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Abstract: In this study, we constructed a recombinant Escherichia coli strain with different promoters
inserted between the chromate-sensing regulator chrB and the reporter gene luxAB to sense low
hexavalent chromium (Cr(VI)) concentrations (<0.05 mg/L); subsequently, its biosensor character-
istics (sensitivity, selectivity, and specificity) for measuring Cr(VI) in various water bodies were
evaluated. The luminescence intensity of each biosensor depended on pH, temperature, detection
time, coexisting carbon source, coexisting ion, Cr(VI) oxyanion form, Cr(VI) concentration, cell type,
and type of medium. Recombinant lux-expressing E. coli with the T7 promoter (T7-lux-E. coli, limit of
detection (LOD) = 0.0005 mg/L) had the highest luminescence intensity or was the most sensitive for
Cr(VI) detection, followed by E. coli with the T3 promoter (T3-lux-E. coli, LOD = 0.001 mg/L) and that
with the SP6 promoter (SP6-lux-E. coli, LOD = 0.005 mg/L). All biosensors could be used to determine
whether the Cr(VI) standard was met in terms of water quality, even when using thawing frozen
cells as biosensors after 90-day cryogenic storage. The SP6-lux-E. coli biosensor had the shortest
detection time (0.5 h) and the highest adaptability to environmental interference. The T7-lux-E. coli
biosensor—with the optimal LOD, a wide measurement range (0.0005–0.5 mg/L), and low deviation
(−5.0–7.9%) in detecting Cr(VI) from industrial effluents, domestic effluents, and surface water—is
an efficient Cr(VI) biosensor. This unprecedented study is to evaluate recombinant lux E. coli with
dissimilar promoters for their possible practice in Cr(VI) measurement in water bodies, and the
biosensor performance is clearly superior to that of past systems in terms of detection time, LOD,
and detection deviation for real water samples.

Keywords: biosensor; hexavalent chromium; limit of detection; reporter gene

1. Introduction

Hexavalent chromium (Cr(VI)) is widely used in metal refining, leather tanning,
wood preservation, and chemical and refractory processing; it is also applied to produce
stainless steel, textile dyes, mimeographs, and plastics and as an anticorrosion agent [1,2].
If wastewater containing Cr(VI) is not treated properly, it may directly or indirectly pollute
the water body or soil. Cr(VI) has been listed as a hazardous substance by the Agency
for Toxic Substances and Disease Registry since 2011. Cr(VI) can damage DNA and cause
varied toxicity, mutagenicity, and carcinogenicity, because it can quickly pass through the
cell membrane and enter the cell given its high solubility, bioavailability, and mobility [3–5].
In Taiwan, environmental protection agencies have set 0.5 mg/L as the maximum allowable
level (MAL) for Cr(VI) in industrial and domestic effluents and 0.05 mg/L as the MAL in
surface water and fishery water. Thus, the need for sensitive Cr(VI) detection is high, but
the design of such sensors is challenging.

Biosensors 2021, 11, 357. https://doi.org/10.3390/bios11100357 https://www.mdpi.com/journal/biosensors

https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0003-2975-1708
https://orcid.org/0000-0002-0425-5444
https://doi.org/10.3390/bios11100357
https://doi.org/10.3390/bios11100357
https://doi.org/10.3390/bios11100357
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/bios11100357
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios11100357?type=check_update&version=1


Biosensors 2021, 11, 357 2 of 14

Conventional analytical techniques such as atomic absorption spectroscopy, induc-
tively coupled mass spectrometry, and ultraviolet–visible spectrophotometry are sensi-
tive and reliable for Cr(VI) detection but are expensive, laboratory-bound, and time-
consuming [6]. Additionally, they only measure total metals but cannot distinguish be-
tween bioavailable and biounavailable metal concentrations or analyze the toxicity of
metals [7,8]. By contrast, biological methods are useful alternatives because they can detect
bioavailability and are low cost, easy to use, small, portable, highly sensitive, and highly
selective [5,9]. Of the biological methods, bacterial biosensors are suitable for application
as environmental sensors and early warning devices, even for on-field measurements [10].

Some Cr(VI) measurement techniques based on biological reactions have been de-
veloped. The performance of enzyme-based biosensors (e.g., amperometric enzyme and
urease) for Cr(VI) detection is easily affected by the environment [11,12]. V79 cell biosensors
have a wide Cr(VI) measurement range (0.97–19.4 mg/L), but their cost is high compared
with that of microbe biosensors [13]. The performance of microbial-based biosensors
(e.g., sulfur-oxidizing bacteria and Enterobacter aerogenes T2) for Cr(VI) detection is easily
affected by coexisting metal ions, and these biosensors cannot measure Cr(VI) concentra-
tions ≤0.05 mg/L [14,15]. The limit of detection (LOD) of microbial fuel cell (MFC)-based
biosensors (inoculated with Exiguobacterium aestuarii YC211) is 2.5 or 5 mg/L depending
on the system configuration [16,17]; however, the LOD is insufficiently sensitive to detect
low Cr(VI) concentrations (e.g., ≤0.05 mg/L).

