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Introduction
The use of artificial intelligence (AI) in healthcare is re-
ceiving increasing interest, driven by a surge in scientific
research and funding. AI has shown ophthalmologist-level
performance at detecting retinal pathology [1] and can
provide individualised treatment decisions for sepsis that
could improve patient outcomes [2]. There are many
potential applications in the intensive care unit (ICU), par-
ticularly given the large amounts of data collected rou-
tinely. However, there are some important considerations
for ensuring successful implementation.

Why artificial intelligence?
There is a paucity of positive multi-centre prospective
randomised control trials in ICU settings. This reflects
the challenge of running studies in such environments,
where multiple treatments are given simultaneously to
individuals who respond in variable ways based on their
individual physiology. The resultant absence of strong
guidelines means that clinician decision-making is driven
largely by experience and instinct, resulting in significant
variability amongst clinicians.
AI could reduce this inter-clinician variability and offer

other benefits. AI excels at finding complex relationships
in large volumes of data and can simultaneously and
rapidly analyse many variables to predict outcomes of
interest, such as sepsis or mortality. The modern ICU
environment is data-rich, providing fertile soil for the
development of more accurate predictive models, bet-
ter decision support tools, and greater personalisation
of care.

Predictive models and decision support tools
Severity scoring and mortality prediction
Given the complexity and heterogeneity of ICU patients,
scoring systems have been generated to record severity
of illness and predict probability of mortality. They can
assist in clinical decision-making, comparisons of quality

of care, and stratification for clinical trials. However,
they do not incorporate variations between departments,
regions and countries and perform better on entire ICU
populations than on individuals or subsets [3].
AI is well suited for developing algorithms which over-

come these limitations and also increase prediction ac-
curacy. The artificial neural network of Dybowski et al.
could be re-trained in individual ICUs, tailoring predic-
tions to that unit [4]. Pirracchio et al. [5] and Aczon et
al. [6] used multiple machine learning (ML) methods to
achieve superior areas under the curve (AUCs) of 0.94
and 0.93 respectively.

Prediction of sepsis
Early detection and prediction of sepsis enable earlier
treatment and better outcomes, yet sepsis is often un-
clear until late stages. Existing tools have poor predictive
accuracy and often rely on time-consuming laboratory re-
sults. Desautels et al. found that, in 22,853 ICU stays, sys-
temic inflammatory response syndrome (SIRS), Simplified
Acute Physiology Score II (SAPS II) and sequential organ
failure assessment (SOFA) had AUCs of 0.609, 0.700 and
0.725 respectively for identifying sepsis at the time of
onset [7].
The AI model by Nemati et al. predicted sepsis 12 h

before onset with an AUC of 0.83 [8]. Kamaleswaran et
al. used multiple ML techniques to identify novel pre-
dictive markers [9]. They found that variations in vital
signs, processed by AI, could identify children who
would develop severe sepsis [9]. Without the wait for la-
boratory results, earlier treatment is enabled.

Decision support in mechanical ventilation
Mechanical ventilation is one of the most common in-
terventions in ICU patients. Appropriate levels of sed-
ation and analgesia are important but complicated by
significant inter-patient variability. Timing of ventilator
removal is also important, as both premature extubation
and prolonged ventilation are associated with higher
mortality rates. However, a wide discrepancy of practices
is seen and accurate prediction is challenging.
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An AI tool may enable more personalised sedation
and analgesia to reduce inter-clinician variability. The al-
gorithm of Prasad et al. outperformed clinical practice,
as measured by regulation of vital signs [10]. Using AI
to guide extubation timing is challenging. Such algo-
rithms are trained using outcome data, such as the
timing of removal and whether it was successful. How-
ever, successful extubation only indicates that it was
ready at that point, and doesn't rule out being ready at
an earlier stage. This is also true in the reverse for pre-
mature removal. Despite this, the algorithm of Parreco
et al. predicted the need for prolonged ventilation with
an AUC of 0.82 [11]. The AI algorithm of Prasad et al.,
used to advise when to wean, outperformed clinical
practice in terms of number of re-intubations [10].

Improving data with new technology
Novel types of data, collected by new methods, enable
improvement of existing models and development of
new tools. Davoudi et al. explored the use of wearable
sensors, light and sound sensors, and a camera to collect
data on ICU patients and their environments [12]. The
authors found that delirious patients were more sensitive
to light but not to noise. Such data analysis could im-
prove detection of delirium and enable real-time inter-
ventions to improve sleep hygiene [12]. Pickham et al.
detected patient positioning with wearables to identify
when patients should be turned and thus reduced
hospital-acquired pressure injuries [13]. A variety of AI
methods allow the processing of these novel types of
data, such as convolutional neural networks which excel
at analysing visual information.
AI is also taking advantage of the move towards

higher-resolution continuous data capture. For example,
deep learning analysis of electrocardiogram data, mea-
sured continuously in ICU patients, can detect ST-
changes [14] and a broad range of arrhythmias [15].

Important considerations
While AI may enable the development of accurate tools,
their introduction must follow careful consideration of
real-world clinical utility, efficiency and existing work-
flows. The use of AI should be appropriately weighted
alongside other sources of information and should be
validated by well-designed prospective studies before
widespread implementation.
Training AI algorithms requires integrated, well-struc-

tured data. Many ICUs use a combination of paper and
electronic data and do not electronically link together
data collected from multiple sources. Data are often in-
complete or incorrectly entered. It is also heterogeneous,
and many different tests are measured at different times.
However, many AI models have achieved accuracy des-
pite these factors.

Healthcare data are sensitive so data security and pa-
tient privacy are important considerations. Appropriate
consent must also be obtained for data collection, yet
many ICU patients lack sufficient capacity until
recovery.

Conclusion
ICU doctors are often required to analyse large volumes
of complex, heterogeneous data to make life-critical de-
cisions. AI, if used effectively, could reduce this burden
by transforming data into more actionable information.
We can use AI to predict adverse outcomes before they
happen, better manage highly complex situations, and
ultimately allow clinicians to spend less time analysing
data and more time harnessing their experience and hu-
man touch in delivering care.
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