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Abstract: The use of peloids as heat-providing therapeutic systems dates back to antiquity. Such
systems consist of a liquid phase and an organic or inorganic solid phase. The latter facilitates
the handling, preparation and stability of the solid–liquid system, modifying its organoleptic and
phy-sicochemical properties, and improves its efficacy and tolerance. Peloids enable the application
of heat to very specific zones and the release of heat at a given rate. The aims of this work are to study
16 reference peloids used in medical spa centers as thermo-therapeutic agents as well as to propose
nine raw materials as a solid phase for the preparation of peloids. The physical properties studied
are the centesimal composition, the instrumental texture and the thermal parameters. In conclusion,
the peloids of the medical spas studied are used as thermotherapeutic agents in the treatment of
musculoskeletal disorders, especially in knee osteoarthritis and to a lesser extent in back pain and
psoriatic arthropathy. The clinical experience in these centers shows that the main effects of the
application of their peloids are the reduction of pain, an increase in the joint’s functional capacity and
an improvement in the quality of life. As thermotherapeutic agents, all the peloids of the me-dical
spas studied and the pastes (raw materials with distilled water) examined showed a heat flow rate of
up to four times lower than that shown by the same amount of water. The raw materials studied can
be used as solid phases for the preparation of peloids with mineral waters.

Keywords: peloid; thermotherapy; mud therapy; pelotherapy; clay; peat; microcrystalline cellulose;
thermal flow; instrumental texture

1. Introduction

Since ancient times, peloids have been used as heat-providing healing systems [1].
Currently, peloid therapy is used in health resort medicine in the form of both balneothe-
rapy and thalassotherapy.

Since the middle of the last century, this technique has been referred to as mud or
pelotherapy. A peloid is defined as “a mature mud or mud suspension or dispersion with
curative or cosmetic properties, consisting of a complex mixture of fine grained materials
of geological and/or biological origin, mineral or sea water, and organic compounds
commonly arising from some biological metabolic activity” [2].

In physicochemical terms, peloids may be considered heterogeneous systems with
a solid phase comprised of a mixture of organic and/or inorganic solids, suspended or
humidified, with a liquid phase consisting of a solution of ions and molecules of inorganic
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and organic origin whose solvent is water [3]. The term “system” is used to describe the
specific proportion of material that contains defined amounts of one or more substances,
ordered in one or more phases. The term “phase” refers to a homogeneous and physically
different component of a system separated from the other components by defined boun-
dary surfaces [4].

The main properties of peloids recognised are: their applications in thermother-
apy [2,3,5,6] manifested by biological effects, metabolic and enzymatic activity, vascu-
lar, neuromuscular, analgesic and modifications of the viscoelastic properties of the tis-
sues [7,8]; several other studies have confirmed their anti-inflammatory [9–14], chon-
droprotective [10,11] and immunological actions [10,14–16] which can be attributed to their
chemical composition [17–20] and organic content [21–26].

During the use of peloids in thermotherapy, heat acts as a therapeutic agent. While
mainly contained in the liquid phase, this heat is moderated by the solid phases such that
it can be applied to very specific zones at a predetermined release rate. In thermodynamic
terms, heat transmission is a so-called irreversible phenomenon [27]. Irreversible processes
exist whereby there is transport of some physical magnitude from one region to another of
a system due to a gradients of different physical magnitudes; such processes are known as
transport phenomena and can be expressed through phenomenological laws [28].

Transport phenomena originate from a series of causes, such as the temperature
gradient. These magnitudes are designated “forces” in the thermodynamics of irreversible
processes. These “forces” give rise to “fluxes” such as heat flow [29].

Several phenomenological equations exist to describe transport phenomena as propor-
tions, such as Fourier’s law, between the thermal flow (Φ) and temperature gradient. The
heat equation is a mathematical model that describes the temperature changes that a solid
body goes through, which can be summarised as the calorific energy flowing from zones
of a greater to lower temperature, and that this energy is proportional to the temperature
gradient between the two zones. Accordingly, a greater temperature gradient is needed for
a peloid to achieve the best thermotherapeutic effects, provided they are well-tolerated by
the patient without producing any undesirable side effects.

