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Summary

Mitotic spindles in epithelial cells are oriented in the plane of

the epithelium so that both daughter cells remain within the
monolayer, and defects in spindle orientation have been

proposed to promote tumorigenesis by causing epithelial
disorganization and hyperplasia [1]. Previous work has

implicated the apical polarity factor aPKC, the junctional
protein APC2, and basal integrins in epithelial spindle orien-

tation, but the underlying mechanisms remain unclear. We
show that these factors are not required for spindle orienta-

tion in the Drosophila follicular epithelium. Furthermore,
aPKC and other apical polarity factors disappear from the

apical membrane in mitosis. Instead, spindle orientation
requires the lateral factor Discs large (Dlg), a function that

is separable from its role in epithelial polarity. In neuro-
blasts, Pins recruits Dlg and Mud to form an apical complex

that orients spindles along the apical-basal axis. We show
that Pins and Mud are also necessary for spindle orientation

in follicle cells, as is the interaction between Dlg and Pins.
Dlg localizes independently of Pins, however, suggesting

that its lateral localization determines the planar orientation
of the spindle in epithelial cells. Thus, different mechanisms

recruit the conserved Dlg/Pins/Mud complex to orient the
spindle in opposite directions in distinct cell types.

Results and Discussion

Mitotic Spindle Orientation in the Follicle Cell Epithelium Is

Independent of Integrins and Adherens Junctions
The Drosophila follicular epithelium is a well-established
model for the study of epithelial cell polarity, but mitotic spin-
dle orientation in this tissue has received less attention. Previ-
ous work has demonstrated that the follicle cells behave like a
typical epithelium and tend to orient their mitotic spindles par-
allel to the plane of the monolayer [2]. Consistent with this, we
observed that all spindles lie within w30� of the plane of the
epithelium once the spindle and metaphase plate are clearly
visible, and the spindle retains this orientation through
anaphase (Figures 1A and 1C). The position of the spindle is
muchmore variable earlier inmitosis, however, and the spindle
often assembles perpendicular to the plane of the epithelium
(Figures 1A and 1B and Figures S1A and S1B available online).
Thus, the spindle is positioned after it has assembled and is
not oriented by the prepositioning of the centrosomes.
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The original model for spindle orientation in Drosophila
epithelia based on studies in the embryonic ectoderm pro-
posed that the spindles align toward the adherens junctions
(AJ) through interactions mediated by APC2 (a homolog of
mammalian adenenomatous polyposis coli) [3]. We observed
that mitotic follicle cells maintain adherens junctions with their
neighboring cells during metaphase (Figure 1D). However, the
metaphase spindle is always positioned below the level of the
AJ marker Armadillo (Drosophila b-catenin) (Figure 1D). APC-
2-GFP is slightly enriched at adherens junctions inmitotic cells
but also localizes around the rest of the cortex (Figure S1B).
Furthermore, there is no significant change in spindle orienta-
tion in follicle cell clones that are doubly mutant for null alleles
of apc1 and apc2 (Figures 1E and 1H), consistent with a previ-
ous report that APC2 is not required for spindle orientation in
the embryonic ectoderm [4].
We further investigated the role of adherens junctions in

spindle orientation by removing them completely using a null
allele of arm. As reported previously, we saw some flattening
and loss of epithelial cells in arm3 homozygous mutant clones
[5], but spindle orientation was wild-type (Figure S1C and Fig-
ures 1F and 1I). Thus, adherens junctions do not play a role in
mitotic spindle orientation in this tissue.
More recently, it has been suggested that integrin adhesion

to the ECM is required for spindle orientation in epithelia. This
suggestion is based on the observation that follicle cell clones
mutant for the protein null allele myospheroid11 (bPS integrin),
are characterized by both disorganized clusters of cells and
misoriented mitotic spindles (Figures S1G and S1J) [2]. We
never observed spindles oriented at >35� from the epithelial
plane inmys11 mutant clones that are still part of the epithelial
monolayer, however, and the distribution of spindle orienta-
tions within these clones was indistinguishable from that of
the wild-type (Figures 1I and 1J). Spindle orientation is much
more variable in the multilayered clusters of disorganized
cells, but this is probably a secondary consequence of the
loss of epithelial organization. Integrins are therefore dispens-
able for spindle orientation in the follicle cells and must disrupt
epithelial organization by some other mechanism.

