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Aim: The primary objective of this study was to evaluate correlations among mortality, intensive care unit
(ICU) length of stay and airway microbiotas in septic patients. Materials & methods: A deep-sequencing
analysis of the 16S rRNA gene V4 region was performed. Results: The nasal microbiota in septic patients
was dominated by three nasal bacterial types (Corynebacterium, Staphylococcus and Acinetobacter). The
Acinetobacter type was associated with the lowest diversity and longest length of stay (median: 9 days),
and the Corynebacterium type was associated with the shortest length of stay. We found that the Acine-
tobacter type in the >9-day group was associated with the highest mortality (33%). Conclusion: Septic
patients have three nasal microbiota types, and the nasal microbiota is related to the length of stay and
mortality.
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Sepsis is a serious public health problem with a reported mortality rate ranging from 10 to 55.7% [1–5]. The gut
microbiota in patients with sepsis in intensive care units (ICUs) is currently receiving considerable attention [6,7].
However, the airway microbiome has been less extensively reported. Sepsis most often derives from the lungs [8].
Previous studies have reported that sepsis is related to lung microbial dysbiosis [9]. In addition, animal tests have
shown that sepsis alters the lung microbiome, which plays a role in the development of sepsis and its exacerbation [10].
The characteristics of the airway microbiota in patients with sepsis have not been well studied using deep-sequencing
analyses of the 16S rRNA gene V4 region.

Culture-dependent studies have revealed that as the hospitalization time in an ICU increases, pathogen abundance
increases [11]. Moreover, these studies revealed that several pathogens colonize nasal passages after patients are
transferred to an ICU, and the colonization rate was positively correlated with the length of hospital stay and
infection [12]. After patients are admitted to an ICU, the risk of infection highly depends on their length of stay [13].
However, few studies have focused on the relationship between the characteristics of the nasal microbiome in
patients with sepsis and patients’ length of stay in an ICU. Accordingly, we hypothesized that the nasal microbiota
in patients with sepsis may be related to their length of stay in the ICU.

Recent studies have shown that nasal microbiotas can reflect deep lung infection status as the microbial commu-
nity compositions in the upper and lower airways are similar [14–16]. In addition, acquiring nasal microorganisms is
far less invasive than bronchoscopy. Furthermore, nasal bacteria, that is, the bacterial communities in the uppermost
part of the nasal passage, can contribute to infection transmission in humans, and accumulating evidence suggests
that a close relationship exists between the nasal flora and infection [17,18]. Overall, we propose that examining the
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nasal microbiota can benefit studies investigating airway microbiomes during sepsis. In this study, we carried out
an observational study involving 89 patients with sepsis and 78 healthy subjects to describe the characteristics of
the nasal flora in patients with sepsis and to explore the relationships among the nasal microbiota in septic patients,
length of ICU stays and mortality. To eliminate the influence of environmental factors on the nasal microbiota,
we enrolled medical staff from an ICU as controls for nasal swabs. Thus, the aim of the current study was to
identify the characteristics of the nasal flora in patients with sepsis and to explore the relationships among the nasal
microbiota, mortality and length of ICU stay, which may provide clinical and microbiological clues for treatment
options and potential targets for preventive research.

Materials & methods
Study design & participants
We conducted an observational cross-sectional study involving participants from the hospital of Southern Medical
University (SMU) in China. Approval for this study was granted by the Ethics Committee of SMU (2015-GRGLK-
002). Written informed consent was obtained from all subjects or a surrogate decision maker as appropriate. The
patients were enrolled between January 2015 and August 2016. In total, 167 volunteers were included. To reduce
the impact of environmental microbial factors on nasal microbiomes, we enrolled 78 medical staff members from
the ICU as controls for nasal swab experiments. In total, 89 patients with sepsis in the ICU were enrolled. Data
regarding the patients’ demographics, antibiotic exposure, tube placements and inflammatory indicators were
obtained from the study database and electronic medical records.

Sepsis is a life-threatening organ dysfunction caused by a deregulated host response to infection [19]. Organ
dysfunction can be identified as an acute change ≥2 points in the total sepsis-related organ failure assessment score
due to infection [20]. The baseline sepsis-related organ failure assessment scores are assumed to be zero in patients
with no known pre-existing organ dysfunction.