This determines the important role of the solid peloid phase that acts as a vehicle or
coadjuvant, improving the efficacy of the therapeutic agent. The final goal is the sustained
release of heat. The diffusion velocity, together with the biocompatibility, are the most
important factors to consider when selecting a predetermined solid phase.

Peloids need to have three qualities: they should have a low cooling speed, should
be easy to handle, and should offer a pleasant feeling when applied to the skin. They are
used in full or partial baths or applied locally to a given skin zone at a temperature of 42 to
45 ◦C in 1 to 2 cm layers in 20 to 30 min sessions [30].

According to several clinical studies, the most effective indications of this form of
therapy are musculoskeletal disorders of the knee [13,31–43], spine [44–50], hand [51–54],
as well as fibromyalgia syndrome [55–58], carpal tunnel syndrome and chronic lateral
epicondylitis [59,60].

The mechanical and thermal properties of clays and peats that make them useful for
thermotherapy have been well described in the literature [30,61–89]. The aims of this study
are, firstly, to examine the physical properties, heat and texture, of 16 reference peloids
used in medical spas (MSs); secondly, to determine the physical characteristics of nine raw
materials (RMs)—six inorganic (clays) and three organic (two peats and a microcrystalline
cellulose); and thirdly, to study the properties of the pastes obtained with these nine RMs
mixed with distilled water (RM/DW), comparing them with the MSs.

2. Materials and Methods
2.1. Materials
2.1.1. Peloids Used in Medical Spas (MSs)

The origins of the 16 MS samples were Carhué and Copahue (Argentina), Peruibe
and Poço de Caldas (Brazil), Františkovy Lázně (Czechia), Terdax (France), Bad Bayer-
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soien (Germany), Hévíz (Hungary), Dead Sea (Israel), Polanczyk (Poland) and Archena,
Arnedillo, Caldes de Bohí, El Raposo, Lo Pagan and Thalassia (Spain)—see Figure 1.
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Figure 1. Origins of the peloids used in medical spas (MSs).

2.1.2. Raw Materials (RMs)

The RMs examined were six inorganic clays lacking carbon chains in their structure
and three organic materials—two peats and one microcrystalline cellulose material. These
materials and their suppliers were: aluminium bentonite from Süd Chemie Spain (C1),
magnesium bentonite from Süd Chemie Spain (C2), kaolin from Avisa (C3), kerolite from
Süd Chemie Spain (C4), palygorskite from Tolsa (C5), sepiolite from Tolsa (C6), blonde
peat from Plantaflor (P7), milled peat from Turberas del Buyo y del Gistral (P8) and
microcrystalline cellulose Avicel PH 101 from FMC Europa (MC9), proposed for the first
time as a solid phase.

2.2. Methods
2.2.1. Centesimal Composition

The centesimal composition was quantified by desiccation at 105 ◦C in an oven until
constant weight, and expressed as a percentage relative to the whole peloid. The water
content was calculated by the difference with respect to the percentage of solids. Ash is the
residue of the solid components left behind after incineration at 850 ◦C in a muffle furnace
until constant weight, expressed as a percentage (weight-to-weight) relative to the whole
peloid. The lower the ratio of the percentage of ash to the percentage of solids, the lower the
materials’ content of substances that are volatile or removable by high tempe-ratures [3,90].
Knowing the centesimal composition makes it possible to deduce the type of solid phase
that constitutes the peloid (inorganic or organic) and calculate its specific heat.

