
Kamin Blocking Is Associated with Reduced Medial-
Frontal Gyrus Activation: Implications for Prediction
Error Abnormality in Schizophrenia
Paula M. Moran1*., Jennifer L. Rouse1., Benjamin Cross, Rhiannon Corcoran2, Martin Schürmann1.
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Abstract

The following study used 3-T functional magnetic resonance imaging (fMRI) to investigate the neural signature of Kamin
blocking. Kamin blocking is an associative learning phenomenon seen where prior association of a stimulus (A) with an
outcome blocks subsequent learning to an added stimulus (B) when both stimuli are later presented together (AB) with the
same outcome. While there are a number of theoretical explanations of Kamin blocking, it is widely considered to exemplify
the use of prediction error in learning, where learning occurs in proportion to the difference between expectation and
outcome. In Kamin blocking as stimulus A fully predicts the outcome no prediction error is generated by the addition of
stimulus B to form the compound stimulus AB, hence learning about it is ‘‘blocked’’. Kamin blocking is disrupted in people
with schizophrenia, their relatives and healthy individuals with high psychometrically-defined schizotypy. This disruption
supports suggestions that abnormal prediction error is a core deficit that can help to explain the symptoms of
schizophrenia. The present study tested 9 healthy volunteers on an f-MRI adaptation of Oades’ ‘‘mouse in the house task’’,
the only task measuring Kamin blocking that shows disruption in schizophrenia patients that has been independently
replicated. Participant’s Kamin blocking scores were found to inversely correlate with Kamin-blocking-related activation
within the prefrontal cortex, specifically the medial frontal gyrus. The medial frontal gyrus has been associated with the
psychological construct of uncertainty, which we suggest is consistent with disrupted Kamin blocking and demonstrated in
people with schizophrenia. These data suggest that the medial frontal gyrus merits further investigation as a potential locus
of reduced Kamin blocking and abnormal prediction error in schizophrenia.
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Introduction

One of the main ways in which environmental stimuli are

selected for attention and subsequent learning is on the basis of

what is already known about them. Kamin blocking is an

associative learning phenomenon first shown in rats [1]. It

demonstrates that stimuli can be attended to, and thus selected

for learning, based on their reinforcement history. Kamin

Blocking is seen where prior association of a stimulus A with an

outcome blocks subsequent associative learning between the same

outcome and an added stimulus B, when it is later presented in a

compound AB associated with the same outcome. This effect is

seen in animals and humans and can be demonstrated in a variety

of learning paradigms. One explanation of the phenomenon is that

prior learning about stimulus A in phase 1 ‘blocks’ learning about

the second stimulus B in phase 2 because no mismatch between

what is expected and the outcome (i.e. prediction error) is

generated [2].

Schizophrenia patients show a reliable reduction in Kamin

blocking, suggesting abnormal use of prediction error for learning

[3,4,5,6,7,8]. It has been suggested that schizophrenia symptoms

such as delusions, may originate in a generalised inability to

attribute salience or associability appropriately. This results in

spurious prediction errors being generated which in turn leads to

inappropriate associations between elements of experience in the

environment and delusional thoughts are formed to respond to this

[6,9,10,11,12]. There have been several independent demonstra-

tions of abnormal Kamin blocking in people with schizophrenia,

their relatives and individuals high in psychometrically-defined

schizotypy [3,8,13,14].

Surprisingly few studies have investigated the biological

substrate of Kamin blocking despite its theoretical and clinical

significance. However evidence drawn from a diverse range of

experimental approaches suggests that midbrain structures may be

important. The indirect dopamine agonist, amphetamine has been

shown to disrupt Kamin blocking in rats [15,16,17]. Amphet-

amine infusion directly into the nucleus accumbens has also been

shown to disrupt Kamin blocking suggesting that amphetamine

acts through this region. Electrophysiological studies in primates

have shown that the development of Kamin blocking is mirrored

by reduced dopaminergic neuronal firing in the ventral tegmental
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area which projects to the basal ganglia, in blocking versus control

groups [18,19].

fMRI studies in healthy human volunteers indicate that

performance on tasks measuring prediction error are associated

with activation of the ventral striatum/nucleus accumbens.