Sample collection
The subjects either sat or laid down while fully exposing the nasal cavities. Experienced physicians used sterile
swabs to collect samples. To reduce the influence of sampling at different times, we sampled from 8:00 AM to
10:00 AM. The swabs were rotated ten-times in both nostrils. For patients who were fed nasally, only a single
nostril was sampled. The collected samples were temporarily stored in a biological sample transport box and then
transferred to a low-temperature freezer at -80◦C within 4 h until total DNA was extracted from the bacteria in
the collected samples.

DNA extraction, 16S rRNA gene amplification & sequencing
Bacterial genomic DNA was extracted from nasal swab samples using a DNA Extraction Magnetic Bead Kit
(Shenzhen BioEasy Biotechnologies Co., Ltd, China) according to the manufacturer’s instructions and as previ-
ously described [21]. For 16S amplicon sequencing, PCR amplification spanning the bacterial V4-16S rRNA was
performed [22], and the PCR products were mixed at a certain ratio by a Qubit fluorometer (Invitrogen™). The
Illumina HiSeq PE250 sequencing platform was used for further sequencing. The raw 16S rRNA gene sequencing
datasets are available in the European Bioinformatics Institute database (http://www.ebi.ac.uk/) under accession
number PRJEB27877.

Bioinformatics & statistical analysis
We processed and analyzed the data as previously described [23]. The 16S rRNA reads were initially screened
for low-quality bases and short-read lengths. Then, paired-end read pairs were assembled using SeqPrep, and the
resulting consensus sequences were demultiplexed (i.e., assigned to their original sample), the artificial barcodes and
primers were trimmed and chimeras were assessed using UCHIME in the closed mode implemented in Quantitative
Insights Into Microbial Ecology (QIIME; release v. 1.9.1). Then, the quality trimmed sequences were clustered into
Operational Taxonomic Units (OTUs) by SortMeRNA (v2.0) with GreenGene’s database (v13 8) in QIIME with
a minimum confidence threshold of 0.97 for the taxonomic assignments (sharing 97% similarity). SortMeRNA
(v2.0) was used to classify these sequences into specific taxa using GreenGene’s database (v13 8) [24].

A total of 2,356,839 sequences were obtained from 167 specimens; the lowest number obtained was 2502
sequences, and the highest was 40 810 sequences, and we normalized the sequences to 2500. α diversity was measured
using a phylogenetic diversity (PD) whole-tree index, and beta diversity was estimated using the unweighted UniFrac.
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The linear discriminant analysis (LDA) effect size (LEfSe) was used to determine the best characterized differential
genus between the groups. The LEfSe is an algorithm used for biomarker discovery, and this method measures
genomic features that characterize different features in the groups analyzed. We set the threshold for the logarithmic
LDA score to >3.5 and the significance to p < 0.05. We performed phenotyping according to the tutorials of
‘enterotyping’ reported by the MetaHIT consortium [25]. The detailed tutorial used to produce this work can be
found on the following website: http://enterotype.embl.de/

Random forest classification models were trained by the caret R package to classify the samples from the patients
with sepsis and the healthy controls [26]. The random forest algorithm generates multiple models by training
multiple decision trees and then uses multiple decision trees to classify the models [27]. This method is robust with
missing and unbalanced data and can predict the effects of up to several thousand explanatory variables. Training
was completed through a tenfold cross-validation approach and measured as the area under the curve derived
from a receiver operating characteristic analysis, which was used to overcome the problem of the two groups being
unevenly distributed in this study [28].

The statistical tests were performed with R 3.0.2. As not all tested indicators passed the Shapiro–Wilk normality
test or the Bartlett test of homogeneity of variances, we also applied Kruskal–Wallis tests to identify differential
features between the groups. The χ2 test was used to analyze categorical variables. Because the microbiome data are
multidimensional, the associations between the study groups and the microbiome composition were tested using
the Adonis test implemented in QIIME (a method similar to permutational multivariate ANOVA).