2.2.2. Instrumental Texture

The texture was determined using a Brookfield Texture Analyzer model LRFA 1000
with a round 10 mm stainless steel probe following the Texture Profile Analysis (TPA)
method involving two consecutive cycles for each determination. The instrumental texture
provides information on hardness, or the force necessary for a given deformation measured
in grams (g); adhesiveness, or the work needed to overcome the forces of attraction
between the surface of a material and the surfaces in contact with it, measured in grams
per second (g.s); and cohesion, defined as the inner bond forces that maintain the shape of
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the product. This last parameter is the property of non-consolidated fine-grained materials
whereby particles remain joined together due to the surface forces. It is adimensional with
high values indicating higher cohesion in the product [91–93]. Hardness conditions the
abrasiveness of the peloid responsible for the higher or lower tolerance on the part of the
patient, while adhesiveness and cohesion are decisive when choosing the technique of
application of the peloid (ilutation, brushing, bathing).

2.2.3. Thermal Parameters

• Specific heat (Cp)

1. Calculation of the (Cp) of the MSs
The equation proposed by Armijo et al. [80] with which the specific heat of a
peloid can be calculated as a function of its ash (A) and water (W) contents is:

Cp = 1.26023 + 0.02926 (W) − 0.00628 (A) + 0.000063 (W) (A)

2. Determination of the (Cp) of the RMs
The (Cp)’s of the RMs were determined using an air-cooled differential scanning
ca-lorimeter DSC1 (Mettler, Toledo). The characteristics of this system include
a temperature accuracy of ±0.02 K and a heating rate of 10 K/min. The (Cp)
capacities of the nine RMs were determined to be between 45 and 36 ◦C,
temperatures that are commonly used for peloid application in spas; the same
methods were used to obtain the cooling curves. This takes into account that
although the (Cp) varies across the temperature range, these variations are so
small that the mean values may easily be considered with no appreciable error.

3. Calculation of the (Cp) of the pastes of the raw material–distilled water mixtures
(RM/DW)
For pastes, the (Cp) of the system is given by the sum of their components.
According to the general equation:

Cp(P) = [(Si)Cp(Si) + (100− (Si)) Cp(W)]/100

where (Si) is the weight percentage of the different solid constituents and
cp(Si) and cp(W) are the specific heat capacities of both solid and water. Pastes
(RM/DW) were prepared by adding distilled purified water to the RMs and
leaving them for 24 h for the water to penetrate, followed by manual mixing.
The distilled purified water used to prepare the pastes was obtained using a
system consisting of a Fistreen Cyclon distiller fitted to a Water Pro purification
system from Labconco and a Sy-nergy UV system from Millipore. The (Cp) is
used to calculate the amount of heat (Q) that a peloid or paste can give off over
a range of temperatures.

• Cooling curve test
Cooling curves were prepared by plotting temperature against time. The thermometer
used has a Pt 100 probe to measure the product temperature at 15 s intervals from 45
to 36 ◦C. The equation best fitting the experimental curve was determined using the
program Origin 8 [94].
These curves were then used to obtain the relaxation time (tr) defined as the time
needed for the temperature to drop exponentially by 37% of its starting value
(1/e = 0.37). Accordingly, for a peloid applied at 45 ◦C and attaining a final tempera-
ture of 36 ◦C, in the first tr, the temperature reached would be (36 + 9/e) 39.3 ◦C. Fur-
thermore, this same time would be required for the temperature to drop to (36 + 9/e2)
37.2 ◦C, and in the same time intervals to 36.4 ◦C and 36.1 ◦C. Over three times its tr,
the temperature reached would be 36.4 ◦C. This is the normal user body temperature,
so the peloid would no longer have a thermotherapeutic effect [80].
From (Q) and (tr), the heat flow (Φ) is obtained; that is, the speed of the passage of
heat from the peloid to the patient.
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3. Results and Discussion
3.1. Peloids Used in Medical Spas (MSs)

The MSs studied correspond to world-renowned health resort medicine located in nine
countries where they are applied as thermotherapeutic agents to more than one hundred
thousand patients a year. Table 1 contains the main clinical trials of these MSs pu-blished
in recent years (Table 1).

Table 1. Authors, diagnosis, study design, modalities, application and conclusions of peloids used in medical spas (MSs).