Spindle Orientation in Follicle Cells Does Not Require
aPKC

The apical polarity factor atypical protein kinase C (aPKC) has
been implicated in spindle orientation in Madin-Darby canine
kidney (MDCK) cells and the Drosophila imaginal wing disc
epithelium, although it does not appear to play a role in chick
neuroepithelial cells [6–8]. We therefore analyzed the role of
aPKC during mitosis in the follicular epithelium.
Surprisingly, we observed a loss of apical cortical identity

during mitosis. aPKC disappears from the apical cortex, as
do other apical polarity factors, such as Crumbs and Bazooka
(Figures 2A–2C) [9]. Thus, aPKC is not in the right place to
control the positioning of the spindle during metaphase.
Consistent with this, follicle cells homozygous for the ‘‘ki-
nase-dead’’ allele apkcpsu141 [10], show normal spindle orien-
tation (Figures 2E and 2F). This allele does not disrupt the
follicle epithelium (Figure 2D), suggesting that the kinase activ-
ity of aPKC is not required for epithelial polarity in this tissue.
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Figure 1. At Metaphase, Spindles Are Angled

Roughly in Parallel to the Plane of the Follicle

Cell Epithelium

(A) Cumulative plot of spindle angles in the FCE at

prometaphase (red line), metaphase (blue), and

anaphase (dark blue). The spindle angles were

measured relative to a line through the adherens

junctions, which represents the plane of the

epithelium, and were plotted in rank order from

lowest to highest against the spindle angles

along the x axis.

(B and C) Mitotic spindles at prometaphase (B)

and metaphase (C). Sas4-GFP (red) marks the

spindle poles, and a-phospho-Histone 3 (pH3;

blue) marks mitotic cells.

(D) Mitotic spindles (green) in follicle cells orient

below the level of the adherens junctions, which

are marked by Armadillo (Drosophila b-catenin)

in red.

(E and F) Metaphase spindles are not misoriented

in apc1q8, apc2g10 (E), or arm3 (F) homozygous

mutant clones, marked by the absence of GFP

(green). Metaphase cells are outlined by white

boxes.

(G) Metaphase spindles are normally oriented

in single-layer mys11 clones (marked by the

absence of RFP in green).

(H–J) Cumulative plots of spindle angles in

apc1q8, apc2g10 (H), arm3 (I), and mys11 (J)

mutant follicle cells.

See also Figure S1.
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Egg chambers transheterozygous for apkcts and the loss-of-
function allele apkck06403, have cyst encapsulation defects at
25� that preclude the accurate measurement of mitotic spindle
angles [8]. At 18�, large regions of organized epithelium persist
in most egg chambers, although 68% (n = 28) show some
encapsulation defects (Figure 2G). The follicle cells in the re-
gions with normal epithelial organization show no spindle
orientation defects (Figures 2H and 2I). The loss of apical
aPKC in mitosis and the normal distribution of mitotic spindles
in aPKCmutants indicate that aPKC is dispensable for spindle
orientation in the follicular epithelium.

Pins and Mud Are Involved in Spindle Orientation
Much of our understanding of spindle orientation derives from
studies of asymmetric divisions in the nematode and the fly
(recently reviewed in [11, 12]). In Drosophila, spindle orienta-
tion has been studied primarily in neuroblasts, which divide
asymmetrically along their apical-basal axis, and in the sen-
sory organ precursor cell, which divides along a planar axis
[12]. Additional studies have been carried out using a cultured
Drosophila cell system with artificially induced cell polarity
[13]. This work has identified a number of factors that are
required to orient the spindle, including Partner of Inscuteable
(Pins) and its binding partner Mushroom body defective (Mud)
(reviewed in [12]). Work in symmetrically dividing vertebrate
cells, including cultured MDCK cells, the chick neuroepithe-
lium, and asymmetrically dividing skin cells has revealed that
spindle orientation also depends on the Pins and Mud homo-
logs LGN and NuMA [12, 14–18].