To detect low Cr(VI) concentrations, an engineered biosensor (whole-cell biosensor)
should be considered. Many strains that can remove Cr(VI) have been discovered, such
as Pseudomonas spp., Streptococcus lactis, Stenotrophomonas maltophilia, Pannonibacter phrag-
mitetus, Cupriavidus metallidurans, and Ochrobactrum sp., and a key gene—the chr gene
(responsible for Cr(VI) reduction)—has been identified [18–21]. However, considerable
differences exist in the sequences of chr genes from different strains, which results in
disparate reduction activities [21]. Among such strains, the genus Ochrobactrum has high
Cr(VI) reduction ability; thus, the chr gene from Ochrobactrum spp. should be used to
measure Cr(VI) [19,22].

A biosensor can be genetically engineered by placing a reporter gene, such as lacZ,
gfp, luc, or lux, under the control of a transcriptional activator [23]. Of these reporter
genes, lux and luc can rapidly obtain detectable signals, whereas gfp requires a long
induction period for obtaining environmental responses [10], and the LOD of the biosensor
using gfp as the reporter gene is often inferior to that of the biosensor using lux or luc
as the reporter gene [24]. Thus, using the reporter gene from luminescent bacteria to
construct a recombinant bacterium has considerable application potential for achieving
satisfactory LOD. To increase the sensitivity, signal intensity, and response speed of whole-
cell biosensors, a suitable promoter should be selected. The common promoters SP6, T3,
and T7 have similar but distinct specificities [25]. T7 is a strong promoter that actuates
gene expression tuned to the highest level, thus amplifying the detection signal and
producing a high LOD [26]. By contrast, relatively weak promoters (SP6 and T3) may
adapt to environmental variation, which produces different signal characteristics and
distinct detection ranges [27]. Thus, the LOD and measurement range of the biosensor
would be improved or expanded with the insertion of suitable promoters into recombinant
luminescent bacteria for moderate control of the expression of reporter genes [28,29].

Recombinant luminescent bacterial biosensors have been constructed to detect Hg2+,
Cu2+, Pb2+, Ag+, Cd2+, Ni2+, Zn2+, As3+, and As5+ [7,30]. However, few recombinant
biosensors have been developed for Cr(VI) detection and for measuring Cr(VI) in real
water samples. Smutok et al. (2011) constructed Hansenula polymorpha recombinant cells
to detect Cr(VI), but the LOD (0.52 mg/L) was poor [31]. Branco et al. (2013) constructed
two whole-cell biosensors, namely pCHRGFP1 Escherichia coli and pCHRGFP2 O. tritici,
including the chrB regulator gene and gfp reporter gene to detect bioavailable Cr(VI). The
recombinant E. coli biosensor was more sensitive than the recombinant O. tritici biosensor,
and its LOD was 0.0194 mg/L in the 3-h detection time; however, complete and detailed
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evaluation in real water samples was lacking. To detect ≤0.05 mg/L Cr(VI) (MAL as per
regulations), a strong promoter (e.g., T7 promoter) fused with a sensitive reporter gene
(e.g., luxAB gene) should be used to shorten the detection time, enhance the luminescence
intensity, and improve the LOD.

In this study, recombinant E. coli strains were engineered to carry the chrB plasmid
from O. anthropi YC211 and contain various promoters (T7, T3, or SP6) to regulate luxAB
expression. After the optimization of the promoter and the regulation of the luxAB expres-
sion level in E. coli, the recombinant luminescent biosensors could identify bioavailable
Cr(VI) in real water samples of various source.