Country
Authors (Year),
Location of MS

Diagnosis Study Design Modalities
Peloid

Application,
Duration, Number

Conclusions

Argentina

Monasterio and
Grenovero (2008),

Copahue [95]

Osteoarthritis, Knee
and Hand Prospective

Mud packs and/or
General mud bath

(Chancho),
Thermal baths, Steam

1 or 2 weeks
6 or 12 sessions
20 or 40 min/s

↓ Pain

Brazil

Gouvêa et al. (2021),
Peruibe [96] Osteoarthritis, Knee Prospective Muds

9 weeks
45 sessions
20 min/s

↓ Pain
↑ Joint flexibility

↑ Functional capacity

Untura (2008), Poços de
Caldas [97] Osteoarthritis, Knee Prospective Muds, Kinesiotherapy,

Physical therapy

4 weeks
20 sessions

30–35 min/s

↓ Pain
↑ Joint flexibility

↑ Functional capacity
Czechia

Navrátil et al. (2014),
Františkovy Lázně [98]

Temporomandibularjoint
disorders Prospective

Muds, Pulsed magnetic
therapy, Laser therapy,

Education

10–20 weeks
10 sessions
30 min/s

↓ Pain
↑ Opening ability

mouth
France

Forestier et al. (2010),
Dax * [32] Osteoarthritis, Knee RCT

Muds, Massages,
Showers, Pool sessions,

Exercise therapy

3 weeks
18 sessions
15 min/s

↓ Pain
↑ Functional capacity

Nguyen et al. (2017),
Dax ** [46] Low back pain RCT

Muds, Jet showers,
Massage, Hot showers,
Hydro kinesiotherapy,

Education

5 days
6 sessions
15 min/s

NSD Pain
NSD Disability

NSD Quality of life

Hungary

Gyarmati et al. (2017),
Hévíz [52] Osteoarthritis, Hand RCT Muds

3 weeks
15 sessions
20 min/s

↓ Pain
↓ Swollen joints

↑ Hand-grip strength
Israel

Sukenik et al. (1990),
Dead Sea [99] Rheumatoid arthritis RCT Mud packs, Sulphur

baths

2 weeks
12 sessions

20 min/

↓Morning stiffness
↑ Hand-grip strength

↑ ADL

Sukenik et al. (1992),
Dead Sea [100] Rheumatoid arthritis RCT Mud packs

2 weeks
12 sessions

20 min/

↓Morning stiffness
↑ Hand-grip strength

↑ ADL

Sukenik et al. (1994),
Dead Sea [101] Psoriatic arthritis RCT

Mud packs, Sulphur
baths, Dead sea water
baths, Climatotherapy

3 weeks
18 sessions

20 min/

↓Morning stiffness
↑ Hand-grip strength
↑ ADL, ↓ PASI

Elkayam et al. (2000),
Dead Sea [102] Psoriatic arthritis RCT

Mud packs, Sulphur
baths, Dead sea water
baths, Climatotherapy

4 weeks
24 sessions

20 min/

↓Morning stiffness
↑ Hand-grip strength
↓ Pain, ↓ PASI

Sukenik et al. (2001),
Dead Sea [103]

Psoriatic arthritis and
Fibromyalgia RCT

Mud packs, Sulphur
baths, Dead sea water
baths, Climatotherapy

4 weeks
24 sessions

20 min/

↓ Active joints
↓ Number tender

points
↑ Pain threshold

Flusser et al. (2002),
Dead Sea [31] Osteoarthritis, Knee Prospective Mud packs

3 weeks
15 sessions

20 min/

↓ Pain
↑ Functional capacity

Codish et al. (2005),
Dead Sea [104]

Rheumatoid arthritis,
Hand RCT Mud packs

3 weeks
15 sessions

20 min/

↓ Pain
↓ Swollen joints

Abu-Shakra et al.
(2014), Dead Sea [105] Low back pain RCT Mud packs

3 weeks
15 sessions

20 min/

↓ Pain
↓ Disability
↓ Flexibility
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Table 1. Cont.