Results
Patient characteristics
In this study, all 167 enrolled subjects of both sexes, including 89 patients with sepsis and 78 healthy subjects,
were recruited from the ICU of the hospital at SMU. In the healthy control group, the participants’ ages ranged
from 21 to 50 years, and the participants included 56 females and 22 males. The healthy control participants were
all recruited from the ICU. In the group with sepsis, the ages of the participants ranged from 22 to 88 years, and
the participants included 22 females and 67 males. Some septic patients suffered from bacterial, fungal or mixed
infections. In 22.5% (20/89) of the patients, pathogenic bacteria were detected in blood; in 14.61% (13/89) of the
patients, pathogenic bacteria were detected in sputum; in 8.99% (8/89) of the patients, pathogenic bacteria were
detected in urine; and in 7.87% (7/89) of the patients, pathogenic bacteria were detected in ascites. The patient
clinical characteristics are shown in Table 1.

Nasal microbiome compositions in patients with sepsis
The analysis of the relative abundance levels of nasal bacterial taxa via high-throughput sequencing revealed 18 phyla
and 397 nasal bacterial genera in the patients with sepsis. The top four abundant phyla detected were Actinobacteria,
Proteobacteria, Firmicutes and Bacteroidetes. The relative abundance of Proteobacteria was slightly increased in the
group with sepsis. The top nine genera included Corynebacterium, Staphylococcus, Dyella, Alloiococcus, Klebsiella,
Bradyrhizobium, Anaerococcus, Rhodococcus and Peptoniphilus, which accounted for approximately 88% of the
nasal microbiome. In addition, compared with the healthy subjects, the genera Acinetobacter, Pseudomonas and
Enterococcus were enriched in the patients with sepsis (Figure 1B).

The nasal microbiota in patients with sepsis differed from that of healthy controls
Based on the PD whole-tree index, the α diversity analysis of the nasal microbiomes indicated that the nasal
microbiota diversity in the sepsis group was poorer than that in the healthy group (nasal: p < 0.05) (Figure 1A).

In addition, a principal coordinate analysis, which is a method used to determine the relationship between
samples based on a distance matrix, of the unweighted UniFrac (p = 0.001) distances showed that the beta diversity
in the patients with sepsis distinctly differs from that in the healthy controls (Figure 1C).

We used the microbiota data to build a machine-learning classification model, which indicated that the septic
patients’ nasal microbiotas were distinct from those in the healthy group (Nasal: AUC = 89.68, 95% CI: 84.92–
94.44) (Figure 1E).

Based on the LEfSe (LDA = 3.5) at the phylum level, the abundance of Proteobacteria significantly increased
during sepsis. Acinetobacter, Klebsiella and unclassified Moraxellaceae, Enterobacteriaceae and Dethiosulfovibri-
onaceae were significantly enriched in the patients with sepsis, while Actinobacteria, Corynebacterium, Clostridia
and Propionivibrio were mostly enriched in the healthy subjects (Figure 1D).
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Figure 1. Comparison of nasal microbiota between septic patients and healthy subjects. (A) α diversity between the septic patients and
healthy subjects. (B) Stacked bar chart of bacteria at the genus level between the septic patients and healthy controls. (C) Principal
coordinate analysis based on unweighted UniFrac distances. The red dots represent patients with sepsis, and the blue dots represent the
controls. (D) significantly different taxa between the healthy participants and septic patients were determined using the linear
discriminant analysis effect size (LEfSe). The data show increasing levels of Gammaproteobacteria, Pseudomonadales, Proteobacteria,
Pseudomonas, Moraxellaceae, Acinetobacter, Enterobacteriaceae and Klebsiella in the patients. (E) Machine-learning classification based
on nasal microbiota using random forest algorithms.
LDA: Linear discriminant analysis.
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Figure 1. Comparison of nasal microbiota between septic patients and healthy subjects (cont.). (A) α diversity between the septic
patients and healthy subjects. (B) Stacked bar chart of bacteria at the genus level between the septic patients and healthy
controls. (C) Principal coordinate analysis based on unweighted UniFrac distances. The red dots represent patients with sepsis, and the
blue dots represent the controls. (D) significantly different taxa between the healthy participants and septic patients were determined
using the linear discriminant analysis effect size (LEfSe). The data show increasing levels of Gammaproteobacteria, Pseudomonadales,
Proteobacteria, Pseudomonas, Moraxellaceae, Acinetobacter, Enterobacteriaceae and Klebsiella in the patients. (E) Machine-learning
classification based on nasal microbiota using random forest algorithms.
LDA: Linear discriminant analysis.

