cell line (NIH3T3) and from a 
human one (HEK293T). In the control datasets, a homogeneous solution of RNA was 
used as input instead of a solution of single-cells. This allows to study the technical noise 
without any influence of the cell to cell variability. Indeed, in these datasets, each pseudo 
single-cell was a droplet of the same RNA solution. On the contrary, the 10X genomics 
cell lines are real biological datasets where we expect to find both technical variations 
and biological variations.

When studying gene expression, the quantity of interest is the number of transcripts 
coding for a given gene g in cell i. Unfortunately, this quantification is very difficult to 
obtain and one often focus instead on the proportion of transcripts coding of a given 
gene g out of all transcripts in the cell i. We denote by �i,g this fraction. An obvious esti-
mator of �i,g is
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where ki,g is the number of counts for the gene g in the cell i and Ni is the total number 
of counts identified in the cell i. However, since Ni is always much smaller than the total 
number of transcripts in the cell, ki,g is strongly affected by sampling noise. Rigorously 
speaking, in the absence of other sources of noise, ki,g follows a binomial distribution 
with parameters Ni and �i,g . This distribution can actually be approximated by a Poisson 
distribution with parameter Ni�i,g for sufficiently small �i,g and large Ni . We thus have

where E (X) is the expectation of X, and

where var (X) is the variance of X. If additional sources of noise affect the experiment, 
one would expect an increase in variance. For instance, [2] compared the Poisson distri-
bution with the negative binomial distribution with the same expectation and a variance 
following

where � is a new parameter which allows to account for an additional variance with 
respect to the Poisson distribution. In particular, the Poisson distribution is recovered 
for � = 0 . In terms of Xi,g , the expectation still follows Eq. (2), and the variance is now 
written as

For a given experiment, one only obtains a single realization of Xi,g , so the expectation 
and variance of Xi,g cannot be measured in order to compare the Poisson and negative 
binomial distributions. However, in the case of control experiments, each pseudo single 
cell is sampled from the same RNA solution, so the fraction �i,g is the same in each cell. 
We denote by �g this common value. By combining the reads in all pseudo cells, one can 
determine a very precise estimate of �g

which by construction verifies

for both the Poisson and negative binomial distributions. We additionally introduce the 
variance estimator
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(
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which provides a measure of the spread (variance) of the Xi,g values among the cells for a 
given gene g. The expected value of Vg is

We define the normalized variance estimator

such that

In particular, in the case of the Poisson distribution ( � = 0 ), we have 
E (Ṽg ) = �g = E (Mg ) , while for � > 0 (excess of variance) we obtain E (Ṽg ) > E (Mg ).

To estimate which law is more adequate to explain the data we plot Ṽg against Mg for 
each gene g (Additional file  1: Fig.  S1). If the data follow the Poisson distribution, we 
expect the points to align on the y = x line, while if the data present an additional noise 
( � > 0 ), the points should end-up above this line. We noticed that the genes corre-
sponding to ERCC (External RNA Control Consortium) spike-in had a behaviour differ-
ent from what was observed for real genes, especially in the dataset from [18] where the 
variance is highly increased (Additional file 1: Fig. S1Ab). Thus, we decided to exclude 
these genes from the analysis. The results with ERCC spike-in information excluded are 
presented in Fig. 1. Overall, we find a very good agreement of the data with the Poisson 
distribution in the control datasets (Fig. 1A). In datasets from [20] (1) and (2) (Fig. 1Aa 
and b), the data perfectly follow the Poisson law for all expression levels. In the two other 
control datasets (from [17] and [18] Fig. 1Ac and d), both models perform equally well 
until a relatively high level of expression (about 1‰). Above 1‰, the variance slightly 
deviates from the Poisson prediction. However, in both cases, the deviation is very small 
and the results at high expression levels suffer from low number statistics. In addition, 
in the control experiment from [17], such expression corresponds to the top 0.5% highly 
expressed genes like ribosomal protein or cytoskeleton proteins. Therefore, we conclude 
that the Poisson law very well explains the variance observed in the control datasets.

On the contrary, when considering real experiments, even with a homogeneous single-
cell population (Fig.  1B), we find that the variance strongly deviates from the Poisson 
prediction. Moreover, the deviation increases with the expression level and the negative 
binomial law captures this behaviour very well. This result clearly demonstrates the inter 
cellular heterogeneity in so-called homogeneous cell populations.

In [2], the author finds that the negative binomial distribution better matches the data 
than the Poisson law, even for control datasets. This seems to contradict our results. How-
ever, the analysis of [2] was performed on the raw number of counts ki,g , without scaling it 
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by the total number of counts Ni . The author uses the following estimators for the mean 
and variance of ki,g

If we assume ki,g to follow a Poisson distribution with parameter Ni�g , the expectation of 
mg and vg are written as

where N̄  is the average of the Ni values, and var (N ) their variance

The variations of Ni were neglected by [2], which would correspond to assum-
ing Ni = N̄  and var (N ) = 0 in Eq.  (13). In this case, one would thus expect to find 
E (mg ) = E (vg ) = N̄�g , if ki,g follows a Poisson distribution. Svensson [2] found the data 
to be better described by a negative binomial distribution for ki,g with a free parameters 
φ such that

(12)
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1

n

n
∑
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ki,g ,

vg =
1

n− 1

n
∑

i=1

(ki,g −mg )
2.

(13)
E (mg ) = N̄�g ,
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n

n
∑
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Ni,
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n
∑

i=1

(

Ni − N̄
)2
.