Country
Authors (Year),
Location of MS

Diagnosis Study Design Modalities
Peloid

Application,
Duration, Number

Conclusions

Spain

Canelas et al. (2010),
Archena [106] Osteoarthritis, Knee Prospective Muds, Sulphur baths,

Showers, Massages

12 days
12 sessions
30 min/s

↓ Pain
↑ Functional capacity

↓ Drugs

Espejo et al. (2013b), El
Raposo [33] Osteoarthritis, Knee RCT Muds, Baths, Thermal jets

11 days
11 sessions
30 min/s

↓ Pain
↑ Quality of life
↓ Drugs

Ortega et al. (2017), El
Raposo [11] Osteoarthritis, Knee Prospective Muds, Baths, Thermal jets

10 days
10 sessions
45 min/s

↓ Pain
↑ Functional capacity
↑ Quality of life

Gálvez et al. (2019), El
Raposo [13] Osteoarthritis, Knee Prospective Muds, Baths, Thermal jets

10 days
10 sessions
45 min/s

↓ Pain
↑ Functional capacity
↑ Quality of life

Morer et al. (2017),
Thalassia [107] Post-stroke Prospective

Muds, Aquatic therapy
(Halliwick),

Climatotherapy

3 weeks
15 sessions
30 min/s

↓ Pain
↑ Balance
↑Mobility

Morer et al. (2020),
Thalassia [108] Post-stroke Prospective

Muds, Aquatic therapy
(Halliwick),

Climatotherapy

2 weeks
10 sessions
30 min/s

↓ Pain
↑ Balance
↑Mobility

RCT: randomized controlled trial; NSD: not significant difference; ADL: Activities daily living; PASI: Psoriasis area severity index; (*) Dax,
Balaruc-les Bains, Aix les Bains; (**) Dax, Saint Amand les-Eaux, Royat, Balaruc-les Bains, Aix les Bains.

It may be observed that they are used mostly in the treatment of disorders of the
musculoskeletal system, especially in knee osteoarthritis, and, to a lesser extent, for psoriatic
arthritis, back pain, rheumatoid arthritis and for the muscle pain of post-stroke patients.
These indications are consistent with those of other peloids used in other important medical
spas [35,37,38,40,41,47–50].

A study on osteoarthritis with laboratory animals was carried out with Peruibe’s
peloid [109].

On the other hand, and although not as thermo-therapeutic, given the special climatic
conditions of the thermal stations of Copahue and the Dead Sea, its peloids are also used
in dermatological disorders. [110–115].

Given the importance of these MSs, both the solid and liquid phases of some have been
studied, such as Copahue [68,115–118], Peruibe [119], Dax [72] and Archena, Arnedillo,
Caldes de Bohí, El Raposo and Lo Pagan [17,74,120–123]; and organic matter, such as
Héviz [124–126] and the Dead Sea [21,127,128].

The centesimal water, solids and ash contents of the 16 MSs are provided along with
their ash:solids ratios in Table 2. These ratios indicate that the first four peloids (Františkovy
Lázně, Polańczyk, Caldes de Boí and Bad Bayersoien) have peat as their solid phases while
the last 10 show the presence of inorganic materials. The peloid from Héviz originates from
the peat base of a lake at a depth of 38 m, which could explain its intermediate ash/solids
value [124]. The Copahue peloid shows a reduced ash content due to the presence of
sulphur compounds given its volcanic origin. This was confirmed by the odor emitted
during the incineration of this peloid [115].

Table 3 lists the values of instrumental texture, hardness, adhesiveness and cohesion
of the different spa peloids ordered according to their adhesiveness/hardness ratio.

Those of greater adhesiveness from El Raposo, Lo Pagan, Arnedillo and the Dead
Sea could be used for brush applications. Owing to their greater cohesion, the peloids of
Poço de Caldas, Thalassia and Carhué would be especially useful for specific body zones.
Ge-nerally speaking, those of lower hardness are less abrasive for the patient as there is
good correlation between these two parameters [74,121].
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Table 2. Centesimal composition of peloids used in medical spas (MSs) and raw materials (RMs).