Pins and Mud orient the spindle by exerting a pulling force
on astral microtubules through dynein/dynactin [19, 20]. If
they are playing a role in spindle orientation in the follicular
epithelium, then metaphase plates should misorient when
astral microtubules are lost. We treated ovaries with the
microtubule-depolymerizing drug colcemid for 1 hr and
observed that metaphase plates and centrosomes were often
misoriented with respect to the plane of the epithelium (Fig-
ures S2A and S2B and Figure 3A), indicating that microtubules
are required for spindle orientation.
We next examined the expression of Pins andMud in follicle

cells. In the adult fly, Pins transcript expression is highest in
the ovary (Figure S2C). Immunostaining reveals that Mud is ex-
pressed in the follicle cell epithelium up until approximately
stage 6 of egg chamber development, which is when the folli-
cle cells cease dividing (Figure S2D). In the chick neuroepithe-
lium and in other models, Pins (LGN) and Mud (NuMA) localize
along the lateral cortex in dividing cells [12, 17]. Pins-YFP
localizes along the apical cortex in interphase follicle cells,
but it largely relocalizes to the lateral cortex duringmetaphase,
where it colocalizes with the lateral polarity factor Dlg (Fig-
ure 3B and Figure S2E). In agreement with earlier work, it can
also be found on the spindle (Figure 3B) [14]. Immunostaining
for native Pins reveals the same pattern (Figure S2B). Mud also
localizes at the lateral cortex with Dlg inmitotic cells, as well as
at spindle poles (Figure 3C). To examine the role of Pins in
spindle positioning, we generated homozygous mutant clones
for the loss of function allele pinsp62 (Figure 3D) [21, 22]. In
contrast to wild-type and heterozygous cells, metaphase
spindles were found at all angles in mutant cells (Figure 3E).
The cumulative plot of angular distributions in pinsp62 best
fits a straight line of slope of 1.1 (R2 = 0.98), which is close to
random (slope = 1), compared to slopes of 3.3 and 2.8 in
wild-type and heterozygous cells.
In mammalian cells, knockdown of the Pins homolog LGN

causes spindle disorganization [14]. These defects were not
observed in pinsp62 clones, as revealed by staining for tubulin,
the centrosomal protein Centrosomin (Figures 3F and 3F0), and
the microtubule-nucleating factor g-tubulin (Figure S2C).
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Figure 2. Spindle Orientation in Follicle Cells

Does Not Depend on aPKC

(A–C) The apical polarity determinants aPKC

(A, red), Crumbs-GFP (B, red), and Bazooka

(C, red), disappear from the apical cortex of

mitotic follicle cells, although Dlg (green) re-

mains along the lateral cortex. Dlg-YFP is

shown in (A), and anti-Dlg staining is shown

in (B) and (C). pH3, shown in blue, marks

mitotic cells.

(D) aPKCpsu14 mutant follicle cell clones have

normal epithelial architecture. The aPKCpsu14

mutant cells are marked by the loss of GFP

(green).

(E) Metaphase spindles are not misoriented in

aPKCpsu14 mutant follicle cell clones (marked by

the absence of GFP).

(F) Cumulative plot of metaphase spindle angles

in aPKCpsu141 mutant follicle cells.

(G) An apkcts/apkck06403 egg chamber at 18�

showing a cyst encapsulation defect, as well as

normal tissue.

(H) Metaphase spindles are correctly oriented in

an apkcts/apkck06403 egg chamber at 18�.
(I) Cumulative plot ofmetaphase spindle angles in

apkcts/apkck06403 follicle cells at 18�.
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Metaphase spindle angles were also examined in follicle
cells from mud2/mud3 transheterozygous egg chambers (Fig-
ure 3G). In agreement with previous work, spindle orientation
was disrupted in these cells (Figure 3H) [23]. We note that the
spindle angles were not randomized, as in pins mutant cells,
as the line of best fit has a slope of 1.5. These data are sta-
tistically consistent with a normal (Gaussian) distribution
around a mean of 40�. This reflects the fact that many spin-
dles orient toward an apical corner, as shown in Figure 3G.
This result is consistent with a previous study in S2 cells
that showed that Pins can attract a spindle pole in the
absence of Mud but cannot center it through pulling [13].
We suggest that this mechanism is also at work in mud
mutant follicle cells; the developing spindle may be caught
at the edge of a Pins basolateral crescent in the absence of
Mud function.

Dlg Is Required for Spindle Orientation in Follicle Cells
Dlg is recruited by Pins to the cortex of asymmetrically
dividing cells, such as neuroblasts and SOPs, and is required
to orient the spindle toward the Pins crescent [13, 24, 25].
Since Dlg colocalizes with Pins and Mud at the lateral cortex
of the follicle cells (Figures 3D and 3E), we investigated
whether it is also necessary for spindle orientation in
this epithelium. Dlg is essential for apical-basal polarity
in epithelia, however. This complicates the analysis of
its role in spindle orientation, because cells homozygous
mutant for a strong loss-of-function allele, dlg14 (also called
dlgm52), round up and lose their epithelial organization (Fig-
ure S3A) [26]. We therefore restricted our analysis to those
dlg14 mutant clones in which the cells remained in a
monolayer and observed that the
spindles are randomly oriented (Figures
S3B and S3C).
Dlg interacts with Pins through its

C-terminal guanylate kinase (GUK)
domain, which is disrupted in cells
homozygous for the mutant allele dlg18
(also called dlg1P20), a premature stop mutation that removes
the last 43 amino acids of the protein [27, 28]. Importantly,
dlg18 does not disrupt the lateral localization of Dlg, and
apical-basal polarity is unaffected in early-stage mutant
clones, which form a normal epithelial monolayer (Figure 4A).
Despite thiswild-type epithelial organization,dlg18 randomizes
the orientation of the mitotic spindles to give a cumulative dis-
tribution with a slope of 1.1 (R2 = 0.93) (Figures 4B and 4C).
Spindles are oriented normally in dlgsw, which removes the

last 14 amino acids of Dlg, leaving the GUK domain intact (Fig-
ures S3D–S3F) [24]. Thus, Dlg is required for spindle orienta-
tion in the follicle cells, and this function is separable from its
role in epithelial polarity. The role of Dlg in spindle orientation
depends on the presence of an intact GUK domain and there-
fore presumably requires its interaction with Pins, strongly
suggesting that the Dlg/Pins/Mud complex orients the spindle
in epithelia, as it does in asymmetrically dividing cells.
In neuroblasts, Pins is required for the apical localization of

Dlg during mitosis, whereas Dlg reinforces the apical localiza-
tion of Pins through a pathway that depends on astral microtu-
bules [25]. The situation in epithelia appears to be different,
however, as Dlg localizes normally along the lateral cortex in
clones of the pins null mutant, pinsp62 (Figure 4D). Since Dlg
localizes laterally throughout the cell cycle, it is presumably
localized by the same polarity-related mechanisms in
interphase and mitotic cells. We also examined whether
Dlg is required for the localization of Pins and observed that
Pins still localizes around the cortex during mitosis in the
absence of Dlg (dlg14) but is not enriched laterally (Figure 4E).
The lateral enrichment of Pins also appears reduced in cells
homozygous for the GUK domain mutant dlg18, suggesting
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Orientation in the Follicle Cells

(A and A0) The centrosomes (marked by centroso-

min, red) align with the lateral cortex in untreated

cells, and the metaphase plate (marked with

DAPI, blue) is positioned vertically. The centro-

somes and the metaphase plate are misoriented

after treatment with the microtubule depolyme-

rizing drug colcemid.

(B and C) Pins-YFP (B, red) and Mud (C, red) co-

localize with Dlg (green) along the lateral cortex

in mitotic follicle cells (DAPI, blue).

(D) Metaphase spindles are misoriented in the

absence of pins function. Cells homozygous for

pinsp62 are marked by the absence of GFP

(green). Boxes highlight two metaphase cells

with misaligned spindles.

