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The use of small molecules to target miRNAs is a new type of therapy for human diseases, particularly
cancers. We proposed a novel high-throughput approach to identify the biological links between small
molecules and miRNAs in 23 different cancers and constructed the Small Molecule-MiRNA Network
(SMirN) for each cancer to systematically analyze the properties of their associations. In each SMirN, we
partitioned small molecules (miRNAs) into modules, in which small molecules (miRNAs) were connected
with one miRNA (small molecule). Almost all of the miRNA modules comprised miRNAs that had similar
target genes and functions or were members of the same miRNA family. Most of the small molecule modules
involved compounds with similar chemical structures, modes of action, or drug interactions. These modules
can be used to identify drug candidates and new indications for existing drugs. Therefore, our approach is
valuable to drug discovery and cancer therapy.

m
iRNAs are single-stranded non-coding RNA molecules that play fundamental roles in multiple biological
processes, such as cell differentiation, proliferation, apoptosis and so on1. Many studies have identified
alterations of miRNA expression in a variety of human cancers2,3. Furthermore, complex interactions

exist among miRNAs, experimental factors and phenotypes, especially drugs and diseases4. And the secondary
structures of miRNA, such as stem loops and bulges, are targets to which pharmaceuticals can be applied5.
Currently, RNA inhibition agents, which include antisense oligonucleotides, small interfering RNAs and anti-
miRNA agents, have been applied to preclinical and clinical studies that have investigated potential therapies for
human disorders6. Therefore, targeting over-expressed miRNAs is a potential methodology to develop miRNA-
specific drugs for therapeutic purposes. To this end, some recent efforts have focused on miRNA-targeted drug
discovery. Santaris has developed SPC3649, which is a potential treatment for hepatitis C infection. As the first
miRNA-targeted drug to enter human clinical trials, SPC3649 successfully inhibits miR-122 which is required by
the hepatitis C virus for replication7,8. Gumireddy et al. have conducted a primary screen of .1,200 compounds
and determined that approximately 100 structurally modified molecules are related to the diazobenzene core
structure. They found diazobenzene and its derivatives are effective inhibitors of miR-219.

In addition, miRNAs may affect chemoresistance. Blower et al. have investigated the impact of cellular levels of
let-7i, miR-16 and miR-21 on the growth-inhibitory potencies of 14 anticancer compounds and found that
miRNAs modulate the sensitivity and resistance to anticancer drugs in substantial ways10. Previous studies have
shown that anticancer drugs and miRNAs may have common target genes11. If the target receptors participate in
the overall clinical effects of a drug, these receptors may contribute to drug resistance12. Yang et al. have demon-
strated that miR-214 induces cisplatin resistance by primarily targeting the PTEN/Akt pathway in human ovarian
cancer13.

In summary, investigating the relationships between small molecules (potential drugs) and miRNAs is at the
initial stage. Although Calin has suggested that structure-based approaches, such as molecular docking, are useful
to identify compounds that target miRNAs5, the three-dimensional structure prediction of miRNA remains a
challenge. However, gene expression profiles following drug treatments are available. Approaches that are based
on transcriptional responses have been used to discover drug mode of action and identify new uses for existing
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drugs14. One of the major contributions of this study is the discovery
of links between small molecules and miRNAs in 23 different cancers
based on the differential expression of miRNA target genes and
gene signatures from the gene expression profiles following treat-
ment with small molecules. As a result, we constructed the Small
Molecule-MiRNA Networks (SMirNs) for 17 different cancers and
identified miRNA and small molecule modules. Using these net-
works and modules, we predicted drug target miRNAs, drug candi-
dates for cancer therapy and unique clinical applications for known
drugs.