Patients with sepsis harbor different types of nasal microbiota
Group classification (stratification) is an effective method to obtain a better understanding of complex biological
problems, such as human physical and mental health [29]. Different bacterial types may be related to different
functions and physiological conditions. In 2011, Arumugam first proposed and defined the concept of enterotype as
“microbial group characteristics gathered in a high-dimensional space, which is a limited host-microbial community
structure at the time of microbial symbiosis.” Without considering age, gender, cultural background or geographic
location, intestinal microbiota can be divided into several enterotypes [30]. Different enterotypes may be related to
different functions and physiological and pathological conditions. Classifying gut flora by enterotype has potential
clinical significance. First, this classification is helpful in diagnosing an individual’s disease state, and second, this
classification can be used as a risk or susceptibility index of the specific state of the human body [29]. Therefore,
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Figure 2. Differences in the results of the principal coordinate analysis of nasal microbiota between healthy subjects and patients with
sepsis. (A) Principal coordinate analysis (PCoA) of septic patients and healthy subjects based on unweighted UniFrac distances. (B) PCoA of
healthy subjects based on unweighted UniFrac distances. (C) PCoA of patients with sepsis based on unweighted UniFrac distances. The
orange circles represent the samples (nasal microbiota) with the Acinetobacter type, the purple circles represent the samples with the
Corynebacterium type and the green circles represent the samples with the Staphylococcus type.

we also classified the nasal flora to further identify relationships between the flora and the ICU length of stay and
mortality.

The nasal flora was clustered into three bacterial types belonging to the genera Acinetobacter, Corynebacterium
and Staphylococcus (Figure 2A). The healthy subjects exhibited the Corynebacterium and Staphylococcus types of nasal
flora (Figure 2B). However, the patients with sepsis exhibited the Corynebacterium, Staphylococcus and Acinetobacter
nasal bacterial types (Figure 2C). All subjects with the Acinetobacter nasal bacterial type were septic patients; 72.41%
of those with the Staphylococcus type were septic patients; and 24.5% of subjects with the Corynebacterium type
were septic patients (p < 0.05).

Different nasal microbiota types & different lengths of ICU stay among septic patients
Culture-dependent studies have revealed that pathogen abundance increases with increasing hospitalization time
in an ICU. We showed that patients with sepsis harbor specific types of nasal microbiota. Subsequently, we focused
on determining whether specific nasal bacterial types were associated with the ICU length of stay among patients
with sepsis. We found that the patients with the Acinetobacter nasal bacterial type had the longest ICU stays, with
a median of 9 days, and that the patients with the Staphylococcus nasal bacterial type had the shortest ICU stays,
with a median of 2 days (χ2 test, p < 0.01). Statistically significant differences were found between Acinetobacter
and Corynebacterium (p < 0.01) and between Staphylococcus and Corynebacterium (p < 0.01) (Figure 3B).

However, the α diversity represented by the PD whole-tree index showed that the Acinetobacter type was less
diverse than the Staphylococcus type (Wilcoxon test, p < 0.01), and the PD whole-tree index of the Corynebacterium
type was significantly lower than that of the Staphylococcus type (Wilcoxon test, p < 0.05). No significant differences
were found in the α diversity between Acinetobacter and Corynebacterium (Figure 3A).

The relative abundance of Corynebacterium was sharply increased in the group with the Corynebacterium type,
and the top two genera were Corynebacterium and Staphylococcus. The genera Staphylococcus were enriched in the
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Figure 3. Relationship between the nasal bacterial type in the patients with sepsis and their length of stay in the intensive care unit.
(A) Comparison of the α diversity among the three nasal bacterial types in patients with sepsis. (B) Comparison of the length of intensive
care unit stay among the three nasal bacterial types in patients with sepsis. (C) Comparison of the stacked bar charts of the genera in the
three nasal bacterial types in patients with sepsis.
ICU: Intensive care unit; PD: Phylogenetic diversity.

septic patients with the Staphylococcus type, and the top two genera were Staphylococcus and Corynebacterium. In
addition, the relative abundance of Acinetobacter was dramatically increased in the group with the Acinetobacter
type, and the top two genera were Acinetobacter and Corynebacterium (Figure 3C).