MS and RM Water (%) Solids (%) Ash (%) Ash/Solids

Františkovy Lázně (Czechia) 83.0 17.0 0.6 0.03
Polańczyk (Poland) 87.1 12.9 0.6 0.04
Caldes Boi (Spain) 84.4 15.6 1.6 0.10
Bad Bayersoien (Germany) 85.6 14.5 1.9 0.13
Copahue (Argentina) 56.2 43.8 16.0 0.36
Héviz (Hungary) 77.7 22.3 10.0 0.45
Dead Sea (Israel) 30.1 70.0 54.2 0.77
Lo Pagan (Spain) 34.3 * 65.7 * 56.2 * 0.85 *
El Raposo (Spain) 39.6 * 60.4 * 53.2 * 0.88 *
Thalassia (Spain) 59.9 40.1 35.8 0.88
Carhue (Argentina) 44.5 55.5 40.0 0.90
Peruibe (Brazil) 58.8 41.2 37.6 0.91
Archena (Spain) 74.6 * 25.4 * 23.3 * 0.92 *
Terdax (France) 46.1 ** 53.9 ** 50.2 ** 0.93 **
Arnedillo (Spain) 31.4 * 68.6 * 64.5 * 0.94 *
Poços de Caldas (Brazil) 52.6 49.8 47.4 0.95
C1 12.55 87.45 81.46 0.93
C2 11.54 88.46 82.70 0.93
C3 1.00 99.00 88.15 0.89
C4 8.3 91.70 85.93 0.94
C5 9.45 90.55 81.32 0.90
C6 10.14 89.86 82.19 0.91
P7 23.89 76.11 2.31 0.03
P8 31.96 68.04 39.37 0.57
MC9 4.07 95.93 0 0

* Data from Maraver et al., 2004 [120]. ** Armijo, 2007 [121]. C1 to MC9 are raw materials (RMs).

Table 3. Instrumental texture of the peloids used in medical spas (MSs) and the raw material–distilled
water mixtures (RM/DW).

MS and RM/DW Hardness
(g)

Adhesiveness
(g s) Cohesiveness Adhesiveness/

Hardness

Peruibe (Brazil) 38 1 0.48 0.01
Polańczyk (Poland) 924 763 0.30 0.83
Bad Bayersoien (Germany) 1163 1410 0.23 1.21
Copahue (Argentina) 200 890 0.45 4.45
Františkovy Lázně (Czechia) 105 709 0.56 6.78
Caldes Boi (Spain) 106 909 0.61 8.56
Dead Sea (Israel) 350 3097 0.86 8.84
Héviz (Hungary) 139 1272 0.70 9.14
Arnedillo (Spain) 462 * 4962 * 0.50 * 10.74
Carhue (Argentina) 65 696 0.96 10.76
Poços de Caldas (Brazil) 122 1426 0.99 11.69
Thalassia (Spain) 45 548 0.96 12.10
Lo Pagan (Spain) 461 * 6966 * 0.50 * 15.11
El Raposo (Spain) 394 * 7102 * 0.80 * 18.03
Archena (Spain) 132 * 2491 * 0.80 * 18.87
Terdax (France) 138 * 2646 * 0.65 * 19.17
C1 300 3672 0.96 12.24
C2 300 3216 0.92 10.72
C3 300 2481 0.71 8.27
C4 300 3317 0.88 11.06
C5 300 2950 0.81 9.83
C6 300 3558 0.93 11.86
P7 300 15 0.38 0.05
P8 300 1 0.26 0.003
MC9 300 1437 0.42 4.79

* Data from Armijo, 2007 [121].
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As we stated in the introduction and methods, the main therapeutic action of the
peloids in rheumatic disorders is due to the action of heat and the way in which they are
applied; the most important factor is the amount of water that the peloid contains due to
its high values of (Cp) heat flow (Φ), the amount of heat (Q) that passes in the unit of time
toward the temperature drop.

In Table 4, we provide (Cp) data obtained from the analysis of the percentage of water
and ash composition of the MSs, along with the tr and Q released by 1 kg of peloid as
the temperature drops from 45 to 39.3 ◦C (tr temperature), and Φ from the start of the
application until the tr is reached.