Rodriguez et al. [20] and Tobler et al., [21] using fMRI in

healthy participants found that areas in the ventral putamen

correlated with the prediction error signal. Tobler et al., [21] used

a classic Kamin blocking design where correct responses to visual

stimuli were rewarded with fruit juice.

There is also diverse evidence suggesting that frontal cortical

regions may be important for Kamin blocking. Lesion of the

frontal cortex in rats had been shown to abolish Kamin blocking

using a conditioned avoidance paradigm [22]. Neuropsychological

studies showing associations between performance on Oades’

Kamin blocking task and a variety of neuropsychological tasks

showed associations with tasks associated with cingulate and

parietal regions [23]. Retrospective revaluation is an effect similar

to Kamin blocking. It refers to the revaluation of the salience of a

conditioned stimulus (CS) following newly acquired information.

The perceived predictive ability of a cue can be altered after initial

compound training with that cue either by training the other cue

of the compound as a valid predictor of the outcome (backward

blocking) or by extinguishing it (unovershadowing). These are

therefore instances of retrospective revaluation. Corlett et al., [9]

studied two forms of retrospective revaluation: backward blocking

and unovershadowing to show event-related activation in the right

prefrontal cortex which had the characteristics of a prediction

error signal [24].

In our study we aimed to investigate the neural basis of Kamin

blocking using a task that is replicably disrupted in schizophrenia

[6] and which we have shown to correlate negatively with

schizotypal personality in a non-clinical sample [5]. We investi-

gated Kamin blocking related activation using fMRI in a tailored

setup with an in-scanner Kamin blocking task, combining test

session with fMRI data acquisition and learning sessions without

fMRI acquisition. Analysis of fMRI data was restricted to a single

large anatomically defined region of interest (ROI). On the basis of

[9] and [21] this ROI comprised bilateral superior frontal gyrus

(including medial, dorsolateral, orbital, and medial orbital parts),

middle frontal gyrus, cingulate regions (anterior cingulate and

paracingulate gyri), caudate nucleus, and putamen. The ROI also

comprised supplementary motor regions (previously shown to be

activated by error responses and error related feedback [25]). We

identified a region in the medial prefrontal cortex portion of this

ROI where - across participants - brain activation in a Kamin

blocking-related contrast increased as behavioural Kamin blocking

decreased.

Materials and Methods

Participants
18 participants, all students or staff of the University of

Nottingham, participated in the experiment with full written

informed consent and Nottingham University Medical School

ethics committee approval. None of the participants reported

neurological disease or a history of mental health history in their

immediate family. Consistent with previous reports a number of

participants (50%) did not demonstrate the Kamin blocking effect

[3,5,6].This proportion was higher than in previous studies in

controls which is typically 10–20%. For the present report, fMRI

data analysis was restricted to participants who demonstrated

Kamin blocking (see below for definition of Kamin blocking

score). Nine participants (4 male, 5 female) met this criterion,

mean age 22.8 years (SD 5.1, range 19–34 years). We measured

psychometrically defined schizotypy in individuals prior to

scanning using the Oxford –Liverpool Inventory of feelings and

experience (O-LIFE) [26], as reported previously [5], comprising

scales for unusual experiences (UNEX) introvertive anhedonia

(INTAN), and cognitive disorganisation (COGDIS). Mean (stan-

dard deviation) O-LIFE scores for whole sample (n = 18) were as

follows; UNEX: 4.17 (4.7), INTAN: 4.28(2.4), COGDIS: 7.56

(5.6). There were no significant differences in age, sex or

schizoptypy scores between fMRI-evaluated and non-evaluated

participants. O-LIFE scores for included participants (n = 9) were

UNEX: 3.9 (4.3), INTAN: 3.8(4.3), COGDIS: 7.11 (5.5) and

excluded participants (n = 9) UNEX: 4.4 (5.3), INTAN: 4.67(2.6),

COGDIS: 8 (6).