Results
Small Molecule-MiRNA Networks (SMirNs) in human cancers. In
order to identify the relationships between small molecules and
miRNAs in human cancers, the transcriptional responses to 1,309
compounds and the differentially expressed genes in 23 human
cancers were obtained from the Connectivity Map (cMap)15

and the unifying caner microarray resource (ONCOMINE)16,
respectively. The miRNA target genes were obtained from our
integrated database, which included seven widely used miRNA
target genes prediction tools. Here, using the hypergeometric test
we evaluated the extent to which the miRNA target genes appeared
in the differentially expressed genes in cancer. At the significance
level of 0.05, we identified 406 cancer-related miRNAs (CRMs) for 23
human cancers. The Gene Ontology (GO) enrichment analysis was
used to partition the differentially expressed target genes of one CRM
into significant gene ontology modules (GOMs) (see details in
Materials and Methods). In each significant GOM, the association
between a compound and the miRNA was evaluated by the
Kolmogorov-Smirnov (KS) test based on miRNA differentially
expressed target genes and transcriptional response of compound,
which was represented as a list of genes ranked according to their
differential expression. For each CRM in a specific cancer, if a
significant (P#0.05) association between the small molecule and
the CRM was detected in at least 80% of significant GOMs, we
hypothesized that a biological link existed between the small
molecule and the miRNA in this cancer. As a result, 2,199
associations between 226 CRMs and 572 small molecules were
discovered in 17 different cancers. The workflow diagram was
shown in Figure 1.

We constructed a Small Molecule-MiRNA Network (SMirN) for
each cancer (Figure 2). The sizes of the 17 networks exhibited great
differences. The minimal one was ovary cancer specific SMirN,
which only contained two miRNAs and one small molecule. In con-
trast, Bone marrow cancer specific SMirN involved 42 miRNAs, 283
small molecules and 981 interactions (Figures 3a and 3b). In all
SMirNs, we determined that the majority of miRNAs (75%) were
linked to a few small molecules (#10). The average number of inter-
actions per miRNA was 9.7. However, a few miRNAs, such as miR-
125b, miR-139-5p, miR-302b, miR-487a and miR-570, significantly
interacted with numerous (.65) small molecules. Similarly, the
majority of small molecules (93%) were linked to a few miRNAs
(#10). The average number of interactions per small molecule was
3.8. Trichostatin A (TSA) interacted with the greatest number of
miRNAs (216) and would be further analyzed.

Next, the frequency of each small molecule in all 17 SMirNs was
calculated (Figure 3c). We observed that TSA appeared in all SMirNs,
which suggested that TSA may possess broad-spectrum anticancer
activities. Previous studies have shown that TSA promotes the
expression of some apoptosis-related genes and decreases tumor cells
survival. Therefore, TSA may have the ability to inhibit the growth of
many cancers17,18. miR-19a, miR-19b and miR-23b were the top 3
miRNAs with the highest frequency in the 17 SMirNs (Figure 3d).
miR-19a and miR-19b are members of the miR-17-92 cluster and are
potential human onco-miRNAs that play important roles in tumor-
igenesis19. The aberrant expression of miR-23b has been reported in

several cancers20,21. In this study, we found that two target genes
(ALDH1A1 and ALDH1A2) of miR-23b were drug targets of treti-
noin that was associated with this miRNA in thyroid cancer
(Figure 4a). Tretinoin is an anticancer drug that induces cells apop-
tosis and inhibits cells growth in some cancers22. Thus, our results
indicated that miR-23b might be a new potential drug target for
cancer therapy because of its ability to regulate the target genes
ALDH1A1 and ALDH1A2. In addition, we determined the frequen-
cies of small molecule-miRNA interactions in all SMirNs (Figure 3e).
Interestingly, the associations between TSA and miR-19a, miR-19b
and miR-23b were the top three interactions ranked based on fre-
quency. The common targets of the three miRNAs were significantly
enriched in the MAPK signaling pathway (P52.6331024, Figure 4b)
and the mTOR signaling pathway (P51.3831023, Figure 4c) by
using the hypergeometric test. The MAPK signaling pathway is cru-
cial in the progression of tumor23. The mTOR is involved in human
tumorigenesis, and activated mTOR provides certain tumor cells
with a growth advantage24. In conclusion, we predicted that TSA
might affect the genesis and promote the development of multiple
tumors by targeting the MAPK and mTOR signaling pathways.