2. Materials and Methods
2.1. Bacterial Strains, Gene Cloning, and Biosensor Construction

To clone chrB in O. anthropi YC211, this gene was amplified using the primer set
XbaI-chrf and NdeI-chrr through polymerase chain reaction (PCR). To clone T3-luxAB,
T7-luxAB, or SP6-luxAB, luxAB in Vibrio fischeri was amplified using the primer set NdeI-
T7-luxABf, NdeI-T3-luxABf, or NdeI-SP6-luxABf (lux-forward primer) and BamHI-luxABr
(lux-reverse primer) through PCR [32]. The sequences of the primers are provided in
Table 1. The resultant DNA fragments were all introduced into the pET-15b vector plasmid
(Promega, Madison, WI, USA). The recombinant plasmids were entitled pT7-luxAB, pT3-
luxAB, pSP6-luxAB, and pCHR. In short, the plasmids were then transferred to E. coli
BL21; these cells were cultivated on Luria–Bertani (LB) agar plates. Eventually, isolated
pT7-luxAB, pT3-luxAB, pSP6-luxAB, and pCHR plasmids were cut using NdeI/BamHI
and XbaI/NdeI [10]. Next, pCHR was ligated to pT7-luxAB, pT3-luxAB, and pSP6-lux
fragments, respectively, by using T4 DNA ligase (New England BioLabs, Beverly, MA,
USA) and pCHR-T7-luxAB, pCHR-T3-luxAB, and pCHR-SP6-luxAB were constructed.
The resulting plasmids were introduced into the pET-15b vector plasmid. Subsequently,
the plasmids were transformed into E. coli BL21 to produce the corresponding chromate
biosensors. The restriction enzymes were obtained from New England BioLabs (USA).
Vector DNA was obtained using the QIAEX II gel extraction kit (Qiagen, Hilden, Germany).
Figure 1 demonstrates the construction of the three recombinant plasmids.

Table 1. Sequence of the primers used in this study.

Primer Primer Sequence

Lux-Forward primer
NdeI-T7-luxABf CGCA↓TATGTAATACGACTCACTATAGGGATGAAGTTTGGAAATATTTG
NdeI -T3-luxABf CGCA↓TATGGCAATTAACCCTCACTAAAGGATGAAGTTTGGAAATATTTG

NdeI -SP6-luxABf CGCA↓TATGATTTAGGTGACACTATAGATGAAGTTTGGAAATATTTG
Lux-Reverse primer

BamHI-luxABr CGG↓GATCCTTAAGGCAGATTCTTTTC
Chr-Forward primer

XbaI-chrf CGT↓CTAGAGATTGCTTATTCCTATTGCCA
Chr-Reverse primer

NdeI-chrr CGCA↓TATGTCATACGCTGAGGGTCCCTTT

_ _ _ indicates restriction enzymes recognition sequences; ↓ indicates restriction enzymes cutting sites; ___ indicates the T7, T3, or SP6
promoter sequence.
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Figure 1. Construction of pCHR-T7-luxAB, pCHR-T3-luxAB, and pCHR-SP6-luxAB plasmids.

2.2. Bacterial Growth

E. coli with pCHR-T7-luxAB (T7-lux-E. coli), pCHR-T3-luxAB (T3-lux-E. coli), and
pCHR-SP6-luxAB (T3-lux-E. coli) (all initial concentrations of 107 cfu/mL) were cultivated
in LB broth containing a final ampicillin concentration of 50 mg/L, and Cr(VI) concentration
of 0.05 mg/L at 37 ◦C at 200 rpm on an orbital shaker. After 18 h, cultures were diluted
100-fold into modified Tris minimal salts medium (TMM) containing 6.06 g/L Tris, 4.68 g/L
NaCl, 1.49 g/L KCl, 1.07 g/L NH4Cl, 0.43 g/L Na2SO4, 0.2 g/L MgCl2.6H2O, 0.03 g/L
CaCl2, 0.23 g/L Na2HPO4, 50 mg/L ampicillin, and 0.3% glucose, as per the previously
described method of Mergeay et al. (1985) but with a slight modification [33]. In this study,
E. coli was used as a control. To evaluate the feasibility of using frozen cells instead of fresh
cells, the overnight culture grown in modified TMM was prepared as bacterial glycerol
stocks and stored at −80 ◦C. To evaluate the relationship between bacterial growth and
the luminescence intensity of recombinant E. coli, the cultures were incubated at 37 ◦C at
200 rpm on an orbital shaker, and optical density (OD) at 600 nm and the luminescence
intensity were measured at specific intervals. Sampling 200 µL of the culture to a 96-
well microplate, and then placing it under a microplate luminometer (Titertek-Berthold,
Pforzheim, Germany), the luminescence intensity (expressed as relative light units (RLU))
was measured. All chemicals utilized in the experiment were analytical grade.