Fig. 1  Poisson is a good approximation to explain variance in droplet-based single-cell RNA-seq. In each 
dataset, control dataset (A) or real single-cell experiment (B), the normalized variance estimator is plotted 
in function of the estimated mean expression. Each dot is a gene. A Gaussian kernel smoother was applied 
to evaluate the tendency of the data (red line) and the error around the Gaussian kernel smoothing was 
estimated (yellow area). The expected variance in the Poisson approximation is a straight line (blue) whereas 
the expected variance in the negative binomial approximation is a quadratic curve (green). Both axes are in 
log scale
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This expression can actually match the formula we obtain assuming a Poisson distribu-
tion but accounting for the variability of Ni (see Eq. (13)), if we take

In Table 1, we compare the values of the parameter φ fitted by [2] with the values φPoisson 
computed with Eq. (16), for the control datasets including the spike-in ERCC. We find 
a very good agreement between these values for all the considered experiments. This 
shows that the variations in the number of counts per cell is the main source of the 
excess noise found by [2]. This also confirms that the Poisson distribution very well 
explains the observed variations, as already noticed with the experiment of Fig. 1. This 
is also confirmed by a reanalysis of these control datasets with the same strategy as in 
[2] but selecting cells with relatively close total number of counts per cell so decreas-
ing the variations in the number of counts per cell [21]. The authors find values of φ 
close to 0.01. Another reanalysis of these datasets comparing their behaviours with sim-
ulated datasets following negative binomial of known dispersion conclude that they are 
not similar to simulated datasets with Poisson model but were consistent with φ values 
around 0.01 which makes the Poisson model sufficient in practice [22].

Overall, the tests performed in this section show that the variability in droplet-based 
scRNA-seq is dominated by sampling noise and follows a Poisson distribution. However, 
it should be noted that we cannot exclude the introduction of biases at specific steps 
of the technique like increased or decreased reverse transcription or amplification of 
specific transcripts [16]. Indeed such bias would lead to a global increased or decreased 
presence of these genes and consequently to an overall overestimation or underestima-
tion of each expression value. However, the variance on these genes would still follow a 
Poisson law.

Estimating the distribution of expression values of a gene

We are interested here in estimating the intrinsic variability in the expression val-
ues of a given gene in a population of cells. As shown above, the output of a drop-
let-based scRNA-seq experiment presents not only this intrinsic variability but also 

(15)
E (mg ) = N̄�g ,

E (vg ) = N̄�g + φ
(

N̄�g

)2
.

(16)φ = φPoisson = var (N )

N̄ 2
.

Table 1  Comparison of the values φfit of the parameter φ found by [2] with the values φPoisson 
expected from the Poisson law when taking into account the variability in the total number of 
counts per cell (see Eq. (16))

Experiment φfit φPoisson

Klein 0.0428 0.0451

Macosko 0.116 0.115

Zheng 0.0416 0.0426

Svensson1 0.0940 0.0969

Svensson2 0.369 0.379
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an additional variability due to sampling noise, following a Poisson distribution. For 
lowly expressed genes and when the number of counts per cell is low, the sampling 
noise can actually dominate and hide the intrinsic population variability (see Addi-
tional file 1: Fig. S2).

To disentangle these two contributions, we introduce a parametric model of the 
intrinsic expression variability. In order to describe both high expression levels and 
low expression levels, the relative level of a gene is often represented in log scale or 
using a log transformation with a pseudo count (see Methods: GMM of the PDF for 
more details). While the choice of the transformation influences the result, the same 
strategy can be used in any transformation. We assume that the probability density 
function (PDF) of the transformation of the relative expression level of a gene in the 
population of cells can be approximated by a GMM. The number of components m 
in the mixture, as well as the Gaussians’ amplitudes A, means µ , and widths σ , are 
free parameters that need to be adjusted to best reproduce the observed number of 
counts of the considered gene in each cell. We denote by G(�|m,A,µ, σ) this PDF (see 
Methods: Estimation of likelihood for more details). Then, for a cell i whose expres-
sion level for gene g is �i,g , the probability to get ki,g out of Ni counts follows the Pois-
son distribution P(ki,g |Ni�i,g ) . Therefore, the likelihood L of a given set of parameters 
(m,A,µ, σ) is written as

We estimate this integral numerically as described in Methods: GMM of the PDF. While 
the set of parameters m,A,µ, σ could be determined by maximizing the likelihood, we 
advocate here for a Bayesian approach which prevents an overfit of the data and allows 
to better estimate confidence intervals on the parameters and on the correspond-
ing PDF G , which is the quantity of interest in this study. We thus use a Markov chain 
Monte Carlo (MCMC) algorithm to explore the parameters A, µ , σ for a given number 
of components m. Then we combine the results obtained for different m by evaluating 
the evidence of each model using an importance sampling algorithm. These Bayesian 
approaches (MCMC and importance sampling algorithms) require to define priors on 
the model parameters. We provide more details on the algorithms and priors in Meth-
ods: Priors on parameters and MCMC algorithm. We call this algorithm baredSC for 
Bayesian Approach to Retrieve Expression Distribution of Single-Cell data.

In order to test the efficiency of the algorithm to retrieve the intrinsic distribution, 
we simulated data using 300, 500, 1561 cells or all (2361 cells) with Ni values taken 
from a real 10X dataset (see Methods: Simulation of data). We generated random val-
ues for the expression in each cell ( �i,g ) according to various intrinsic distributions on 
the log(1+ 104�g ) scale: single Gaussian (Fig. 2A), uniform distribution (Fig. 2B), two 
or three Gaussians (Fig.  2C), or a sub-population of zeros (cells not expressing the 
gene) and a Gaussian (Fig. 2D). We varied the mean and the width of each of these 
distributions to cover a wide range of potential biological cases. Then, we simulated a 

(17)

L(m,A,µ, σ) =
n
∏

i=1

p(ki,g |Ni,m,A,µ, σ)

=
n
∏

i=1

∫

P(ki,g |Ni�)G(�|m,A,µ, σ)d�.
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Fig. 2  MCMC allows a good estimation of the distribution. In each simulation, the simulated distribution is 
plotted in blue and its characteristics are written above (N for normal, U for uniform followed by loc and scale 
values as in the scipy package as well as the proportion of cells with no expression in D). The values obtained 
after Poisson simulation are summarized by the red curve (Density from data). The mean PDF obtained 
by baredSC is depicted in green and the green area shows the quantile 16–84%. In A, distribution is only 
composed of one normal distribution, in B, only one uniform distribution, in C two or three Gaussians were 
used and in D a normal distribution for part of the cells and no expression for other
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scRNA-seq by randomly sampling the ki,g values from a Poisson law using the deter-
mined Ni and �i,g values. Finally, these simulated counts were analyzed using baredSC 
with the same log transformation ( log(1+ 104�g ) ) with up to four Gaussians in the 
mixture.