Antibiotics & nasal microbiota types
All patients were given antibiotics, and up to nine types of medications were given to individual patients during their
hospitalization. Among these medications, the combined use of drugs reached 58.43% (52/89), and combinations
involving three or more drugs accounted for 19.10% (17/89) of the cases. The number of days of antibiotic use
varied from 1 to 47 days, with an average of 8.48 days of medication. We found significant differences in the use of
antibiotics among the three bacterial types (Figure 4); the Acinetobacter type was associated with the longest duration
of antibiotic use, with a median of 12.5 days, while Corynebacterium was associated with the shortest duration,
with a median of 2 days (Wilcoxon test, p < 0.01). In total, 55.06% (49/89) of the patients used carbapenems.

In total, 64 strains were detected in blood, urine, ascitic fluid and sputum. Of these strains, Candida albicans
accounted for 15.63% (10/64), Acinetobacter baumannii accounted for 9.38% (6/64), both of which were resistant
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Table 1. Baseline characteristics of the patients with sepsis.
Clinical variable Baseline values (n = 89)

Age (mean ± SD; years) 57.98 ± 16.527

Sex (males/females; n) 67/22

ICU time (median; interquartile; days) 10 (5.0–24.0)

Time (median; interquartile; days) 26 (12.0–42.5)

ICU time before sampling (median; interquartile; days) 4.5 (1.0–9.0)

Time before sampling (median; interquartile; days) 6 (2.0–14.0)

ICU time after sampling (mean ± SD, days) 7.76 ± 10.596

Time after sampling (median; interquartile; days) 13 (5.0–28.0)

APACHE II score (median; interquartile; n) 16 (11.0–23.0)

SOFA score (median; interquartile; n) 8 (4.0–10.0)

PLT (median; interquartile; n) 164 (90–277)

WBC count (mean ± SD; 109/l) 12.32 (8.76–16.35)

Neutrophilic granulocyte percentage (median; interquartile; %) 90 (81–95)

CRP (median; interquartile;mg/l) 68.9 (5.95–124.50)

PCT (median; interquartile; μg/l) 3.02 (0.45–11.74)

Inhalation (yes/no) 58/31

Hormone (yes/no) 49/40

Diarrhea (yes/no) 4/85

Nasogastric tube (yes/no) 66/23

Smoking (yes/no) 17/71

APACHE II: Acute physiology and chronic health evaluation II; CRP: C-reactive protein; ICU: Intensive care unit; PCT: Procalcitonin; PLT: Platelet count; SD:
Standard deviation; SOFA: Sepsis-related organ failure assessment; WBC: White blood cell.
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Figure 4. Relationship between the nasal bacterial type of patients with sepsis and the number of antibiotic use
days in the intensive care unit.

to carbapenem, Staphylococcus capitis accounted for 9.38% (6/64) and was resistant to methicillin, and Pseudomonas
ae ruginosa accounted for 7.81% (5/64) and was multidrug resistant.
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Table 2. The nasal bacterial types and its association with length of stay and mortality.
Nose bacterial types Length of ICU stay (days) Death (n) Total person (n) Mortality (%) p-value

Acinetobacter type ≤9 1 11 9.09 0.18

�9 3 9 33.00

Staphylococcus type ≤3 6 23 26.09 0.70

�3 4 19 21.05

Corynebacterium type ≤2 3 14 21.43 0.69

�2 2 13 15.38

ICU: Intensive care unit.
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Figure 5. Mortality rates of the three nasal bacterial types based on different lengths of intensive care unit stay. (A)
Mortality of the Corynebacterium type based on different lengths of intensive care unit (ICU) stay. (B) Mortality of the
Staphylococcus type based on different lengths of ICU stay. (C) Mortality of the Acinetobacter type based on different
lengths of ICU stay.