2.3. Determination of Optimal Conditions

After 18 h of cultivation in modified TMM, 1 mL of culture containing 108 cfu/mL
T7-lux-E. coli, T3-lux-E. coli, or SP6-lux-E. coli was inoculated into 100 mL of modified TMM
with 0.5 mg/L Cr(VI) and incubated at 37 ◦C for 5 h. Cr(VI) was added as the oxyanion
form of CrO4

2−, unless otherwise stated. The luminescence intensity was measured every
20 min. The effects of temperature (15 ◦C–45 ◦C) and pH value (4–9) on the luminescence
intensities of the three recombinant E. coli strains were evaluated separately. Temperature
was controlled using a constant-temperature incubator, and pH was adjusted using 1 N HCl
or NaOH solution. To assess the effects of coexisting carbon sources on the luminescence
intensities of the three recombinant E. coli strains, formic acid, acetic acid, citric acid,
acetone, or fructose was added to the modified TMM, respectively. The final concentrations
of these carbon compounds in the medium were 300 µM. To evaluate the effects of Cr(VI)
oxyanion forms on the luminescence intensities of the three recombinant E. coli strains,
CrO4

2− or Cr2O7
2− was introduced to the modified TMM.

The Cr(VI) concentrations added were 0.05, 0.5, and 5 mg/L. Coexisting cations (Ni(II),
Co(II), Cd(II), Zn(II), Cu(II), and Cr(III)) and coexisting anions/similar structural configu-
rations of CrO4

2− (SO4
2−, PO4

3−, and AsO4
2−) were added to modified TMM to evaluate

their effects on the luminescence intensities of the three recombinant E. coli strains. The
concentrations of coexisting ions were 0.5–5 mg/L, and the Cr(VI) concentrations evaluated
were 0.02, 0.5, and 5 mg/L. To evaluate the performance of frozen cells for detecting 0.05
and 5 mg/L Cr(VI), frozen cells after 30-, 60-, 90-, and 120-day storage were examined. The
luminescence emitted by T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E. coli was stable and
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the highest was observed at 1.5–2.0 h, 1–1.5 h, and 0.5–1.0 h after incubation, respectively.
Therefore, after 1.5-h incubation for T7-lux-E. coli cells, 1-h incubation for T3-lux-E. coli
cells, and 0.5-h incubation for SP6-lux-E. coli cells, 200 µL of the cultures was sampled,
and the luminescence intensity of these biosensors was measured immediately. After the
completion of incubation, luminescence intensity was measured every 5 min over 20 min,
and the five measured values were then averaged. The effects (luminescence intensity and
stability time) of medium types (LB and modified TMM) and the Cr(VI) concentration
(0.01–10 mg/L Cr(VI)) on luminescence characteristics of the three recombinant E. coli
strains were evaluated. The cultures were incubated at 37 ◦C for 5 h, and the luminescence
intensity was periodically measured. Incubation temperature, pH, and Cr(VI) concentra-
tion were controlled at 37 ◦C, pH 7, and 0.5 mg/L, respectively, unless otherwise stated.
Measurements from at least three independent experiments were obtained, each performed
at least in triplicate.

2.4. Establishment of Calibration Curve and Measurement of Real Water Samples

To establish the relationships between the Cr(VI) concentration and the luminescence
intensity of the three recombinant E. coli biosensors, we mixed 2 mL deionized water
containing Cr(VI) at different concentrations and 2 mL culture containing recombinant
luminescent E. coli cells (final concentration after mixing: 5 × 106 cfu/mL). The culture was
prepared using the thawed cells after 90-day cryogenic storage. The optimal incubation
time and conditions were according to the results in previous experiments. Calibration
curves were plotted on the basis of the linear regression of the luminescence intensity at
each corresponding Cr(VI) concentration. That region (point) of the calibration, where
there is a significant change in sensitivity (i.e., a break in the slope of the calibration), was
defined as LOD concentration.

To verify that the established curves and methods were valid and feasible, similar
solutions were prepared as mentioned in the earlier text, but industrial effluents (from
Guishan Industrial Sewage Treatment Plant, Taoyuan City, Taiwan) and domestic effluents
(from Dihua Sewage Treatment Plant, Taipei City, Taiwan) and surface water (from Tamsui
River, New Taipei City, Taiwan) were used instead of pure Cr(VI) solution. Considering
practical application, the performance of recombinant E. coli cells was examined after
cryogenic storage. Thus, thawed cells after 90-day cryogenic storage were used instead of
fresh cells for Cr(VI) measurement in real water samples. The Cr(VI) concentration in the
real water samples was separately measured using the colorimetric 1,5-diphenylcarbazide
(DPC) method [34] and the developed recombinant E. coli biosensors. Experimental data
were collected from at least three independent experiments.