The higher tr were recorded for the peloids based on organic material, peat, and those
used in the Františkovy Lázně, Polanczyk, Bad Bayersoien and Boi spas, meaning they
release their heat more slowly than those prepared with inorganic solid phases. The (Cp)
values for the peloids based on peat were in line with those reported in the literature [85].

The Φ values of MSs ranged from 25.1 J/s for the Poço de Caldas peloid to 33.4 J/s for
the Arnedillo and Thalassia peloids.

Table 4. Specific heat (Cp), relaxation time, heat amount and heat flow recorded for peloids used in
medical spas (MSs) and the pastes (RM/DW) with a hardness of 300 g.

MS and RM/DW Cp (J/gK) tr (s) Q (J) Φ (J/s)

Dead Sea (Israel) 1.9 400 10,830 27.1
Arnedillo (Spain) 1.9 324 10,830 33.4
Lo Pagan (Spain) 2.0 400 11,571 28.9
El Raposo (Spain) 2.2 468 12,654 27.0
Terdax (France) 2.4 456 13,908 30.5
Poços de Caldas (Brazil) 2.5 564 14,136 25.1
Carhue (Argentina) 2.8 578 15,789 27.3
Copahue (Argentina) 2.9 648 16,302 25.2
Peruibe (Brazil) 2.9 534 16,416 30.7
Thalassia (Spain) 2.9 498 16,644 33.4
Archena (Spain) 3.4 708 19,437 27.5
Héviz (Hungary) 3.5 624 20,064 32.2
Františkovy Lázně (Czechia) 3.7 744 21,033 28.3
Caldes Boi (Spain) 3.7 684 21,204 31.0
Bad Bayersoien (Germany) 3.8 696 21,432 30.8
Polańczyk (Poland) 3.8 726 21,717 29.9
C1 2.6 486 15,039 30.9
C2 2.9 528 16,638 31.5
C3 2.1 330 12,176 36.9
C4 2.6 462 14,710 31.8
C5 3.0 468 16,814 35.9
C6 3.2 522 18,199 34.9
P7 3.6 624 20,675 33.1
P8 2.4 468 13,834 29.6
MC9 3.1 600 17,906 29.8

3.2. Raw Materials (RMs) and the Pastes (RM/DW)

As we have indicated previously, another of the objectives of this work is to study and
proposed RMs that make the elaboration of pastes (RM/DW) possible with mechanical and
thermal properties similar to MSs for use as a solid phase for the preparation of peloids
as thermotherapeutic agents. We followed the same criteria as for the MSs to achieve this;
that is to say, we studied the centesimal composition, instrumental texture and thermal
parameters.

Table 2 also shows the centesimal water, solids and ash contents of the RMs. When
calculating the ash-to-solids ratio of the solid phase, values close to unity indicate an
inorganic product while those approaching zero reflect an organic product, just as for the
MSs.
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Regarding the instrumental texture of the pastes (RM/DW), the hardness diminishes
as their water content rises, following a negative exponential curve. This was not the case
for the pastes (RM/DW) based on peat that reached a maximum hardness value. It should
be noted that the product MC9, as it is organic, behaved in this regard like a clay, as can be
seen in Figure 2. In this figure, we have limited ourselves to including only three inorganic
RMs—C1, C3 and C6—and two organic ones—P8 and MC9—for clarity [91].
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Figure 2. Plots of hardness of the pastes against % water content.

Table 3 also shows the values of instrumental texture, hardness, adhesiveness, cohe-
sion and the adhesiveness/hardness ratio of the pastes (RM/DW). The pastes (RM/DW)
prepared with materials C1 to C6 and MC9 with a hardness of 300 g (we adopted this value
because it is the average value of the Spanish peloids we have already studied) previously
presented an adhesiveness that ranged from 2481 g in the formulation with C3 to 3672 g
for the C1-based formulation, and a hardness of only 1437 g was observed for the organic
material MC9. This indicates that the pastes would, overall, show good adhesive properties
for the user and pastes (RM/DW) prepared with C3 and MC9 will be more easily removed
after their use. The pastes (RM/DW) based on inorganic materials showed much higher
ratios than those containing organic materials in the solid phase, as occurs in the MSs.
Cohesiveness values are provided for the pastes. The pastes (RM/DW) prepared with
inorganic materials showed much higher cohesiveness values than those re-corded for
the pastes (RM/DW) containing organic materials in their solid phase, as occurs in the
MSs [74].