In order to globally validate the predicted small molecule-miRNA
associations, we manually collected the relevant literatures that
investigated the relationships between small molecules and
miRNAs from PubMed and Google scholar. Then we tested the
extent to which the predicted associations appeared in the known
associations using hypergeometric test. As a result, our predictions
significantly covered the known associations (P51.26310212).
Especially for the TSA, all but one of the experimentally validated
associations were predicted by our approach. TSA is a member of the
histone deacetylase inhibitor (HDACi), which is effective to the treat-
ment of human tumors and being tested in clinical trials. Brest et al.
investigated the mechanism of action responsible for therapeutic
efficiency of HDACi in tumors25. They treated cancer cell lines with
TSA and found that TSA treatment induced over-expression of miR-
129-5p. The increasing of the miR-129-5p expression was related to
antitumor activity of TSA, whereas the inactivation of miR-129-5p
significantly blocked the TSA-induced cell death. Chen et al. pointed
out that miR-373 was reactivated by the pharmacologic induction of
TSA26. Zhang et al. evaluated the effect of TSA to miRNA expression
in BxPC-3 human cancer cell27. It was found that miR-200c was over-
expressed after TSA treatment by Northern blot analysis.

Biological insights from miRNA modules. In each of the cancer
specific SMirNs, we identified miRNA modules, which were defined
as groups of miRNAs that were connected with the same compound.
According to the previous studies28–31 and the fraction of the modules
with the following properties, the empirical value 5 was set as the
threshold of the sizes of the modules. Only modules with at least 5
miRNAs were reserved for further study. Each miRNA module was
coded with the name of the central compound. We investigated
whether miRNA modules involved biologically similar miRNAs.
To this end, we assessed all of the miRNA pairs in each miRNA
module using three characteristics: common target genes,
functional similarity and same miRNA family. Firstly, the ‘‘Meet/
Min’’ score was employed to calculate the rate of co-regulating the
same target genes that were differentially expressed in the cancer (see
details in Materials and Methods). Secondly, the functional similarity
of two miRNAs in the same module was evaluated based on the
‘‘Biological Process’’ category in GO by using Lin D’s algorithm32.
Finally, miRNA families were extracted from the miRBase database.
We found that 90.625% of all miRNA modules involved miRNA
pairs with at least one of the above similarities (Supplementary
Tables S1 and S2). For example, in the miRNA module TSA of the
esophagus cancer (Figure 5), a high rate of co-regulating the same
differentially expressed targets and high functional similarity were
detected between miR-15b and miR-195 (0.80 and 0.95), miR-15b
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and miR-424 (0.79 and 0.94). miR-15b and miR-195, miR-520h and
miR-520g are the members of the miR-15 and miR-515 miRNA
families, respectively.

Biological insights from small molecule modules. Similarly, a small
molecule module was defined as a group of ($5) small molecules that
were associated with the same miRNA and was coded with the name
of the central miRNA. We further analyzed the compounds in these
modules based on similar structures, common drug targets and
drug interactions. Firstly, the two-dimensional Tanimoto chemical
similarity score was used to calculate the structural similarity
between two compounds within a module (see details in Materials
and Methods). A Tanimoto score of 0.6 was selected as the
threshold33. Secondly, the rate of sharing drug targets was also
evaluated using the ‘‘Meet/Min’’ score, and the known drug-target
relationships were obtained from the DrugBank database34. Thirdly,

we considered drug interactions that were extracted from a popular
and comprehensive online source of drug information (http://
www.drugs.com/).

We determined that most (64.546%) of the small molecule
modules involved drug pairs with at least one of the aforemen-
tioned similarities (Supplementary Tables S3 and S4). For
example, in the small molecule module miR-1207-3p of skin can-
cer (Figure 5), fluphenazine, thioridazine and prochlorperazine
are chemically similar based on the Tanimoto scores. Mean-
while, the three small molecules also shared many common drug
targets. These findings were consistent with those of previous
studies indicating that chemically similar drugs are likely to have
the same targets35. Moreover, a total of 21 known drug interac-
tions, such as sirolimus interacting with rifabutin, were detected in
this module. Coadministration of these two small molecules may
reduce the plasma concentrations and pharmacologic effects of

Figure 1 | Workflow diagram of our approach to construct SMirNs for human cancers.
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sirolimus. In the small molecule module miR-768-3p of the bone
marrow cancer (Figure 5), camptothecin and irinotecan had sim-
ilar chemical structures and shared drug targets. Irinotecan is a
topoisomerase 1 inhibitor and an antineoplastic agent that has
been approved by the U.S. Food and Drug Administration
(FDA) for the treatment of cancer34. Camptothecin is a DNA
enzyme topoisomerase I inhibitor and an antineoplastic agent in
preliminary clinical trials34. The small molecule module miR-139-
5p of thyroid cancer (Figure 5) revealed that lomustine and strep-
tozocin have similar chemical structures. Both of them are the
FDA-approved drugs against tumors34. It indicated that our
method can be used to identify functionally similar small mole-
cules within the same module.