3. Results and Discussion
3.1. Time-Dependent Induction of Three Recombinant E. coli Biosensors with Cr(VI)

In the preliminary experiment, all the logarithmic growth phases of three recombinant
E. coli cells were occurred at 8–20 h incubation. During this period, the luminescence
intensities of the three recombinant E. coli strains were proportional to the bacterial growth.
Therefore, we set the inoculation time of the three recombinant E. coli strains at 18 h
after incubation in the subsequent experiment. Figure 2 indicated a comparison of the
time-dependent induction of luminescence from the three recombinant E. coli biosensors
(i.e., T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E. coli) with 0.5 mg/L Cr(VI). The results
indicated that the luminescence intensity of three recombinant E. coli biosensors rapidly
increased, plateaued at 0.5 h, and then decreased during incubation. The luminescence in-
tensity emitted from E. coli (control) maintained zero. However, this intensity variation was
different from the luminescence caused by the gfp reporter gene, which slowly increased
and plateaued [10]. This disparity was potentially due to the biochemical nature of the
reporter gene luxAB [35].

The results demonstrated that luminescence was stable and the highest at 1.5–2.0 h,
1–1.5 h, and 0.5–1.0 h after incubation for T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E. coli,
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respectively. The Cr(VI) detection time was shorter than that reported previously for gfp-
based recombinant E. coli (3–5 h), V79 (6 h), gfp-based recombinant O. tritici (5 h) biosensors,
and luxCDABE-based recombinant Acinetobacter baylyi ADPWH-recA (4.5–6 h) [5,10,13,36].
The maximum average luminescence intensities of T7-lux-E. coli, T3-lux-E. coli, and SP6-
lux-E. coli cells were 53,633 ± 124.7, 37,966 ± 448.7, and 12,767 ± 205.5 RLU, respectively.
The decrease in signal intensity of luminescence was shown as follows: T7-lux-E. coli,
T3-lux-E. coli, and then SP6-lux-E. coli. SP6-lux-E. coli cells had the shortest stable period
(0.5–1.0 h) for luminescence induction, but the intensity for T7-lux-E. coli cells was 4.2 times
(53,633/12,767) higher than that of SP6-lux-E. coli cells. de Las Heras et al. (2012) adopted a
similar approach to detect aromatic compounds by fusing the T7 promoter to control the
expression of the lux operon to significantly increase the luminescence intensity [37].
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Figure 2. Time-dependent induction of luminescence from the developed three recombinant lumines-
cent E. coli biosensors and E. coli was used as a control. (initial cell concentration: 106 cfu/mL, culture
media: modified TMM with 0.5 mg/L Cr(VI), culture temperature: 37 ◦C, stirring speed: 200 rpm).

3.2. Effects of Culture Conditions on Luminescence Intensity

The effects of pH and incubation temperature on the luminescence intensities of the
biosensors for Cr(VI) detection were evaluated (considering practical aspects). Relative
intensities were calculated using luminescence intensities at pH 7 (pH effect study) and
37 ◦C (temperature effect study). Figure 3A illustrates the effects of pH on the luminescence
intensity induced with 0.5 mg/L Cr(VI) for T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E.
coli biosensors. The results demonstrated that the optimal pH range for the luminescence
intensities of T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E. coli biosensors was 6–7, 5–7, and
5–8, respectively, with nonsignificant differences (p > 0.05). The SP6-lux-E. coli biosensor
exhibited the highest pH adaptability among the biosensors. The T7-lux-E. coli biosensor
was relatively unstable under pH change; nevertheless, the relative intensity of T7-lux-
E. coli cells at pH 4 and 9 remained high at >93% (93.8% ± 0.41% and 95.2% ± 0.6%,
respectively) compared with that at pH 7.

Figure 3B displays the effects of incubation temperature on the luminescence inten-
sities induced with 0.5 mg/L Cr(VI) for T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E. coli
biosensors. The results indicated that the optimal temperature range for the luminescence
intensities of T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E. coli biosensors was 20–37 ◦C,
20–37 ◦C, and 20–40 ◦C, with nonsignificant differences (p > 0.05). The SP6-lux-E. coli
biosensor exhibited the highest temperature adaptability, which may be due to the short
incubation time at the set temperature. The incubation temperature had considerable
effects on T7-lux-E. coli cells. At the temperature of 15 ◦C or 45 ◦C, the relative intensity
of T7-lux-E. coli cells decreased to 81.6% ± 1.2% and 86.2% ± 0.82%, respectively. This
inconsistent result was presumed to be related to the promoter (T3, T7, SP6) structure and
composition, which determine the strength of promoter–target DNA bonds and adaptabil-
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ity to environment changes [38]. However, the pattern of the incubation periods (T7-lux-E.
coli > T3-lux-E. coli > SP6-lux-E. coli) was another possible factor.