Mortality of septic patients with different nasal microbiotas
The mortality rate of the septic patients with the Acinetobacter type was 20.0%, and the mortality rates of the septic
patients with the Staphylococcus type and the Corynebacterium type were 25 and 18.5%, respectively. We divided
the three bacterial types into six groups by the median ICU lengths of stay associated with the three types and
compared the mortality rates of the septic patients with the three bacterial types based on the different ICU lengths
of stay (Table 2). In the ICU mortality group, the Acinetobacter type was found in 9.09% (1/11) of the patients
in the ≤9-day group (Figure 5A) and in 33% (3/9) of the patients in the >9-day group (χ2 test, p = 0.18); the
Staphylococcus type was found in 26.09% (6/23) of the patients in the ≤3-day group (Figure 5B) and in 21.05%
(4/19) of the patients in the >3-day group (χ2 test, p = 0.70); finally, the Corynebacterium type was found in
21.43% (3/14) of the patients in the ≤2-day group (Figure 5C) and in 15.38% (2/13) of the patients in the
>3-day group (χ2 test, p = 0.69).

Different nasal microbiotas & clinical parameters
We analyzed the relationship between these three bacterial types (Acinetobacter, Corynebacterium and Staphylococcus)
and clinical indicators (inhalation drugs, hormones, nasogastric tube, smoking, diarrhea and mechanical ventilation)
and found high Acinetobacter in the diarrhea (Wilcoxon test, p = 0.02) and nasogastric tube (Wilcoxon test, p
= 0.04) groups. We found low Staphylococcus in the mechanical ventilation (Wilcoxon test, p = 0.03) and nasogastric
tube (Wilcoxon test, p = 0.03) groups.

Discussion
Using high-throughput approaches and sepsis-associated clinical data from the hospital of SMU, we identified the
characteristics of nasal bacteria from the septic patients. This study also identified significant associations among
the nasal bacterial types, mortality rates and lengths of stay in the ICU. The clustering of the nasal metagenomic
samples from patients with sepsis based on the taxonomic composition using Illumina sequencing technology and
16S rRNA gene profiling data resulted in the identification of three nasal microbial community types dominated
by Acinetobacter, Staphylococcus and Corynebacterium. Correlations were found between the three nasal microbial
community types and the length of stay in the ICU, suggesting that a nasal community mainly composed of
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Acinetobacter may be an indicator of high-risk and longer hospitalization stays, and that the Corynebacterium nasal
bacterial type was associated with the shortest lengths of stay in the ICU.

Staphylococcus and Corynebacterium were the most abundant species in the ICU workers’ nasal microbiome,
which is consistent with a previous study [31] but inconsistent with the Wilson report suggesting that the microbiota
of healthy subjects is dominated by Propionibacterium acnes and Staphylococcus epidermidis [32]. Staphylococcus,
Corynebacterium and Acinetobacter were the most abundant species in the septic patients’ nasal microbiome, which
is different in children. Previous literature reported that three types, Haemophilus, the Pasteurellaceae family, and
Streptococcus, were relatively high in children’s nasopharyngeal/oropharyngeal samples in a pediatric ICU [33]. The
microbiota diversity in the patients with sepsis was significantly lower than that in the healthy subjects. The
decreased microbial diversity in the patients with sepsis is consistent with reports from studies involving adult
ICU patients in critical condition [34]. Sepsis caused by drug-resistant A. baumannii and other Gram-negative
bacilli is a common challenge for clinicians and microbiologists [35]. Similar to the findings reported here, previous
studies have found that certain species of Acinetobacter from the environment and hospitals were closely associated
with lung infections [36,37]. Continuous colonization of the nasal cavity by A. baumannii may be the source of A.
baumannii infection [38], especially lower respiratory tract infections, including ventilator-associated pneumonia.
Furthermore, Acinetobacter is considered a hospital-associated infectious opportunistic pathogen in respiratory ICUs
using mechanical ventilation [39]. Patients in ICUs are often on ventilators; the incidence of ventilator-associated
pneumonia and the mortality rate associated with this type of pneumonia are 11% and 78.9%, respectively. A.
baumannii and Klebsiella pneumoniae were the most common bacteria in the sputum cultures, and these bacteria
were 50% resistant to frequently used antibiotics [40]. At our hospital, extensive drug resistance (XDR-AB) accounts
for 49.9% of persistent infections, Carbapenem-resistant A. baumannii accounted for 70.02% of infections, The
Department of Critical Care Medicine ranked first among all departments, accounting for 25.63% of all infection
cases and reflecting a serious concern. Here, we provide further microbiome data complementing previous clinical
findings.