The small molecule modules could be used to predict drug candi-
dates. For example, streptozocin, which can decrease tumor size36,
has been used as an FDA-approved antineoplastic agent34. In the
small molecule module miR-139-5p of thyroid cancer (Figure 5),
2-deoxy-D-glucose (2DOG) is chemical structure similar with strep-
tozocin. 2DOG is a glycolytic inhibitor that has not be previously
included in the DrugBank database. We predicted that 2DOG might
exhibit potential anticancer activity. Previous studies have shown
that 2DOG can enhance autophagy, which is involved in cancer37.
Accelerated glucose uptake for anaerobic glycolysis is an important
metabolic change in tumor cells. 2DOG inhibits effectively glucose
metabolism and causes tumor cell death38. Some studies have also
suggested that the combination of 2DOG and other specific che-
motherapeutic agents is more effective against cancer cells than sin-
gle treatments39. Collectively, 2DOG might be a new drug candidate
for cancer therapy.

In addition, these modules were also useful for drug repositioning.
It is known that inflammatory cells provide a favorable micro-
environment for tumor growth and development. Therefore, anti-
inflammatory therapy exhibits beneficial effects in cancer treat-
ments40. Rimexolone is a known anti-inflammatory agent34. Estra-
diol (E2), which belongs to the small molecule module miR-203 of
bone marrow cancer (Figure 5), is an estrogen, anticholesteremic
agent and anti-menopausal agent according to the DrugBank data-
base34. E2 is chemically similar to rimexolone. Joshua et al. have
reported that E2 attenuates inflammation in the brain of adult male

Figure 3 | The topological properties of SMirNs. (a) The number of CRMs in each cancer. (b) The number of associated small molecules in each cancer.

(c) The frequency of each small molecule in all SMirNs. (d) The frequency of each miRNA in all SMirNs. (e) The frequency of each miRNA-small molecule

interaction in all SMirNs.

Figure 2 | SMirNs for 17 cancers. In each SMirN, the blue circles are small

molecules, and the green triangles are CRMs. An edge between a miRNA

and a small molecule denotes the identified biological link using our

method.
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Figure 4 | (a) miR-23b and tretinoin, which was associated with this miRNA in thyroid cancer, shared the common target genes, ALDH1A1 and

ALDH1A2. (b) The MAPK signaling pathway that was enriched with the common targets of miR-19a, miR-19b and miR-23b. The red nodes represented

these common targets. (c) The mTOR signaling pathway that was enriched with the common targets of miR-19a, miR-19b and miR-23b. The red nodes

represented these common targets.
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rats with severe burn injury41. These results suggested that E2 might
have anti-inflammatory activity.

Discussion
We developed a general procedure to predict the associations
between small molecules and miRNAs based on transcriptional res-
ponses. In previous studies, gene signatures that are extracted from
gene expression profiles have been used to identify associations
among drugs and diseases. Here, we predicted the small molecule-
miRNA associations based on the transcriptional responses follow-
ing drug treatment and miRNA regulation.

Using network theory, we analyzed the constructed SMirNs for 17
different cancers. TSA, miR-19a, miR-19b and miR-23b as well as
their associations appeared most frequently in the SMirNs. After
literature review and functional analysis, we predicted that miR-
23b might be a new potential drug or drug target for cancer therapy
because of its ability to regulate target genes ALDH1A1 and
ALDH1A2. In addition, TSA might affect the development of a broad
spectrum of tumors by targeting the MAPK and mTOR signaling
pathways.

Furthermore, we grouped compounds and miRNAs into modules
separately. In almost all of the miRNA modules, we identified
miRNAs with similar biological functions by assessing whether they
were members of the same miRNA family, sharing common targets
or having GO functional similarities. Most of the compound mod-
ules included small molecules with similar structures, common drug
targets or drug interactions. As we known, the compounds with
similar structures exhibit similar physical and biological properties.
Therefore, the compound modules can be used to predict drug can-
didates and drug repositioning. We identified 2DOG as a potential
new drug candidate for cancer therapy. Based on our module, we also
proposed that E2, which is a known anticholesteremic and anti-
menopausal agent, might have anti-inflammatory activity.