The effects of medium types (LB and modified TMM) and different Cr(VI) concentra-
tions on the luminescence intensity and incubation time for the three recombinant E. coli
biosensors were evaluated. The results indicated that the effects of medium types on the
stability time for the three recombinant E. coli biosensors were not obvious when Cr(VI) at
0.01–5 mg/L was used. The optimal time of luminescence induction was still maintained
at 1.5 h, 1 h, and 0.5 h for T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E. coli biosensors,
respectively; however, the luminescence intensities of the biosensors in modified TMM
decreased by 9.2%, 7.5%, and 4.6% for T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E. coli
biosensors, respectively, in comparison with that in LB as medium. In LB containing the
high Cr(VI) concentration of 10 mg/L, the optimal induction time for all biosensors was
postponed to 2–2.5 h. However, modified TMM containing 10 mg/L Cr(VI) did not affect
the optimal induction time. This delay in the induction time may be attributed to the LB
composition being more complex and nutritious than modified TMM [10]. In conclusion,
modified TMM is a suitable medium for biosensor application.
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Figure 3. (A) Effects of pH on luminescence intensities of three recombinant E. coli biosensors induced with 0.5 mg/L
Cr(VI). (B) Effects of incubation temperature on luminescence intensities of three recombinant E. coli biosensors induced
with 0.5 mg/L Cr(VI) for 1.5 h (T7-lux-E. coli), 1 h (T3-lux-E. coli), and 0.5 h (SP6-lux-E. coli).

3.3. Effects of Coexisting Carbon Source, Cr(VI) Oxyanion Form, and Coexisting Ion on
Luminescence Intensity

Figure 4 illustrates the effects of coexisting carbon sources at 300 µM on the lumines-
cence intensities of the three recombinant E. coli biosensors. The different coexisting carbon
sources may potentially improve or weaken the luminescence intensity; thus, the results
may deviate considerably relative to the theoretically expected effects using modified
TMM alone [10]. The results demonstrated that the coexistence of fructose or acetic acid
with modified TMM induced a high luminescence intensity in the T7-lux-E. coli biosensor
compared with modified TMM alone. Fructose or acetic acid synergistically increased
luminescence by 8.1% ± 0.84% or 5.2% ± 0.51%, respectively. Only the coexistence of
acetic acid with modified TMM induced a high luminescence intensity (4.2% ± 0.56%) in
the T3-lux-E. coli biosensor compared with modified TMM alone. However, all coexisting
carbon sources had negligible effects (p > 0.05) on Cr(VI) detection by the SP6-lux-E. coli
biosensor, and this may be because the genetic assembly of the SP6-lux-E. coli biosensor is
relatively less susceptible to environmental interference [27]. The elevated luminescence
intensity may be attributed to be the easy biodegradation of fructose and acetic acid, which
improved the related physiological activity of recombinant E. coli [39].
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nant E. coli biosensors induced with 0.5 mg/L Cr(VI) for 1.5 h (T7-lux-E. coli), 1 h (T3-lux-E. coli), and
0.5 h (SP6-lux-E. coli).

The Cr(VI) oxyanion form as CrO4
2− or Cr2O7

2− at 0.05–0.5 mg/L had nonsignificant
effects (p > 0.05) on Cr(VI) detection by the three recombinant E. coli biosensors (relative
intensity at 100–102.8%). However, the Cr(VI) form as Cr2O7

= at 5 mg/L caused a slight
increase of 6.2% and 3.4% in the luminescence intensities of the T7-lux-E. coli and T3-
lux-E. coli biosensors compared with that induced by the CrO4

= form, respectively. The
Cr(VI) oxyanion form at the wide concentration range of 0.05–5 mg/L had negligible
effects (p > 0.05) on Cr(VI) detection by the SP6-lux-E. coli biosensor. The coexisting ions of
Ni(II), Co(II), Cd(II), Zn(II), Cu(II), Cr(III), SO4

2−, PO4
3−, and AsO4

2− (at concentrations
of >3.5 mg/L) exerted significant effects (p < 0.05) on the luminescence intensities of the
T7-lux-E. coli and T3-lux-E. coli biosensors compared with the control. However, these
coexisting ions (0.5–5 mg/L) did not induce significant changes in Cr(VI) measurement
by the SP6-lux-E. coli biosensor. Similar results were observed for gfp-based recombinant
E. coli cells cultured with coexisting Cd(II), Zn(II), Co(II), Ni(II), Cu(II), SO4

2−, PO4
3−, or

AsO4
2− [10]. Taken together, these results clearly illustrate that our recombinant lumines-

cent biosensors possess favorable environmental adaptability, selectivity, and specificity
under specific conditions.