(E) Cumulative plot of metaphase spindle

angles in pinsp62 mutant cells showing that

the spindles are randomly oriented. Spindle an-

gles in pinsp62 mutant cells (n = 32) differ signif-

icantly from the wild-type, with a p value

of <0.005 as determined by the Kolmogorov-

Smirnov test.

(F and F0) pinsp62 mutant cells marked by the

absence of RFP (green in F) form normal bipolar

spindles (green in F0) with centrosomes at each

pole (marked by Centrosomin, in red).

(G) Metaphase spindles are misoriented in mud2

/mud3 follicle cells.

(H) Cumulative plot of metaphase spindle angles

in mud2/mud3 mutant follicle cells showing spin-

dle misorientation with clustering at approxi-

mately 45�. Spindle angles in mud2/mud3 mutant

cells (n = 24) differ significantly from those in the

wild-type (p value of <0.005 as determined

by the Kolmogorov-Smirnov test). See also

Figure S2.
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that its interaction with Dlg contributes to its recruitment to the
lateral cortex, although this phenotype is more variable than in
the null (Figure 4F).
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Orientation

(A) dlg18mutant follicle cell clones (marked by the

absence of RFP in green) maintain normal epithe-

lial polarity until stage 6 of oogenesis, as shown

by the normal localization of aPKC (red) apically

and Dlg (blue) laterally.

(B) Metaphase spindles are misoriented in dlg18

mutant follicle cells.

(C) A cumulative plot of metaphase spindle an-

gles in dlg18 mutant follicle cells. Spindle angles

in dlg18 mutant cells (n = 27) differ significantly

from those in the wild-type (p value of <0.005).

(D) Dlg localization is normal in mitotic pinsp62

cells. Mutant cells are marked by the absence

of GFP (in green). Dlg (red) localizes to the lateral

cortex in a mitotic cell, which is outlined by a

white box. DAPI is in blue.

(E and F) Pins localizes to the apical and lateral

cortex in dlg14 (E) and dlg18 (F) mutant cells.

Mutant cells are marked by the absence of Dlg

immunoreactivity (green in E) or RFP (green in

F); Pins-YFP is shown in red.

(G) Pins-YFP (in red) localizes normally during

mitosis in apkcts/apkck06403 at 18�.
See also Figure S3.
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neuroepithelial cells [7, 8, 17]. In agreement with the latter
finding, Pins-YFP shows a wild-type lateral localization during
mitosis in apkcts/apkck06403 transheterozygous flies main-
tained at 18� (Figure 4G). Thus, the lateral enrichment of Pins
in mitotic follicle cells is independent of aPKC.

In conclusion, we have demonstrated that the planar orien-
tation of the mitotic spindle in the follicular epithelium is inde-
pendent of apical, junctional, or basal cues and depends
instead on Dlg, Pins, and Mud. It therefore seems likely that
the spindle is aligned within the plane of the epithelium by
the same mechanisms that orient the spindle along the api-
cal-basal axis in neuroblasts and that the key determinant of
spindle orientation in both cell types is the location of the
Dlg/Pins/Mud complex. The restriction of this complex to the
lateral cortex in epithelial cells depends on Dlg, and its dual
role in apical-basal polarity and spindle positioning therefore
provides a mechanism to couple spindle orientation with the
overall polarity of the tissue.

Experimental Procedures

Drug treatment

Ovaries were suspended in Schneider’s medium (Sigma) containing 5 mg/ml

insulin (Sigma) with or without 100 mg/ml colcemid (Sigma) for 1 hr before

fixation.

Imaging

Somatic clone induction, immunofluorescence, and fixed-cell imaging were

performed as previously described [29].

Spindle Angle Measurements

Spindle angles were calculated with Image J. The angle of the spindle was

determined relative to a line drawn connecting the adherens junctions at the

two apical corners of the mitotic cell. These corners are shared by this cell

and its neighbors.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures

and three figures and can be found with this article online at http://dx.doi.

org/10.1016/j.cub.2013.07.017.
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