In the single Gaussian cases, the algorithm very efficiently approximates the intrinsic 
distribution, even with only 300 cells (see Fig. 2A). We plot in Fig. 2B the case of uni-
form distributions. While the exact shape of the original distribution cannot be exactly 
reproduced using a GMM, it is still reasonably well approximated. In particular, when 
the scale is large enough, the model uses multiple Gaussians to better reproduce a flat 
distribution. Such a distribution is unlikely to exists in biology, but it illustrates well the 
versatility of the GMM. When multi-modal distributions were simulated, baredSC could 
in most cases accurately identify the different modes (see Fig. 2C). The algorithm some-
times slightly deviates from the simulated distribution in the range of low expression 
when the number of cells is relatively low. This phenomenon is highly linked to the spar-
sity of the data and to the model’s degeneracy between very low expression levels. Using 
a higher number of cells allows to break this degeneracy. Finally, in the case of zeros plus 
a Gaussian, baredSC approximates the distribution with two Gaussians (see Fig.  2D). 
One of the Gaussians corresponds to the simulated Gaussian. The other is truncated and 
narrowed close to zero, such that it approximates the sub-population non-expressing 
cells. However, baredSC tends to predict a lower proportion of expressing cells with a 
higher mean expression. Again, this phenomenon is linked to the sparsity of the data and 
to the model’s degeneracy between very low expression and no expression. It disappears 
when we simulate a higher mean expression for the expressing cells (right column of 
Fig. 2D).

Overall, the algorithm performs very well and largely improves the estimation of the 
intrinsic expression distribution compared to a classical density plot (see Fig. 2).

Comparison to Sanity

Sanity is a normalization tool aimed at correcting scRNA-seq outputs from sampling 
noise [15]. The Sanity model shares similar features with baredSC, as both tools use a 
Bayesian approach to correct from the sampling noise, which is assumed in both cases to 
follow a Poisson law. However, there are two main differences in the baredSC and San-
ity approaches (see Additional file  1: Section  3 for more details). First, while baredSC 
uses a GMM (using any transformation of �g ) to model the intrinsic expression distribu-
tion, Sanity uses a single Gaussian model expressed in log(�g ) . We observe that bared-
SC’s results are similar to the ones obtained with Sanity if we restrict baredSC to use 
a single Gaussian in log scale (Additional file 1: Fig. S3). The Sanity model is thus sim-
pler, which allows for the use of faster algorithms. However, it is also less flexible and 
precise, especially in cases where the expression distribution is multi-modal. Second, 
Sanity aims at correcting the counts of each cell from the Poisson noise, while baredSC 
focuses on uncovering the underlying intrinsic expression distribution (PDF) of a gene. 
Of note, while the estimation of corrected counts is not the goal of baredSC, this infor-
mation can be easily computed from the inferred PDF (see Methods: Posterior per cell). 
The expression PDF can be estimated from Sanity’s outputs by either using the single 
Gaussian used to model the intrinsic expression distribution, or computing a KDE of 
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the corrected counts, or by computing the posterior distribution from these counts and 
their error bars (see Additional file 1: S3.7 and Fig. S23 of [15]). However, the two last 
methods are less accurate than the PDF infered by baredSC when multiple Gaussians are 
used and can degrade the resolution of the PDF (see Additional file 1: Fig. S3).

In order to compare baredSC and Sanity, we generated data using 2361 cells with the 
same Ni values as for Fig. 2. We generated �i,g values using a single Gaussian, two Gauss-
ians, a single Gaussian in combination with a proportion of cells with no expression, or 
three Gaussians. In order to more easily compare the results from Sanity and baredSC, 
the Gaussians were defined in log scale ( log(�g ) ) and we run baredSC using the same log 
scale. The results are displayed in Fig. 3. For the representation of the normalized counts, 
the expression of cells with no expression was artificially put to the minimal value. In 
Fig. 3A where a single Gaussian was simulated, baredSC and the posterior distribution 
from Sanity overlay with the distribution used to simulate the data. The density from 
Sanity underestimates the low values and overestimates the mean values. In Fig. 3B, we 
used a bimodal distribution closed to the one used in the Fig. S23 of [15]. In this case, 
the posterior distribution from Sanity shows a bi-modal shape, however, while the sec-
ond Gaussian’s characteristics are well estimated, the first one has a larger scale than 
expected. Conversely, baredSC finds the characteristics of both Gaussians. In Fig.  3C, 
where a proportion of cells with no expression was added, baredSC identifies the two 
sub-populations and gives an inferred PDF very close to the generated one. The poste-
rior distribution from Sanity is composed of a single broad Gaussian missing the bimo-
dality (Gaussian and non-expressing cells). In Fig. 3D, where two Gaussians were used 
with averages smaller than -7.5, the posterior distribution from Sanity is close to a single 
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Gaussian while baredSC results is close to the expected PDF. Finally, in the last simula-
tion (Fig. 3E) where three Gaussians were used, the posterior distribution from Sanity is 
very close to the line obtained with normalized counts (Density from data) except that 
it corrects for cases where there was no detection. This is much less accurate that the 
PDF provided by baredSC. Overall, in these simulations, baredSC better estimates the 
distribution compared to Sanity when the distribution is produced by more than a sin-
gle Gaussian. This can be explained by two factors. First, the simplified single-Gaussian 
model used by Sanity favors unimodal outputs. Second, for each cell, the posterior dis-
tribution of Sanity is approximated by a Gaussian, while this distribution is actually the 
product of the Poisson distribution with the assumed intrinsic distribution. Even for a 
Gaussian intrinsic distribution, as assumed in the Sanity model, this product might sig-
nificantly depart from a Gaussian distribution (asymmetry and/or bimodality). Together, 
these two approximations might explain why the posterior distribution from Sanity is 
less accurate than baredSC results in multi-modal distributions.