3.4. Effects of Thawing Time on Luminescence Intensity

Regarding ease of use, constructing or preparing a recombinant biosensor when
required is impractical. Thus, the luminescence intensities of the recombinant E. coli
biosensors after cryogenic storage (30–120 days) were examined. The significant effects
(p < 0.05) on the luminescence intensities of all thawing frozen cells after 120-day cryogenic
storage were examined relative to fresh cells (0-day thawing time; Figure 5). After 90-
day cryogenic storage, thawing recombinant T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E.
coli cells maintained luminescence intensities of 99.1% ± 0.51%, 99.2% ± 0.38%, and
99.5% ± 0.25%, respectively. Similar results were found for the luminescence intensities
of the three recombinant E. coli biosensors induced with 0.05 mg/L Cr(VI). Thus, the
subsequent experiment used thawing frozen cells after 90-day cryogenic storage.
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3.5. Relationship of Cr(VI) Concentration with Luminescence Intensity

According to the experimental results, we established the relationships between the
Cr(VI) concentration and the luminescence intensity of the three recombinant E. coli biosen-
sors using thawing frozen cells after 90-day cryogenic storage under optimal operating
conditions. In this experiment, E. coli was used as a control. Figure 6A presents a set of
regression equations for the Cr(VI) concentration and the luminescence intensity of the
T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E. coli biosensors when the Cr(VI) concentra-
tion was 0–0.5 mg/L: y = 107,464x + 999.6, y = 76,292x + 607.8, and y = 24,875x + 243.8,
respectively. Coefficients of determination (R2) of these regression equations indicated
statistically significant results (>0.98), but the significance was insufficient for trace analysis
of Cr(VI). Moreover, two obvious linear intervals between the Cr(VI) concentration and
the luminescence intensity were noted. Thus, two other sets of relationships between the
Cr(VI) concentration and luminescence intensity at various concentration ranges were
further evaluated. Figure 6B presents another set of regression equations for the T7-lux-
E. coli, T3-lux-E. coli, and SP6-lux-E. coli biosensors when the Cr(VI) concentration was
≤0.075 mg/L: y = 168,421x − 31.2, y = 115,788x + 23.9, and y = 38,893x + 96.1, respectively.
R2 values of these regression equations were high (>0.999), indicating their reliability
even if applied in trace analysis of Cr(VI). Figure 6C indicated another set regression
equations for the T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E. coli biosensors while the
Cr(VI) concentration ranged from 0.075 mg/L to 0.5 mg/L. These regression equations for
these given data were y = 98,746x + 4019.1, y = 71,770x + 2161.6, and y = 23,480x + 717.9,
respectively. R2 values for these equations were quite high (>0.999), representing their
high reliability. The concentration-dependent differences in these linear relationships may
be due to differences in promoter characteristics [9,40]. In addition, the LOD values of
Cr(VI) measurement by the T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E. coli biosensors
were calculated as 0.0005, 0.001, and 0.005 mg/L, respectively. Therefore, the T7-lux-E. coli
biosensor was the most sensitive, and the SP6-lux-E. coli biosensor was the least sensitive.
Table 2 summarizes LOD values and operating conditions of different biosensor for Cr(VI)
measurement. Smutok et al. (2011) constructed a flavocytochrome b2–based Hansenula
polymorpha recombinant biosensor, Branco et al. (2013) constructed a gfp-based recombi-
nant E. coli biosensor, Bohrn et al. (2013) developed a V79 cell biosensor, Coelho et al. (2015)
constructed a gfp-based recombinant O. tritici biosensor, Wang et al. (2016) developed
an Ochrobactrum anthropi YC152 MFC-based biosensor, Wu et al. (2017) developed an E.
aestuarii YC211 MFC-based biosensor, and Wu et al. (2019) developed a three-stage single-
chambered MFC biosensor for Cr(VI) detection; their LODs for Cr(VI) were 0.52, 0.0194,
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0.97, 0.388, 0.0125, 2.5, and 5 mg/L, respectively [5,6,10,13,16,17,31]. Compared with the
aforementioned biosystems, our luxAB-based recombinant E. coli biosensors have smaller
LODs (0.0005–0.005 mg/L), indicating their high sensitivity. However, it was inefficient in
indicating the level of genotoxicity of Cr(VI) at low concentrations [36]. The satisfactory
LOD of our sensors relative to previous sensors was due to the high activity of the chrB
gene from O. anthropi YC211 and the position-appropriate promoters placed before the
reporter gene lux [9].

Consequently, by virtue of the aforementioned reliable calibration curves for the Cr(VI)
concentration range of 0.075–0.5 mg/L for the all biosensors or the Cr(VI) concentration
range of 0.0005–0.75 mg/L (for T7-lux-E. coli biosensor), 0.001–0.75 mg/L (for T3-lux-E. coli
biosensor), and 0.005–0.75 mg/L (for SP6-lux-E. coli biosensor), the Cr(VI) concentration in
the water samples could be accurately and rapidly determined. In sum, the broad-range
T7-lux-E. coli biosensor is a practical device for Cr(VI) measurement.