Our results also show that different nasal bacterial types were associated with different ICU lengths of stay. The
Acinetobacter nasal bacterial type was associated with the longest lengths of stay in the ICU, with a median of
9 days, while Corynebacterium was associated with the shortest lengths of stay. Further analysis showed that the
high mortality rate associated with the Acinetobacter type was mainly due to the longer lengths of stay at the ICU.
Longer ICU stays are associated with higher mortality rates. In critically ill patients, the normal nasal microbiota
of the host is perturbed due to physiological stress and antibiotic treatment, causing the nasal floral structure to
substantially change. The nasal flora in the patients with sepsis in this study substantially changed compared with
the nasal flora in the healthy subjects, and the number of pathogenic bacteria of Acinetobacter, Pseudomonas and
Enterococcus markedly increased.

The use of antibiotics is well known to affect the respiratory flora [41,42]. In our ICU, most patients, especially
patients with sepsis, receive advanced antibiotics. The use of numerous antibiotics dramatically changes their flora.
Our results show that the Acinetobacter type requires the most medication time. The detected pathogens of A.
baumannii are resistant to carbapenem.

We found that the genus Acinetobacter was enriched in the septic patients with diarrhea and a nasogastric
tube. Acinetobacter reportedly caused a case of fever, followed by diarrhea and septic shock [43]. We found that a
nasogastric tube was a risk factor for the development of nosocomial pneumonia [44], and in the univariate analysis,
the use of enteral feeding via a nasogastric tube was significantly associated with mortality [45]. Our results also
provide new evidence that mechanical ventilation and a nasogastric tube may be important risk factors for the
colonization of Acinetobacter in patients and may lead to serious consequences such as an extended ICU stay and
higher mortality. Interestingly, we found septic patients with a small amount of Enterococcus, and Enterococcus is
generally present in the intestine, which may be related to mechanical ventilation; Enterococcus has been detected
in the respiratory tract in critically ill patients receiving mechanical ventilation [46].

The strengths of this study include the quality of the sequence-based techniques (16S rRNA), which reduce
biases better than other methods, such as cultivation techniques. We found that septic patients had different nasal
microbiotas and found that the Acinetobacter nasal bacterial type was associated with the lowest diversity and the
longest ICU stays.

However, we recognize the limitations of our research. First, compared with some microbial studies in the
intestine, our study’s sample size was relatively small, and determining disease and causality was limited by the
cross-sectional design. Second, as our main goal was to identify high-risk sepsis, not all bacteria from nasal or sputum
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specimens could be cultured. We also did not collect nasal or sputum specimens from all patients with sepsis for
culturing and identification. While 16S technology can adequately detect genera, species detection is less accurate;
thus, we cannot conclude that the causative agents of sepsis were Staphylococci, Corynebacteria or Acinetobacter in
each of the three bacterial types described. Third, the data were obtained at an adult ICU, and some differences
may exist in pediatric ICUs. This cross-sectional study suggests that a relationship exists among the bacterial type,
length of hospital stay and mortality and patients who present with particular microbiota profiles, such as the
Acinetobacter type, at admission may be more likely to have more serious disease or longer stays. Therefore, in the
future, we may conduct longitudinal studies of nasal microorganisms in more patients with sepsis and examine the
characteristics of septic patients in pediatric ICUs. In addition to 16S sequencing, we may also identify the main
pathogens and drug-resistant strains in the nasal cavity or sputum by combining culturing and identification in the
future.

Conclusion
This study identified the characteristics of the nasal microbiota during sepsis and revealed that the Acinetobacter type
was associated with the highest mortality in the >9-day group, and that the nasal bacterial types were significantly
associated with the length of stay in the ICU.

Summary points

• The nasal microbiotas in the septic patients differed from those in the healthy subjects.

• The nasal microbiotas in the septic patients were dominated by three nasal bacterial types (Corynebacterium,
Staphylococcus and Acinetobacter).

• In the septic patients, the Acinetobacter nasal bacterial type was associated with the lowest diversity and the
longest intensive care unit length of stay (median: 9 days), and the Corynebacterium type was associated with the
shortest length of stay.

• In the >9-day group, the Acinetobacter type was associated with the highest mortality rate of 33%.
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