When water is added to a clay, it arranges itself around the clay particles. If little water
is added, clays become coated with water layers, giving rise to a mass with some cohesion.
This weak cohesive force between aggregates determines that the clay particles do not slide
over each other. This property is made use of when the peloid is applied to the skin for
therapeutic purposes [129]. If the water concentrations present in peloids and pastes are
reduced, this leads to a lower mobility of bonds and to the products breaking up. As the
proportion of water increases, the greater distance between particles causes cohesion loss
and the product behaves more or less like a viscous liquid [130].

The adhesiveness/hardness ratios of the pastes (RM/DW) prepared from the inorganic
and organic materials and distilled water are shown in Table 3. The inorganic pastes had
higher ratios than the pastes made from organic materials, as occurs in the MSs.
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Regarding the thermal parameters, the (Cp) measured from the RM given in J/gK
were C1 = 0.859, C2 = 0.981, C3 = 0.972, C4 = 0.870, C5 = 0.765, C6 = 1.253, P7 = 1.291,
P8 = 1.148 and MC9 = 1.420 [80].

We also provide the mean (Cp) data obtained from the pastes (RM/DW) prepared
with the inorganic and organic materials in Table 4. These results are in line with those
obtained in prior work and, overall, the (Cp) values of the organic materials were higher
than those of the inorganic materials [61,66,71,73,77,81,82,86,131,132].

The highest (Cp) (expressed in J/gK) was recorded for a paste prepared with the
palygorskite clay (C6) and the lowest for a paste prepared with kaolin (C3). The elevated
(Cp) of the preparation based on P7 can be attributed to the large amount of water needed
for its preparation (Figure 3).
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Figure 3. Specific heats of the raw materials (RMs), and specific heats and relaxation times of the raw
material–distilled water (RM/DW) formulations.

Table 4 also provides the (Cp) in J/gK, tr in seconds, the Q in J lost by 1 kg of the MSs
and pastes (RM/DW) as it cools from 45 to 39.3 ◦C, the tr temperature, and the Φ as the J/s
reached that temperature range for the MSs and pastes (RM/DW) examined here.

Other works carried out with pastes made with different solid (organic and inorganic)
and liquid (DW, natural mineral water and sea water) phases determine the heat transfer
curves with temperature ranges that are different from those used [61,66,70,75,83,89,132].

For distilled water, the tr determined under the same conditions as for the MSs and
pastes (RM/DW) was 230 s, much lower than the values observed for the MSs and pastes
(RM/DW).

According to the tr values in seconds calculated from the heat loss curves for the
different pastes, the preparation containing C3 was the fastest at releasing heat, while the
slowest in doing so were the C2-based pastes. The pastes containing the organic products
P7 and MC9 also released heat slowly.

Corresponding values for the pastes RM/DW were between 29.6 J/s for P8 and
36.9 J/s for the C3-based ones, similar to the values recorded for the MSs.

If we compare the heat-releasing capacity of the MSs and pastes (RM/DW) to that of
water, 1 kg of water with a mean (Cp) of 4.1788 J/kg K cooling in the same conditions as
the MSs and pastes (RM/DW) has a tr of 230 s and would release a Q of 23,819 J at a Φ of
103.56 J/s. This means that the solid phases of MSs and pastes (RM/DW) cause the heat to
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be released three to four times slower than if we applied water directly, which indicates
that they can be used on the skin for a thermotherapeutic effect without undesirable effects.
Thus, compared to water, the MSs and pastes (RM/DW) enable the application of a large
amount of heat over a longer time period in a more localized manner (Figure 4).
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