These results demonstrate that while Sanity offers a fast solution to correct scRNA-seq 
outputs from sampling noise, baredSC provides much more accurate results, at the cost 
of computing time. Both approaches are complementary and have different scopes. The 
efficiency of the Sanity algorithm allows to apply it massively on all genes. This is espe-
cially useful to correct scRNA-seq from sampling noise before applying a clustering and/
or a projection algorithm. Such an application would be very intensive in computer time 
for baredSC, which is dedicated to more in-depth studies of specific genes.

Benchmark of baredSC computational needs

As baredSC uses a MCMC algorithm to assess the probability distribution of the  
parameters of the model, the computational cost of the algorithm is non-negligible. At 
each step of the MCMC, the cost is driven by the evaluation of the likelihood which is 
proportional of the number of cells n (see more details in Methods: GMM of the PDF). 
By default baredSC runs 100,000 MCMC steps, which requires to evaluate the likelihood 
100,000 times. If the MCMC did not converge, we automatically rerun baredSC with 10 
times more steps until the convergence is reached (see Methods). In order to get an eval-
uation of the time and memory needed to run baredSC as function of the number of cell, 
we simulated some distributions used in Fig. 2 for 1000, 5000, 25,000, 125,000, 625,000, 
and 3,125,000 cells (Fig. 4).

We first ran baredSC using the number of Gaussians (m) corresponding to the sim-
ulated data, i.e. one Gaussian for the first simulation, two Gaussians for the two next 
simulations and three Gaussians for the last simulation. We ran baredSC on the high 
performence computing server of EPFL using either one core or four cores as baredSC 
uses numpy which can use multiple cores. baredSC was run three times with three dif-
ferent seeds to take into account the variability of the node performance and the MCMC 
convergence. The results for the computation time is presented in Fig. 4A top panel and 
the memory is presented in Fig. 4B top panel. Only conditions where the convergence 
could be achieved in the three different seeds within 30  h are displayed. In all cases 
except one, the MCMC converged with 100,000 steps (see Additional file 1: Fig. S4). We 
can see that the computation time is indeed linear as function of the number of cells 
(dotted line) except in the last simulated distribution where the linearity is broken with 
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three million cells due to convergence issues. The use of four cores is interesting as soon 
as the number of cells is above 25,000. For this number of cells, it takes between 2 and 
4  min independently of the complexity of the distribution with one core and around 
1 min and 30 s with four cores. BaredSC requires relatively low memory, around 0.3GB 
for 25,000 cells.

However, in the case of real datasets, the number of Gaussians (m) is unknown and is a 
parameter of the model so we need to run baredSC with any possible number of Gauss-
ians. We decided to use one to four Gaussians which enable to cover a large variety of 
distributions. Then, a script uses the four intermediate results and importance sampling 
to give the final result. To optimize the computational run time, we ran baredSC in par-
allel on one to four Gaussians with four cores per task. This strategy is the one which 
has been used for all the figures of the paper. While with the first performance tests, the 
MCMC was nearly always converging at 100,000 steps, when different number of Gauss-
ians are used, the convergence may require 1,000,000 steps or even 10,000,000 steps for a 
number of Gaussians which does not correspond to the simulated number of Gaussians 
(Additional file  1: Fig.  S4). This strongly impacts the computational time (Fig  4A bot-
tom panel). On average, the full baredSC with one to four Gaussians requires 28 min for 
25,000 cells and 1.5 GB.

These computational times are not compatible with a usage of baredSC for hundreds 
or thousands of genes. However, it stays reasonable when the PDF needs to be precisely 
known for few genes in a whole dataset or in specific clusters.

Estimating the joint distribution of two genes

As shown above, the baredSC approach is able to efficiently recover the expression 
distribution of a single gene. The same approach can actually be applied to two genes 
simultaneously to infer the expression distribution in two dimensions (2D). This is of 
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great interest since the study of pairwise correlations between genes can help to better 
understand gene regulatory networks. Similarly to the case of a single gene, we assume 
that the distribution can be approximated by a GMM. In the 2D case, each Gaussian in 
the GMM depends on six parameters: the amplitude, the mean of x and y, the scale of 
x and y and the correlation. The detailed equations for the 2D application of baredSC 
can be found in Methods: baredSC in 2D. The same Bayesian approach (MCMC and 
importance sampling) as in the 1D case is used to explore the parameters. In addition 
to the parameters and the corresponding expression distribution in 2D, one can deduce 
from the MCMC posteriors a confidence interval for the Pearson correlation between 
the expression of the two genes, as well as a one-sided p value (see Methods: Estimation 
of the p value for the correlation).

We simulated data to test the accuracy of baredSC in 2D. We used the same number 
of cells and the same Ni values as in the 1D case. We generated random values for the 
expression of both genes x and y in each cell ( �i,g1 and �i,g2 ) using various distributions 
on the log(1+ 104�g ) scale described below. Then, we sampled ki,g1 and ki,g2 using 
Poisson law with parameters �i,g1Ni and �i,g2Ni respectively. These simulated counts 
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were analyzed using baredSC with the same log transformation ( log(1+ 104�g ) ) with 
one to four Gaussians. The results obtained using all cells are presented in Fig.  5, 
while the results obtained on smaller subgroups are presented in Additional file  1: 
Fig. S5. For each generated dataset, we plot in Fig. 5 the distribution used to generate 
the intrinsic expression values (original distribution), the distribution of normalized 
simulated raw counts ( ki,g/Ni , simulated scRNA-seq normalized counts), and the dis-
tribution inferred with our approach (baredSC).

We first generated the data using distributions composed of a single truncated 2D 
Gaussian (Fig.  5A). In the three first columns, the mean of g1 and g2 and the scale 
of g1 and g2 are all equal to 0.25. The correlation is set to 0.5 (weakly correlated), 
− 0.5 (weakly anti-correlated) and 0 (independent). We can see that the PDF of the 
normalized data (simulated scRNA-seq normalized counts) is very noisy and a lot of 
signal goes on the axes (i.e., one or both genes are not detected). The correspond-
ing Pearson’s correlation coefficient (top left of plot) is close to 0 in the three cases 
while one would expect values around ± 0.3 for the weakly (anti-)correlated cases, in 
the absence of sampling noise (generated expression). The mean PDF recovered by 
baredSC (bottom row) is very similar to the original PDF (top row) in these three 
cases. The Pearson’s correlation coefficient estimated from the MCMC posteriors (top 
left of each plot in bottom row) is compatible with the value computed from the orig-
inal PDF (within confidence interval). Moreover, the estimation of the one-sided p 
value is significant only in cases where the correlation of the original distribution was 
non-zero, as expected.