Stimuli and task
These were derived from Oades’ behavioural experiment

described in [3,4] [5,6] and rewritten in E-Prime V1.1 (Psychology

software tools Inc.). Participants are instructed that they are a

hungry mouse trying to find his cheese in a ‘‘house’’ (Figure 1 and

2 and Information S1 and S2 for full description of task and

procedure). On a typical trial one of two sets of tri- or di- coloured

rectangular bars appears on the screen for 1 second. There are

two sets of colours (e.g. set 1 = red (colour 1), green (colour 2) and

blue (colour 3); or set 2 = yellow (colour 1), turquoise (colour 2) and

brown (colour 3). Each set of colours corresponds to a particular

location in the ‘‘house’’ which are numbered 1 to 8. Participants

identify the location of the cheese by pressing one of two button

boxes corresponding to the 8 possible locations. If the answer is

correct a piece of cheese appears and ‘‘Correct’’ appears below the

house plan, the participant earns points displayed at the top left of

the screen which are added to a tally of cumulative points accrued

on the upper right of the screen. If an incorrect choice is made

‘‘incorrect’’ is displayed on the bottom of the screen or there a

failure to respond within the period then ‘‘no response detected’’ is

displayed.

The present study used an fMRI-adapted version of Oades’ task

(1996) as an in-scanner Kamin blocking task (see Information S1

for full details). At the beginning of each fixed length 5-s trial,

mouse and colours were superimposed on the house template (the

template remained on screen throughout the fMRI experiment,

except for breaks between sessions). At a time of 1 s into the trial,

the colours disappeared. Subjects were instructed to press one out

of eight response buttons (4 on each hand) as quickly and

accurately as possible. Once a button press was detected (or at 3 s

into the trial, whichever was earlier), feedback information was

superimposed on the house template. At the end of the trial (5s

after onset), feedback information disappeared. The next trial

followed either immediately or after 1, 2, or null trials (5 – 15 s

with only house template on screen). Test trials comprised 40 trials

of colour 1 and 40 trials of colour 3, resulting in a total duration of

120*5 s = 10 min (inclusive of 40 null trials).

The KB task is run in two conceptual phases 1) Overshadowing

(OS) with a test phase and 2) Blocking (BL) with a test phase. In

OS there were 90 training trials where blocks of three colours were

presented. This number of trials was determined on the basis of

pilot behavioural experiments such that 100% of participants

showed learning. Test trials (described above) probed how much

learning had accrued to individual elements of the tri-colour

blocks. In BL there were 90 training trials with a di-colour bar

followed by 90 trials where an additional colour was added to form

a tri-colour bar. These sessions were followed by test trials probing

how much learning had accrued to individual elements of the tri-

colour blocks. As training with the two colour bar fully predicts the

Kamin Blocking and Medial Frontal Gyrus Activation
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spatial location, blocking should be demonstrated as slower or no

learning about the third added colour. A Kamin blocking score

was calculated from the mean difference in latency to respond to

the first and third colour bars in the two conditions OS and BL:

Reaction times (RT) are calculated in milliseconds (ms).

BLTest RTcolour3{RTcolour1ð Þ½ �{

OSTest RTcolour3{RTcolour1ð Þ½ �

This calculation of Kamin blocking as a function of an

overshadowing/basal learning condition subtracts any potential

confounding influence of overshadowing, colour, laterality of

stimulus presentation etc. on reaction times. This blocking score

was calculated for each of the test trial pairs and the latency

difference was averaged across pairs of trials. Data from the first

trial pair were discarded to remove any confounds of the effect of

surprise when trial format changed to individual presentation as in

previous studies [3] [5,6]. The task began once anatomical

scanning was complete. Subjects remained in the scanner from the

beginning of the anatomical scan to the end of BL-test, altogether

approximately 65 min.

A button-box practice programme and a familiarisation

programme (details in information S1) were run during the

anatomical scan to familiarise participants with the set-up prior to

the Kamin blocking protocol, summarised below (see Figure 1 for

experiment overview):

1] OS- Learning [90 trials (tri-colour bar) @5s each = 450s,

7.5 min).

2] OS- Test (120 trials (single colour bar), 40 trials colour 1, 40

trials colour 3, 4 null trials @ 5s each = 600 secs, 10 min.

3] BL-Learning separated into 90 trials (di-colour bar) then 90

trials (tri-colour bar comprised of di-colour bar with extra coloured

rectangle added @5 secs each, 26450s, 267.5 min).

4] BL-Test (120 trials (single colour bar), 40 trials colour 1, 40

trials colour 3, 4 null trials @ 5s each = 600 secs, 10 min.

Scanning
MR images were acquired on a Philips Intera 3T scanner with

8-channel SENSE coil. Anatomical scans used an SPGR sequence

with 1mm61mm61mm, resolution. 160 slices covered the whole

brain. Functional scans used echo-planar imaging with TR 2.5s,

TE 40 ms, FA 85u, matrix 64664, field of view 1926192, in-plane

resolution 3mm63mm and slice thickness 3 mm (without gaps), 40

slices. During each of the 2 fMRI phases (Figure 1 for

experimental overview), 252 volumes were acquired (duration of

each session 630 s, comprising 2 initial trials, a sequence of 80 test

trials and 40 null trials, and 4 null trials at the end).

fMRI data evaluation
Functional data underwent standard preprocessing in SPM5

(Wellcome Trust Centre for Neuroimaging, University College

London): realignment for movement correction, normalization to

SPM templates (in MNI space), and spatial smoothing

Figure 1. Order of conditions in the experiment (A) and outline of ‘‘mouse in the house’’ task (B). Anat = anatomical scan. See
methods and information S1 & S2 for more detailed explanation.
doi:10.1371/journal.pone.0043905.g001
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(6 mm66 mm66 mm full-width-at-half-maximum, i.e., twice the

original voxel size in each dimension). For subject-level statistics,

pre-processed images were entered into a general linear model

with regressors representing the onsets of colour bar presentation

trials. Realignment parameters were included as nuisance

variables. For each subject, two contrast images were computed:

(1) ‘‘Trial onset’’ for all colour bar presentation trials, regardless of

trial type, used for masking purposes only and (2) ‘‘KB effect

contrast’’, [Blocking phase (colour 3- colour 1)]-[Overshadowing

control phase (colour 3- colour 1)], as the contrast of interest (note

the difference calculation is the same as for the behavioural KB

score). For each contrast, 9 subjects’ contrast images underwent

random-effects group analysis. A region of interest (ROI or search

volume for KB effect) was defined as the overlap of the following

two volumes (shown in Figure 3): (1) a single large hypothesis-

derived, anatomically defined ROI comprising superior frontal

gyrus (with medial, dorsolateral, orbital, and medial orbital parts),

middle frontal gyrus, cingulate regions (anterior cingulate and

paracingulate gyri), caudate nucleus, putamen, and supplementary

motor regions, all bilateral (based on parcellation according to

[27], and (2) all voxels activated in the contrast ‘‘Trial onset’’,

thresholded at an extremely liberal p,0.05 uncorrected for

masking purposes. The resulting ROI (search volume for KB

effect) comprised 1766 voxels = 48 ml. Within this ROI, KB-

effect related activation was thresholded at a standard p,0.001

uncorrected at voxel level and at p,0.05 at cluster level with

small-volume correction for the 48-ml KB-effect ROI. Locations

of activated clusters are reported in MNI coordinates. Corre-

sponding brain regions were identified in a brain atlas [28] after

conversion of coordinates (mni2tal procedure, Matthew Brett,

http://www.mrc-cbu.cam.ac.uk/Imaging/Common/mnispace.

shtml).

Results

Behavioural experiment
Out of 18 participants 9 did not demonstrate Kamin blocking in

this sample, the scores of these participants were in fact highly

negative suggesting that an alternative strategy may have been

used such as augmentation. We therefore analysed FMRI data

from the remaining 9 participants that showed a Kamin blocking

score .0. These were significantly greater than zero, one-sample

T(8) = 4.92, P,0.001 Vs zero. Schizotypy scores did not correlate

significantly with KB scores following Bonferroni correction in this

sample, however INTAN was negatively correlated with KB score

in the full sample (n = 18), r(18) = 245, P,0.05 which is

consistent with previous reports [4].

Figure 2. Trial structure during all sessions (OS-learn, OS-test, BL-learn, and BL-test). The ‘‘Mouse in the House’’ example screen (top
right) refers to a dicolour-bar trail from the BL-learn condition. At the beginning of the trial, a colour bar appears near the top of the screen, and the
mouse appears either left or right on the house template. After the subject’s response or at 3 s into the trial (whichever is earlier), a feedback display
is shown, and in case of a correct answer only, a wedge of cheese appears at any of the 8 numbered positions. See information S1 & S2 for more
detailed explanation.
doi:10.1371/journal.pone.0043905.g002
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fMRI experiment
In random effects analysis across N = 9 subjects, statistically

significant brain activation in the Kamin-blocking-related contrast

within the frontal-cingulate-caudate-putamen ROI was observed

in a single frontal midline cluster (Fig. 3). In this 5-voxel cluster,

activation exceeded a voxel-level threshold of p,0.001 and

reached p = 0.030 at cluster level (with small-volume correction

for the ROI). The location of the peak voxel (Zmax = 3.77, at 3 30

42 in MNI coordinates or 3 31 37 in Talairach coordinates)

corresponds to the right medial frontal gyrus portion of the frontal-

cingulate-caudate-putamen ROI – Brodmann area 8 in the atlas

brain.

In the second analysis step, Kamin-blocking-related contrast

estimates (for the frontal midline peak voxel identified in the first

step) were read subject by subject. These contrast estimates were

inversely correlated with individual subjects’ in-scanner behav-

ioural Kamin Blocking scores (Pearson’s r = 20.841, p = 0.004, see

inset in Figure 3). Note that the first analysis step tests brain

activation against zero, whereas only the second step tests for

correlation between brain activation and behavioural Kamin

blocking score.

Discussion

This study aimed to identify a brain signature of Kamin

Blocking using a task known to be disrupted in schizophrenia

patients and healthy individuals with high psychometrically-

defined schizotypy. In individuals that demonstrated the Kamin

blocking effect we identified robust Kamin blocking related brain

activation in right medial frontal gyrus. Across participants, this

activation was negatively correlated with behavioural Kamin

blocking scores.

Medial frontal gyrus is one of the regions where grey matter

volume has been shown to be decreased in chronic schizophrenia,

which is consistent with previous reports that this Kamin blocking

task is disrupted in chronic schizophrenia patients [29]. Pomarol-

Clotet et al. [29] report reduced activation in two clusters in

chronic schizophrenia patients compared to controls during

performance of a working memory (2-back) task, the peak of one

of these clusters (MNI co-ordinates 2,26,50) is notably close to the

peak identified in this study (MNI co-ordinates 3,30,42).

The medial frontal gyrus is located within the prefrontal cortical

region. Kamin-blocking related activity within the prefrontal

cortex is consistent with a number of previous studies investigating

prediction error using associative learning paradigms [24] [30–

32]. Roiser et al. [32] found that this activation formed a

continuous relationship with aberrant learning. It has been

suggested [31] that many studies investigating prediction error

do not separate activation concerned with incentive value and that

concerned with prediction error. As Kamin blocking is the classic

prediction error design, indeed the basis of the most influential

theory of prediction error [33] there is minimal interference from

other learning or reward processes. Further evidence for the

‘‘pure’’, primary nature of prefrontal cortical prediction error

signal is also seen in Turner et al [31]. Dopamine prediction error

signals can also be represented by a reduction in normal firing

pattern as opposed to an increase. This reversed, or negative

prediction error occurs not when the US is aversive, but rather

when it occurs to a lesser extent than would be expected on the

basis of previous learning [2,20]. Turner et al.’s super-learning

paradigm involves both positive and negative prediction errors. In

both cases, there was event-related activation in the prefrontal

cortex, suggesting that perhaps this area may be important to all

forms of prediction error signalling.

It is possible therefore that areas isolated in other studies may be

responsible for more specific elements of prediction error

signalling. The ventral putamen, which reported by [21] is a

structure in the striatum. In single-cell recording studies using

primates, Schultz and Dickinson [2] concluded that neurons in this

region fire in relation to unpredictability without fully recording

the prediction error signal, particularly as there seems to be no

negative prediction error in response to US omission. However, if

this were the case, it is unclear why Tobler et al., [21] identified

the ventral putamen and orbitofrontal cortex as central to

prediction error. One possible explanation for this discrepancy

may be the use of fruit juice as the unconditioned stimulus (US)

which has a naturally appetitive value, as participants were

instructed not to eat or drink for several hours before testing. It

may be that natural rewards such as food, drink and sex produce

prediction error activity elsewhere in the brain. Tobler et al., [21]

did however find activation in many other brain areas, including

the prefrontal cortex suggesting that different brain areas may be

responsible for different prediction error functions.

It has been suggested that the prefrontal cortex may not be

involved in early prediction error coding but rather becomes

involved when inferences need to be made on the basis of

Figure 3. Kamin-blocking-related activation (KB, red) as
identified in random effects analysis across 9 subjects (shown
at p,0.005 for display purposes instead of p,0.001 as used in
analysis), peak voxel at 3 30 42 in MNI coordinates, corre-
sponding to right medial frontal gyrus in atlas brain. Anatomical
ROI (yellow) comprising superior frontal gyrus (with medial, dorsolat-
eral, orbital, and medial orbital parts), middle frontal gyrus, cingulate
regions (anterior cingulate and paracingulate gyri), caudate nucleus,
putamen, and supplementary motor regions, all bilateral. Functional
ROI (turquoise) defined as all voxels with trial-onset-related activation
(regardless of trial type, p,0.05), restricted to anatomical ROI. The
functional ROI served as search volume for Kamin-blocking-related
activation. Inset, lower right: Subjects’ (N = 9) behavioural Kamin
blocking scores plotted against Kamin-blocking-related brain activation
(read as contrast estimate from peak voxel of the 5-voxel cluster with
p,0.001).
doi:10.1371/journal.pone.0043905.g003
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prediction error. Thus it may be that tasks that have greater

executive demands lead to significant prefrontal activation. This

may help to explain the lack of activation in the midbrain in our

study that had been expected on the basis of previous experiments;

this activation may be primary. Logothetis et al.,[34] investigated

the physiological basis of fMRI in primates and found that the

BOLD signal was more likely to reflect neuronal input as opposed

to the spiking of projection neurons. Carter et al., [35] investigated

CS-US contingency awareness in classical conditioning. While

activity in the amygdala was found to correlate with skin

conductance measures, the implicit measure of conditioning,

activity in the prefrontal cortex was found to correlate with

contingency awareness. Prefrontal cortical activation has been

reported to be associated with attempting to find solutions to a task

with no correct answers [36] and Mamelia et al., found that

activity in this area was associated with lying [37]. Deception is a

commonly used paradigm to assess theory of mind which has also

been associated with activity in the medial frontal gyrus and which

is deficient in patients with schizophrenia [38,39,40,41]. We are

currently investigating whether prediction error and theory of

mind abnormalities are associated, on the basis of the present data

we would predict they would be.

The medial frontal gyrus has previously been associated with a

number of cognitive functions that have themselves been

independently associated with Kamin blocking performance such

as sustained attention and uncertainty. Task-related increase in

cerebral blood flow in medial frontal gyrus (among other regions)

has been demonstrated in a sustained attention task [42] and a go/

no-go visual reaction time task [43]. Consistent with this

behavioural data from our laboratory has also indicated sustained

attentional disruption in patients that have Kamin blocking deficits

[44].

Medial frontal gyrus activity measured using fMRI has been

associated with situations of uncertainty [45,46] which is consistent

with theoretical accounts of learning. Volz et al., [47] found

positive correlation between prediction uncertainty and a number

of regions including a medial frontal peak at [4,30,46 Talairach

co-ordinates] which is close to that we identified in the present

study [3,31,37 Talairach co-ordinates]. Kamin and later learning

theorists suggested that the critical determinant of conditioning

(learning) is the surprise value of the reinforcer [48]. A reinforcer

attracts attention and sustains new learning when there is

uncertainty about its occurrence. Once it is fully predicted the

organism will no longer continue to associate other stimuli with the

unconditioned stimulus (US). Volz et al., [46] suggest that there is

a common cerebral correlate for uncertain predictions irrespective

of whether they are internally or externally generated, but

different correlates for coping strategies of uncertainty. They

suggest that BA8 (corresponding to the medial frontal gyrus region

of activation in this study) reflects that we are uncertain, while other

networks reflect what we do to cope with this uncertainty. Elliott

and Dolan [49] suggested that mesial BA 8 activation represents

adaptive stimulus-response mappings, as distinct from internally

guided guessing. Volz et al., suggest further [47] that BA 6 and

mesial BA 8 are both involved in the acquisition of stimulus-

response associations, but that with BA 8 specifically modulates

this learning process by error evaluation. Such a possibility is

supported by the present findings where we show a negative

correlation with Kamin blocking. Higher Kamin blocking score

considered in terms of lower prediction error generation to the

added stimulus, would be reflected as lower medial frontal gyrus

activation.

Further experiments would be required to ascertain the specific

predictive relationship and potential temporal order of these

constructs to test this hypothesis.

One limitation of this study is the small number of participants.

We have adapted the ‘‘mouse in the house’’ programme which we

know to be disrupted in people with schizophrenia and to have

been independently replicated by two groups, to a design for

fMRI, but a higher number of participants in the study did not

show Kamin blocking compared to the behavioural trials of the

task, meaning only 50% of those tested could be evaluated for

Kamin blocking. It is possible that participants may have used

alternative strategies to perform this task in the scanner

environment. However despite this we were able to detect

significant correlation between activity in medial frontal gyrus

and Kamin blocking. Our sample of participants was relatively

homogenous in terms of age, socio-economic status and schizotypy

scores, we have no evidence that those who demonstrated Kamin

blocking in this task were selectively ‘‘different’’ from those that

did not show blocking, but this remains a possibility. Of those that

did not show blocking most had extremely high negative blocking

scores indicating perhaps that an alternative associative learning

phenomenon such as augmentation might have occurred e.g. [50].

The reason for this requires further investigation before any firm

conclusion can be drawn.

In summary we have shown that performance in the ‘‘mouse in

the house’’ Kamin blocking task is associated with reduced activity

in the medial frontal gyrus. This has implications for the neural

substrate of Kamin blocking and by inference of its disruption and

abnormal use of prediction error in patients with schizophrenia.

Supporting Information

Information S1 Adaptation of original Oades’ experi-
mental design with joystick for button box response and
fMRI. Figure 1 A: Beginning of a trial with mouse on the left B:

Beginning of a trial with mouse on the right C: Trial with colour

set D: Feedback showing the participant they have found the

cheese.

(DOCX)

Information S2 Experimental procedure. Figure 2. Ka-

min’s blocking design compared to Oades’ task design.

(DOCX)
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