To our knowledge, this is the first study to systematically identify
and analyze the relationships between bioactive small molecules
and miRNAs in a broad spectrum of different human cancers. Our
approach does not require the prior structure information about
compound and miRNA, which may be unknown or difficult to
obtain, except gene expression profiles of compound treatment
and miRNA targets. However, because there are not many researches

Figure 5 | Examples of miRNA modules and small molecule modules.
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describing the relationships between small molecules and miRNAs,
the validation of predicted associations is still a challenge. After a
comprehensive literature-based validation, our predictions signifi-
cantly appeared in the current experimental knowledge. In addition,
lack of transcriptional response data following genome-wide miRNA
perturbations limits the reliability of our results. With the develop-
ment of high-throughput detection techniques and the advance of
miRNA research, our approach can directly extend to process the
gene expression profiles following drug treatment and miRNA per-
turbation, and to identify precise associations between small mole-
cules and miRNAs. Thus, in our future study, we will further improve
our approach and experimentally validate the predicted small mole-
cule-miRNA associations for a specific cancer.

Methods
Datasets. Differentially expressed genes in human cancers. A total of 136 differentially
expressed gene sets spanning 23 human cancer tissue types were downloaded from
the ‘‘cancer versus normal’’ type of analysis in the ONCOMINE database16. For one
cancer, multiple gene sets were integrated as follows: a gene that was over/under-
expressed in at least two gene sets was considered as an over/under-expressed gene in
this cancer. Thus, we obtained the over- and under-expressed gene sets of 23 cancers.
Finally, gene symbols were converted into the probe sets on the Affymetrix Human
Genome U133A (HG-U133A) Array for further analysis.

The miRNAs and their targets. Previous studies have demonstrated that a combina-
tion of multiple algorithms would increase the predictive accuracy of miRNA tar-
gets42,43. Thus, the miRNA targets in this study were gathered from seven algorithms:
RNAhybrid44, DIANA-microT45, RNA2246, miRBase Targets47, miRanda48, PicTar49

and TargetScan50. We extracted miRNA-target pairs that were predicted by at least
two algorithms. We obtained 289,468 miRNA-target gene pairs for 775 miRNAs.
Gene symbols were also converted into probe sets on the HG-U133A Array for
further analysis.

Expression profiles in the Connectivity Map database. Small-molecule perturbed
genome-wide transcriptional response data were downloaded from the Connectivity
Map (cMap, build 02)15. These data comprise more than 7,000 gene expression
profiles from human cultured cell lines that are treated with 1,309 bioactive small
chemical molecules at varying concentrations, representing 6,100 individual
instances. Each instance denotes a treatment and control pair for one small molecule.
The list of probe sets is ranked according to the extent of differential expression
between the treatment and control cells. An instance has some attributes such as
perturbagen name, concentration, cell line and batch etc. Therefore, several instances
may be derived from the treatment of cultured cells with a small molecule.

Identifying cancer-related miRNAs. Enrichment analysis is usually used to assess
the functional associations of an interesting gene set with GO, KEGG and so on51–53.
Here, the differentially expressed gene set of one cancer was considered as a functional
category, which was similar with the priori defined gene sets of the Molecular
Signatures Database (MSigDB), such as CGP (chemical and genetic perturbations)
subcollection54. If the target genes of one miRNA were over-represented in the
differentially expressed gene set of one cancer, we hypothesized that this miRNA was
the cancer-related miRNA (CRM). The significance of the over-representation was
evaluated based on the P-value of the hypergeometric test:

P~
X
x§n

Cx
N
:Cm{x

M{N

Cm
M

where M was the total number of target genes of all miRNAs; N was the number of all
differentially expressed miRNA target genes; m was the number of target genes of one
miRNA; n was the number of differentially expressed target genes of this miRNA.
Using an adjusted P-value (FDR) cutoff of 0.05, we identified CRMs for each of the 23
cancers. The intersections of the target genes of the CRMs and the over/under-
expressed genes in the cancer were denoted as the miRNA over/under-expressed
target genes in the cancer.

Identifying the small molecules associated with CRMs. The cMap database
establishes biological connections among diseases, drugs and genes. In this study, we
extended the application of cMap and developed a novel computational framework to
identify relationships between small molecules and miRNAs in human cancers.

Determining the enriched gene function module. The results of the global similarity
search in cMap were dependent on the probe selection and the number of input
probes. To overcome this limitation, Li et al. have proposed a module-based chemical
functional similarity search approach55. In this study, we extended the approach to
identify the links between small molecules and CRMs. We used GO to group genes
into different functional classes. Each GO term was called a GO module (GOM),
which represented a set of genes that performed a specific biological function. For
differentially expressed targets of a CRM in one cancer, GO enrichment analysis was
performed using the hypergeometric test. The P-value denoted whether the differ-

entially expressed targets were enriched in certain GOM and was calculated as fol-
lows:

P~
X
x§n

Cx
N
:Cm{x

M{N

Cm
M

where M was the number of differentially expressed targets of all CRMs for this
cancer; N was the number of targets in the GOM of interest; m was the number of
differentially expressed targets of the miRNA; n was the number of genes that were
annotated to this GOM out of the above m targets. GOMs with P#0.05 were selected
(Biological Process category).

Evaluating the similarity of differentially expressed genes between CRMs regulations
and small molecule perturbation. For each significant GOM of a CRM, differentially
expressed targets in this GOM were partitioned into two groups based on whether
they were over- or under-expressed. The Kolmogorov-Smirnov (KS) scores were
calculated for over-expressed (KSup) and under-expressed (KSdown) target genes,
respectively:

a~ Max
t

j~1

j
t
{

V(j)
N

� �

b~ Max
t

j~1

V(j)
N

{
(j{1)

t

� �

KSup=down~
a, awbð Þ

{b, bwað Þ

�

where t was the number of target genes in the over- or under-expressed target gene
set, j represented the jth target gene based on the rank of differential expression; N was
the number of all genes in the HG-U133A array. The N genes were ranked according
to the extent of differential expression for an instance, the jth element V(j) of a vector
V was the position of the jth target gene in the ordered list of whole genes. Then
similarity score (S score) was calculated by combining KSup and KSdown, which
showed the extent of expression pattern similarity between an expression profile
treated with a small molecule at a specific concentration and the miRNA targets in
this GOM. S was equal to 0 when KSup and KSdown had the same sign and was equal to
KSup-KSdown otherwise.

Identifying the links between the CRMs and small molecules. For each significant
GOM, the set of t instances from a perturbagen and the list of all instances were
ranked in descending order of the S score. The jth element V(j) of the vector V
denoted the position of the jth instance in the set of t instances of this perturbagen in
the ordered list of all n instances (j51,2,…,t). The enrichment score was defined as
follows:

a~ Max
t

j~1

j
t
{

V(j)
n

� �

b~ Max
t

j~1

V(j)
n

{
(j{1)

t

� �

enrichment score ~
a, awbð Þ

{b, bwað Þ

�

We randomly selected t instances from all n instances and calculated the enrichment
score, repeating this procedure for 1,000 times. Using this process, 1,000 fake
enrichment scores were obtained. The P-value was the fraction that the absolute value
of the fake enrichment score was larger than the absolute value of the real enrichment
score. The P-values represented the statistical significance of the small molecule-
miRNA associations. For each CRM, if one small molecule with P#0.05 appeared in
at least 80% GOMs, the small molecule was considered to link with the CRM. If no
small molecule satisfied the above conditions, the CRM was removed.

Meet/Min score. For one miRNA pair, i and j, their differentially expressed target
gene sets were targets(i) and targets(j), respectively. The ‘‘Meet/Min’’ score was
calculated as follows:

targets(i)\targets(j)j j
min ( targets(i)j j, targets(j)j j)

Namely, the number of the common differentially expressed targets of the two
miRNAs was divided by the size of the smaller target set.

Chemical structure similarity calculation. To calculate the structural similarity of
small molecules, the MOL file of each small molecule was downloaded from the
PubChem compound database56. The small molecules lacking structural information
were filtered out. The two-dimensional Tanimoto chemical similarity score was
determined using the Small Molecule Subgraph Detector software57.
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