In the three last columns of Fig. 5A, the simulated Gaussians are identical to the first 
three except that the scale of the gene g1 is 0.15 instead of 0.25. Despite the fact that 
the smaller scale increases the number of drop-out events, baredSC results are still very 
close to the input PDF.

In Fig.  5B, we split the cells in two equally sized populations. Each population 
expresses both genes following a 2D Gaussian without correlation. The means of both 
2D Gaussians were chosen in order to introduce a correlation (first column of Fig. 5B) or 
an anti-correlation (second column). The correlation or anti-correlation is already per-
ceptible in the PDF of the normalized counts (simulated scRNA-seq normalized counts). 
However, the presence of two populations is totally hidden by the sampling noise. The 
results of baredSC (bottom row) highlight the two distinct populations. The correlation 
coefficient is very well approximated, especially when compared to the one evaluated on 
the raw data.

Finally, we generated three different distributions where each of the two genes is 
expressed in only half of the cells (Fig. 5C). In the first column (each gene expressed in 
half independent), the cells which do not express the gene g1 or the gene g2 were chosen 
independently. In the second column, the two genes are partially anti-correlated. Both 
genes are expressed in 10% of the cells, neither is expressed in 10%, and gene g1 (resp. 
g2) is expressed while gene g2 (resp. g1) is not in 40%. In the third column, each cell is 
expressing either g1 or g2 (each gene expressed in half fully anti-correlated). The esti-
mated correlation coefficients are compatible with the ones obtained on the simulated 
PDF (generated expression). The shape of the PDF also resembles what was expected. 
We can however notice that, similarly to what was observed in Fig. 2d for the 1D case, 
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the means of the expressed populations of cells are slightly over estimated. Once again, 
this can be explained by the sparsity of the data and by the model’s degeneracy.

While it is visually very difficult to interpret the 2D PDF of normalized counts (sim-
ulated scRNA-seq normalized counts) for lowly expressed genes, baredSC provides 
a good approximation of the shape of the original PDF. Similarly to what has been 
observed in one dimension, when baredSC is compared to Sanity, we observe that except 
in the single Gaussian without any correlation, baredSC outperform Sanity (Additional 
file 1: Fig. S6).

Applications to real datasets

In order to illustrate the power of baredSC and its potential use, we apply it to two 
datasets.

Hoxd13‑Hoxa11 anti‑correlation in embryonic distal limb

HoxA and HoxD genes are key transcription factors involved in limb patterning [23]. 
Their expression domain is tightly regulated in space and time. When the limb grows, 
Hoxa11 expression has been described as restricted to the proximal domain which will 
become the arm while Hoxd13 is expressed in the distal domain which will become the 
digits. [24–26] showed that Hoxd13 represses the transcription of Hoxa11 in the embry-
onic distal limb leading to two distinct domains of expression. We use the scRNA-seq 
from [27] which has been generated from embryonic forelimbs. A clustering analysis 
revealed 17 clusters. Using Hoxd13 as a marker, 4 clusters (3, 4, 5, 9) were attributed to 
the distal part of the limb (see [27]). Unexpectedly, Hoxa11 was not totally absent from 
these clusters. We run baredSC on each of these 4 clusters allowing one to four Gauss-
ians for Hoxd13 and Hoxa11 (Fig. 6). In all four clusters, we clearly see a depletion of 
cells with simultaneous high expression of both genes. As a consequence, the correlation 
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coefficient is significantly negative in all four clusters. These results are thus in agree-
ment with the literature.

Multi‑modal expression of Pitx1 in embryonic hindlimb

The gene Pitx1 encodes for a transcription factor expressed in the embryonic hindlimb. 
It is responsible for the leg patterning. This gene is not expressed in the forelimb and a 
gain of expression in this domain induces an arm-to-leg phenotype [28, 29]. Its expres-
sion is controlled by many enhancers, one of them is Pen which accounts for 30–50% of 
the expression [29, 30]. Rouco et al. [30] used scRNA-seq and flow cytometry to inves-
tigate whether Pitx1 was homogeneously expressed across hindlimb cells. They also 
studied the changes induced by the deletion of the Pen enhancer. While scRNA-seq 
directly measures the level of expression of Pitx1, the flow cytometry data measures the 
level of fluorescence thanks to a GFP-sensor introduced in close proximity to the Pitx1 
promoter. The measure of fluorescence of each cell by flow cytometry should be highly 
correlated to the level of mRNA of Pitx1. However, the exact relationship between the 
mRNA level and the fluorescence is not known.

In this study, there are three conditions, the forelimb (FL) wild-type (Pitx1+/+ ) which 
has no expression of Pitx1, the hindlimb (HL) wild-type which is considered as a tis-
sue expressing Pitx1 and the HL mutant where the Pen enhancer has been deleted 