To evaluate the reproducibility of the biosensors for detecting Cr(VI), T7-lux-E. coli,
T3-lux-E. coli, and SP6-lux-E. coli were tested under optimal conditions by using modified
TMM with 0.5 mg/L Cr(VI). Relative standard deviation (RSD) for T7-lux-E. coli, T3-lux-E.
coli, and SP6-lux-E. coli was 3.2, 3.6, and 3.3%, respectively (n = 10). The low values of RSD
of our recombinant luminescent E. coli biosensors demonstrated operational stability.
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Figure 6. Relationship between Cr(VI) concentration [(A) 0–0.5 mg/L, (B) 0–0.075 mg/L and (C) 0.075–0.5 mg/L] and
luminescence intensities of three recombinant E. coli biosensors (cell source: the thawing frozen cells after 90-day cryogenic
storage; initial cell concentration: 5× 106 cfu/mL; culture media: modified TMM; operational condition: 37 ◦C and 200 rpm;
incubation time: 1.5 h for T7-lux-E. coli, 1 h for T3-lux-E. coli, and 0.5 h for SP6-lux-E. coli.
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Table 2. LOD values and operating conditions of different biosensor for Cr(VI) measurement.

Sensor LOD
(mg/L) Operating Conditions References

gfp-based recombinant O. tritici biosensor 0.388 37 ◦C, pH 7, detection time: 5 h, batch [5]
O. anthropi YC152 MFC-based biosensor 0.0125 35 ◦C, pH 7, detection time: 15 min, batch [6]
gfp-based recombinant E. coli biosensor 0.0194 37 ◦C, pH 7, detection time: 5 h, batch [10]

V79 cell biosensor 0.97 37 ◦C, pH 7, detection time: 3 h, batch [13]
E. aestuarii YC211 MFC-based biosensor 2.5 30 ◦C, pH 7, detection time: 15 min, batch [16]

three-stage single-chambered MFC biosensor 5 30 ◦C, pH 7, detection time: 6.6 min, continuous flow [17]
flavocytochrome b2–based H. polymorpha

recombinant biosensor 0.52 24 ◦C, pH 6.3, detection time: 20 min, batch [31]

T7-biosensor 0.0005 37 ◦C, pH 7, detection time: 1.5 h, batch This study
T3-biosensor 0.001 37 ◦C, pH 7, detection time: 1.0 h, batch This study

SP6-biosensor 0.005 37 ◦C, pH 7, detection time: 0.5 h, batch This study

3.6. Cr(VI) Detection in Real Water Samples by Using Our Three Recombinant Luminescent
E. coli Biosensors

To date, some biosensors have been developed for detecting Cr(VI), but few biosensors
have been applied for detecting the concentration of Cr(VI) in real water samples, partic-
ularly for determining compliance with the MAL in water bodies. Table 3 summarizes
the measured Cr(VI) concentrations in three industrial effluent, three domestic effluent,
and three surface water samples using the standard colorimetric method and our three
recombinant luminescent E. coli biosensors. The results demonstrated that the Cr(VI)
concentration determined using our biosensors and the colorimetric DPC method were
highly correlated (R2 > 0.999), excluding those for the B water sample of surface water.
The B water sample of surface water was difficult to measure using the colorimetric DPC
method because the Cr(VI) concentration was lower than its LOD (0.01 mg/L). Moreover,
the deviation between the Cr(VI) concentrations measured using the colorimetric DPC
method and those measured using the T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E. coli
biosensors was −5.0–7.9%, −11.0–14.6%, and −2.6–18.4%, respectively. Some water sam-
ples required dilution because the Cr(VI) concentration exceeded the linear measurement
range (>0.5 mg/L). These samples (industrial effluents B and C and domestic effluents B
and C) caused positive deviation when the T7-lux-E. coli biosensor was used, but it caused
negative deviation when the T3-lux-E. coli and SP6-lux-E. coli biosensors were used. The
SP6-lux-E. coli biosensor had high environmental adaptability, as mentioned previously;
thus, it was accurate (−2.6–1.3%) when it was applied for Cr(VI) detection in complex ma-
trices (e.g., industrial and domestic effluents). However, its performance was unfavorable
when applied to detect low Cr(VI) concentrations (e.g., <0.03 mg/L), with high positive
deviation (11.0–18.4%). By contrast, the performance of the T7-lux-E. coli biosensor was
favorable when applied to detect low Cr(VI) concentrations (e.g., <0.03 mg/L), with low
deviation (2.6–4.2%). