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Abstract. In spite of compelling evidence linking amyloid-� (A�) disturbances to the pathophysiology of Alzheimer’s disease
(AD), A�-based treatments have consistently failed to produce any beneficial effects both in mild cognitive impairment (MCI)
and AD, even with successful reductions of toxic aggregated and soluble A� species. Before abandoning both the hypothesis
and approach, there is a need to examine some overlooked factors that may have contributed to the lack of efficacy, such
as the potential drug-induced increases in neuronal hyperactivity leading to adverse cognitive effects. In particular, we posit
that selective cholinergic and noradrenergic pathways will be especially vulnerable to this adverse effect. If confirmed, this
idea could help identify a potentially preventable and treatable obstacle for enhancing the efficacy of therapeutic agents in
MCI and AD.
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The repeated failure of amyloid-� (A�)-lowering
drugs to demonstrate efficacy in the treatment of
mild cognitive impairment (MCI) and Alzheimer’s
disease (AD) have led many pharmaceutical spon-
sors to abandon these approaches, and are posing
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a serious challenge to the A�/amyloid hypothesis
of AD pathophysiology. However, although several
attempts have been made to explain these failures
from within the amyloid framework (e.g., [1–3]),
a further explanation has been largely neglected.
Namely, that this therapeutic failure might have been
caused by a potentially treatable complication of
these treatments: an accentuation of neuronal hyper-
activity from successful brain A� plaques removal.
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This hypothesis was recently put forward by Busche
and colleagues [4, 5], but the notion that hyperactiv-
ity of certain neuronal systems could contribute to the
pathophysiology of cognitive dysfunction in AD has
an even longer publication history [6].

In a series of experiments conducted by Busche
and colleagues [7] using two-photon Ca2+ imag-
ing mouse model of AD, 29% of layer 2/3 cortical
neurons showed a reduction in neuronal activity,
whereas 21% showed hyperactivation. They also
showed that the appearance of hyperactive neurons
correlated with the density of plaques and impair-
ments in the animals’ learning ability. Furthermore,
they also demonstrated that neuronal hyperactivity
was decreased by diazepam, an agonist of the GABA-
A receptor, resulting in enhanced GABAergic tone,
and increased by a GABA-A receptor antagonist.
Thus, these findings suggest that a greater sensitivity
of inhibitory GABAergic neurons to the neurotoxic
effects of soluble factors in the vicinity of plaques
mediated the increased hyperactivity of excitatory
neurons.

In a subsequent investigation, the same group [8]
provided evidence that increased soluble A� species,
rather than plaques, resulted in neuronal hyperac-
tivation. They demonstrated that hyperactivation of
hippocampal neurons was present in a young mouse
model of AD prior to the development of plaques,
and that it could be prevented by the administra-
tion of the gamma secretase inhibitor LY-411575,
which decreased soluble A� levels. They also showed
that direct application of soluble A� in wild type
mice induced neuronal hyperactivity. These results
are consistent with findings from a number of preclin-
ical investigations [9, 10] linking soluble A� species
to a dysfunction of inhibitory cortical interneurons,
aberrant increases in excitatory activity, and cognitive
deficits.

Consistent with preclinical findings [11], Bakker
and colleagues [12, 13] reported that in individu-
als with MCI, who showed increased high-resolution
fMRI BOLD activation in the left hippocam-
pal dentate gyrus/CA3 (DG\CA3) sub-regions
and entorhinal cortex following a memory task,
chronic treatment with a low dose of the marketed
anti-epileptic drug levetiracetam resulted in a nor-
malization of fMRI BOLD response and improved
cognition.

In a more recent investigation [14], it was reported
that administration of monoclonal antibodies against
A� and successful removal of brain amyloid plaques
in transgenic AD models, rather than producing a

reduction in cortical neuronal hyperactivity, as had
been previously observed with a reduction in sol-
uble A� species after gamma secretase inhibition,
actually resulted in a pathological increase. Addi-
tionally, other studies have shown that treatment
with BACE1 inhibitors, which may also reduce A�
plaques by targeting prefibrillary A� surrounding the
plaques [15, 16], may actually correct the brain circuit
abnormality, neuronal hyperactivity, and associated
cognitive deficit in a mouse AD model [17]. How-
ever, as pointed out by these authors, the relevance
of these results based on a mouse model of AD to
humans remains to be established especially since
clinical trials with BACE 1 inhibitors (e.g., verube-
cestat, lanabecestat) in MCI and AD have also failed
to demonstrate any efficacy.

In AD, the presence of amyloid plaques is not lim-
ited to the neocortex, but also extends to other brain
areas, including sub-cortical cholinergic and adren-
ergic nuclei, which suffer extensive degeneration.
However, studies have demonstrated that concomi-
tant upregulation of selective cholinergic [6, 18–20]
and adrenergic [21] pathways also may emerge in
both MCI and AD. Thus, any drug-induced removal
of A� plaques from these regions may potentially
yield even further increases in the activity of selec-
tive pathways, eventually reaching a tipping point
beyond which more activity would exacerbate neg-
ative outcomes, following an inverse U relationship
between activity and performance [22, 23]. However,
as no direct evidence has been provided so far, in
animal models, to test this conjecture, future studies
using high field fMRI and other emerging techniques
should determine if treatment with BACE1 inhibitors,
and other amyloid-based treatments, normalize or
accentuate neuronal hyperactivity in selective cholin-
ergic and noradrenergic pathways implicated in
cognition and memory.

All in all, the observations from the preclinical
literature that some amyloid-based treatments can
induce neuronal hyperactivity and impair cognition,
whereas others such as BACE1 inhibitors can actu-
ally correct these abnormalities, highlight the need to
study the effect of these classes of drugs on neuronal
hyperactivity in AD and MCI—and especially on spe-
cific cholinergic and adrenergic pathways providing
input to the hippocampus, and other brain regions
implicated in cognition including attention and mem-
ory. This endeavor will allow us to determine if
neuronal hyperactivity is accentuated in conjunction
with successful drug-induced reductions in existing
or newly formed brain A� plaques, and if these
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changes are associated with a worsening or a lack
of significant improvement in cognition. Abnormal
neuronal activity is potentially preventable and treat-
able. Therefore, if the hypothesized association is
confirmed, it could provide an approach for over-
coming the current limitations of potentially disease
modifying A�-based treatments for MCI and AD and
a further assessment of A�/amyloid hypothesis.
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