Fig. 7  baredSC retrieves the trimodal expression of Pitx1 in embryonic limb scRNA-seq. A Distribution 
of fluorescence intensity obtained by flow cytometry in regular log scale. B Distribution of fluorescence 
intensity on log scale with pseudo count to be closer to the Seurat scale. C Distribution of normalized 
expression from scRNA-seq as provided by the Seurat package. D Distribution of normalized expression from 
scRNA-seq as provided by baredSC
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(Pitx1Pen-/Pen- ). Both flow cytometry and scRNA-seq data experiments were produced 
for these 3 samples. We propose a reanalysis of these data. The flow cytometry data are 
usually represented in log scale (Fig. 7A). It shows the presence of high level of back-
ground in absence of expression. Indeed, in the FL Pitx1+/+ sample in black, the fluores-
cence level has a relatively wide scale. Rouco et al. [30] show that the expression of Pitx1 
in the HL wild-type (red curve) is trimodal (Figs. 7A and 3A of [30]). The first mode is 
included in the range of the FL Pitx1+/+ so it corresponds to cells which do not express 
Pitx1. Expressing cells can be divided into highly-expressing cells and lowly-expressing 
cells. The sample HL Pitx1Pen-/Pen- (blue curve) also exhibits a trimodal distribution but 
the average expression in low expressing and high expressing cells is decreased com-
pared to the wild-type condition and there is an increased proportion of non expressing 
cells. These data are consistent with the expected decrease of expression by 30-50%. In 
order to compare more easily the flow cytometry data with the scRNA-seq expressed 
in log(1+ 104Xi) , we transformed the fluorescence in log(1+ 0.01Fi) (Fig.  7B). This 
transformation still highlights the trimodal expression of the HL Pitx1+/+ . When the 
scRNA-seq results are displayed as density plots (Fig. 7C or Fig. 4A of [30]), one cannot 
distinguish the three modes in the HL Pitx1+/+ . However, classical density plots are very 
sensitive to sampling noise, and do not allow a precise determination of the expression 
distribution. Applying baredSC on this dataset enables to a better characterization of 
the shape of the expression distribution (Fig. 7D). The three modes are uncovered: a first 
one with non-expressing cells approximated by a truncated Gaussian along the y axis, 
a second one with a mean value around 1, and a third one with a mean value around 2. 
Because of the background in flow cytometry and the degeneracy of scRNA-seq at very 
low expression, the comparison of the PDFs from flow cytometry (Fig. 7B) and scRNA-
seq (Fig. 7D) on the left part of the plots is difficult. However, at higher expression levels 
(right part), the PDF are very similar. We also run baredSC in regular log scale (Addi-
tional file 1: Fig. S7) and confirm this high similarity with the flow cytometry PDF. These 
results show that the trimodal expression identified by flow cytometry is indeed present 
in the scRNA-seq. It also demonstrates how baredSC can improve our description of 
expression variability within a scRNA-seq from a complex tissue.

Discussion
Poisson distribution is sufficient to model droplet‑based scRNA‑seq

In this study, we show that most of the technical variability is well approximated by the 
Poisson distribution. While other papers have justified the use of the Poisson distri-
bution only on a theoretical ground [15, 31], we base our conclusions on the analysis 
of control scRNA-seq. We compare estimators of the mean and variance of the scaled 
expression of each gene in each control dataset, and show that for most genes the two 
estimators (mean and normalized variance) are close to each other, which is a character-
istic of the Poisson distribution. Using the same datasets but with non-scaled data, [2] 
concluded that the negative binomial, which models an additional variability compared 
to Poisson, was the best fitting law. However, we show that this excess of variance is sim-
ply due to the variability in the total number of reads per cell, and confirm that the Pois-
son law is well suited to model droplet-based scRNA-seq. Our conclusions are in line 
with recently published reanalyses of these control datasets [21, 22].
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We note that our demonstration is limited to droplet-based scRNA-seq as we only 
found control datasets available for these techniques. Similar control datasets for other 
scRNA-seq techniques would be very valuable to assess their technical variability and 
build well justified mathematical models.

baredSC performances

The distribution of expression of a gene from scRNA-seq data is often represented using 
density/violin plots. This representation mixes biological variation and variation com-
ing from the technique (mainly sampling). baredSC is designed to disentangle these two 
effects, and retrieve the biological distribution of expression. Using simulated data we 
show that baredSC indeed outperforms classical representations. It allows to retrieve 
precisely multi-modal expression distribution even when they are not distinguishable in 
the input data due to sampling noise. In these cases, baredSC results are also more accu-
rate than the posterior distribution from Sanity, another recently published tool which 
aims at denoising scRNA-seq data. The 2D version of baredSC also allows a better evalu-
ation of the correlation between genes than classical methods and Sanity, and provides 
an accurate PDF even for lowly expressed genes.

However, we observed some conditions where the inferred distribution deviates from 
the generated distribution. First, while we have demonstrated the versatility of the GMM 
to approximate different types of distributions (e.g. uniform distribution), the fit cannot 
be perfect for distributions that are not Gaussian mixtures. We note that the baredSC 
approach could easily be adapted to use another family of distributions, but the GMM 
seems a reasonable approximation for real applications. Second, when the population 
of cells is split into a group that does not express the considered gene and a group that 
expresses it at low level, the inferred distribution tends to overestimate the non-express-
ing group and overestimate the mean expression level in the expressing group. This phe-
nomenon is highly linked with the degeneracy of the model. In 2D, as the model is more 
complex, the number of cells can be a limitation to accurately estimate the PDF when 
the expression level is low.

As baredSC uses a MCMC algorithm to infer the model parameters, the computa-
tional cost of the algorithm is non-negligible. It takes typically 10 min with four times 
four cores to run one to four Gaussians, for each gene of the examples of Fig. 2 using all 
2361 cells. A quicker alternative would be the frequentist approach which maximizes the 
likelihood. In this particular case, this method is error prone as there is a risk of overfit 
and a risk to find parameters which corresponds to a local maximum of likelihood which 
does not represent the global maximum. Indeed, the high degeneracy of the problem is a 
big challenge with this approach. In addition, the evaluation of error bars is much more 
difficult with a frequentist approach than with a MCMC approach. This is why we use a 
MCMC algorithm to get a confidence interval on the inferred PDF.

baredSC applications

In the single gene use case, baredSC could replace the widely used violin plots to 
describe the expression of few genes of high interest across different conditions or clus-
ters. Indeed, baredSC allows to retrieve very precisely the expression distribution of 
genes, even in multi-modal cases and with strong sampling noise. This accuracy comes 
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at the cost of computation time. Moreover, baredSC requires some manual checks, such 
as the convergence of the MCMC, and the fact that the range of considered expression 
levels were correctly chosen. For these reasons, this tool is more appropriate to in-depth 
analysis of specific genes than large-scale applications. As shown in the examples, it can 
be used both on a whole single-cell dataset or on cells belonging to specific clusters. 
Potential applications for a single gene are modality description or estimation of propor-
tion of cells expressing a given gene, as well as comparisons between samples or clusters.

We apply it to a real biological scRNA-seq dataset to study the modality of the expres-
sion of Pitx1. We demonstrate that the fluorescence measurement of the GFP sensor, 
integrated in close proximity of Pitx1 promoter, is highly correlated with the mRNA 
level of the gene. The inference of PDF in 2D is of great interest for the study of genes’ 
interactions or its comparison between clusters of cells. We apply it to confirm the anti-
correlation between Hoxa11 and Hoxd13 in the developing limb.

Conclusions
scRNA-seq data usually present a high level of sparsity. The use of normalized counts 
to describe variability among a cell population mixes intrinsic variability and variabil-
ity coming from the sampling noise. baredSC allows to retrieve the intrinsic variability 
providing the inferred expression distribution either for a single gene or for two genes 
simultaneously. As such, baredSC represents a valuable tool to perform in-depth analy-
sis on few genes of interest.

Availability and requirements

Project name:	� baredSC
Project home page:	� https://​github.​com/​lldel​isle/​bared​SC
Operating system(s):	� Linux and MacOS (both as python package and standalone 

scripts), Windows (only as python package)
Programming language:	� python
Other requirements:	� python ≥ 3.7, numpy, matplotlib, pandas, scipy, samsam
License:	� GNU General Public License v3.0

Methods
Comparison between the Negative Binomial and the Poisson distribution

In Fig.  1, the coefficient of the Negative Binomial was fitted using the nls (Nonlinear 
Least Squares) function of R on the formula: log(Ṽg ) ∼ log(Mg + aM2

g ) starting with 
a = 0.

GMM of the PDF

In the scRNA-seq field, the most popular analysis packages (Seurat and Scanpy) uses 
a log transformation of the normalized counts to be able to see both highly express-
ing cells and lowly expressing cells. To handle the numerous cases where the gene was 
not detected, they use a transformation of type log(1+ NtXi,g ) where Nt is the targeted 
number of counts used to normalize Xi,g values. In the Seurat package Nt is fixed to 104 

https://github.com/lldelisle/baredSC
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while in Scanpy it is set by default to the median of Ni or it can be user defined. However, 
the pseudo-count in log may introduce a distortion and users may prefer to work in reg-
ular log scale. In baredSC, both scales have been implemented, and the PDF is modeled 
by a fixed number of Gaussians in the chosen scale. We define

in the case of the Seurat/Scanpy scale or

in the regular log scale case. We denote by l the mapping between x and � : x = l(�) and 
� = l−1(x) . In practice, we work on a finite interval [�min, �max] of expression levels, cor-
responding to [xmin, xmax] for the transformed expression x, and model the PDF using a 
mixture of truncated Gaussians.

The likelihood is:

where θ = (m,A,µ, σ) is the set of model parameters, and

Estimation of likelihood

Unfortunately, the integral in Eq.  (21) cannot be computed analytically, and we thus 
evaluate it numerically using a Riemann sum

where xq are the centers of the nx equally sized bins, and δx = (xmax − xmin)/nx is the 
width of each bin. In this integral, the Poisson part ( P(ki,g |Nil

−1(x)) ) does not depend 
on the model parameters. It can thus be pre-computed on a given grid of x values for 

(18)xg = log(1+ Nt�g ),

(19)xg = log(�g ),

(20)L(θ) =
n
∏

i=1

p(ki,g |Ni, θ)

(21)

L(θ) =
n
∏

i=1

∫

�max
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P(ki,g |Ni�)G(�|θ)d�

=
n
∏

i=1

∫ xmax

xmin
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−1(x))G(x|θ)dx,

(22)
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m
∑

j=1
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(

−
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2σ 2
j

)
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(
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(

−
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)

dx

)−1

,

G(�|θ) = G(l(�)|θ)l′(�).

(23)

Li(θ) =
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−1(x))G(x|θ)dx

≈
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∑

q=1
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each cell, and stored in a n× nx matrix P. On the contrary, the GMM part ( G(x|θ) ) 
depends on the model parameters but is the same for all cells. Therefore, for a given set 
of parameters, it must be computed on the grid of x only once for all cells, and stored in 
a vector γ (θ) of size nx . We thus obtain the vector L as the dot product

Then the likelihood is simply given by

The computational cost of this method is dominated by the dot product of Eq.  (24). 
Indeed, the matrix P can be pre-computed so its cost is negligible, the cost of computing 
the vector γ scales as O(nx) , while the cost of the dot product scales as O(nnx) . There-
fore, a trade-off between resolution and cost must be found to choose the number of 
bins nx.

However, since the cost of computing P and γ  is much lower than the cost of the 
dot product, P and γ  can actually be computed on a finer grid to improve preci-
sion. We thus subdivide each of the nx original bins into ns sub-bins and compute the 
average value of P over these sub-bins. Similarly, each of the nx original bins were 
divided into nr sub-bins and compute the average value of G over these sub-bins.

Priors on parameters

We chose the priors on the GMM parameters as follows

•	 Number of Gaussians m: uniform distribution over [[1,mmax]] (with mmax = 4 in 
this article);

•	 Amplitudes Aj : uniform distribution over [0,  1], with the additional condition 
∑m

j=1 Aj = 1;
•	 Means µj : uniform distribution over [xmin − 3σj , xmax + 3σj];
•	 Scales σj : log-uniform distribution over [σmin, xmax − xmin] (with σmin = 0.1 in 

this article).

This model is symmetric in the sense that two Gaussians can be arbitrarily swapped 
without changing the results. This degeneracy can deteriorate the convergence of 
the MCMC algorithm. We thus prevent any swapping to ensure the uniqueness of 
the solution.

(24)L(θ) ≈ Pγ (θ).

(25)L(θ) =
n
∏

i=1

Li(θ).

(26)

Pi,q =
1

ns

ns
∑

s=1

P(ki,g |Nil
−1(xq,s)),

γq(θ) =
1

nr

nr
∑

r=1

G(xq,r |θ).
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MCMC algorithm

We use the samsam python package (https://​gitlab.​unige.​ch/​Jean-​Bapti​ste.​Delis​le/​sam-
sam) which is a scaled adaptive Metropolis algorithm [32–34]. We first apply a burning 
phase with simulated annealing in order to prevent the MCMC from being trapped in 
local minima. After this burning phase, the proper MCMC is run to sample the posterior 
distribution. The convergence can be evaluated using the auto-correlation function of the 
parameters. One can extract from this measure, the effective number of samples.

Posterior per cell

Once the MCMC has converged, we evaluate the PDF G∗(x) as the average of all PDF 
obtained at each sample of the MCMC. This PDF can be used to retrieve the posterior dis-
tribution of expression for each cell:

Using this we can get the expected value of xi:

That we can evaluate numerically using a Riemann sum. Similarly we can get the 
variance:

baredSC in 2D

The extension of baredSC to the 2D case is very similar to the 1D case. We use either the 
“Seurat” scale (Eq. (18)) or the regular log scale (Eq. (19)) and define x1 = l(�g1) , x2 = l(�g2) 
for two genes g1 and g2 , where l is the chosen scale mapping. Each Gaussian of the GMM 
is defined by 6 parameters: the amplitude ( Aj ), the means of x1 and x2 ( µ1,j and µ2,j ), their 
scales ( σ1,j and σ2,j ), and the correlation ( ρj ). The likelihood is written as

where � = (m,A,µ1,µ2, σ1, σ2, ρ) is the set of model parameters, and
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https://gitlab.unige.ch/Jean-Baptiste.Delisle/samsam
https://gitlab.unige.ch/Jean-Baptiste.Delisle/samsam
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with

The double integral in Eq. (31) is computed numerically in a very similar manner as in 
the 1D case, but this time by defining bins on a 2D grid. The priors are the same as in the 
1D case, and we take a prior for the correlation ρj with a normal distribution of mean 0 
and scale 0.3 truncated over [−0.95, 0.95] in order to limit the false positive (anti-)cor-
relation detection.

Estimation of the p value for the correlation

If the correlation between the expression of two genes is suspected to be of a given 
sign s, we define the one-sided p value α as the probability for the correlation to actu-
ally be of the opposite sign −s . To estimate this p value, we first compute the Pear-
son’s correlation coefficient from the 2D PDF for each sample of the MCMC. We thus 
obtain samples from the posterior distribution of the correlation coefficient. Let’s 
denote by k the number of independent samples for which the correlation is of sign −s 
and n the total number of independent samples. We have (Bayes formula)

where p(k|α) can be approximated by a Poisson distribution of parameter nα (in the 
limit of low α and high n)

We additionally assume a uniform prior for α . The conditional expectation of α knowing 
k is thus

with
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and

Similarly one can show that the variance is var (α|k) ≈ k+1
n2

 . The p value provided on 
Figs. 5 and 6 of the article and Additional file 1: Figs. S4 and S5 is the 1-σ upper limit 
p < E (α|k)+

√

var (α|k) = k+1+
√
k+1

n .

Simulation of data

In order to get realistic values for Ni , we extracted the Ni from the cells which were 
attributed to NIH3T3 in the dataset provided by 10X with the same criteria used by [2]. 
Then, 300 cells were randomly attributed to a first group, 500 cells to another one and 
the others to a third one. The expressions were then generated by python scripts avail-
able at https://​github.​com/​lldel​isle/​scrip​tsFor​Lopez​Delis​leEtA​l2021.

baredSC analysis

bared v1.0.0 was run with default parameters. The number of samples, starting at 
100,000 was increased by 10 times until reaching a number of effective samples above 
200 (parameter --minNeff 200). However, Fig. 3 and Additional file 1: Figs. S3, S6 and S7 
were generated using the --scale log option to use a regular log scale.

Data representation

All the figures were made in R (https://​www.r-​proje​ct.​org/) with ggplot2 [35] and ggpubr 
(https://​rpkgs.​datan​ovia.​com/​ggpubr/).

Single gene PDF

In Figs. 2 and 3 , where simulations were run for a single gene, the blue curve displays 
the PDF of the distribution that has been used to simulate the data (Original distribu-
tion). The red curve displays an estimation of the PDF of the normalized expression val-
ues obtained after simulation ( ki,g/Ni ). It was obtained by using the R function ‘density’ 
which is widely used by R users, in particular in the Seurat violin plots. This function 
performs a kernel density estimation but the kernel width is automatically adjusted. 
The green line and area are obtained from baredSC. At each step of the MCMC, a PDF 
can be evaluated on a range of values ( log(1+ 104�g ) or log(�g ) ) using the values of the 
parameters at this step. For each value of the range of log(1+ 104�g ) or log(�g ) , the 
mean across all steps was calculated and plotted as a green line. Similarly, for each value 
the range, the 16 and 84 percentile over all MCMC steps were evaluated and plotted as 
a green area. In Fig. 3, the purple and pink lines were obtained from Sanity. The purple 
curve was obtained by using the R function ‘density’ on the inferred log transcription 
quotients (LTQs). The pink curve was obtained by computing the average of the poste-
rior distribution of each cell which was approximated by a Normal distribution whose 
parameters are the inferred LTQs and the error value on the LTQ.

(38)Ik ≈
1

n
,

(39)E (α|k) ≈
k + 1

n
.

https://github.com/lldelisle/scriptsForLopezDelisleEtAl2021
https://www.r-project.org/
https://rpkgs.datanovia.com/ggpubr/
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Two‑dimension PDF

For each sample of the MCMC obtained by baredSC, the 2D PDF was computed using the 
parameter values on a grid of x and y (x and y corresponding to log(1+ 104�g ) or log(�g ) ). 
For each bin, the average of all PDF was computed and is displayed on the last row of Fig. 5 
labelled ‘expression inferred by baredSC’. The PDF of the distribution used to simulate data 
was computed on the same grid and is plotted on the first row labeled ‘original distribution’. 
In order to represent the simulated data, each cell was assigned to a bin using the normal-
ized expression ( ki,g1/Ni and ki,g2/Ni ), similarly to a 2D histogram. The counts of cells were 
then normalized to take into account the bin size. The correlation coefficient displayed on 
the Fig. 5 is obtained from the binned PDF.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04507-8.

Additional file 1. Supplementary text and figures.
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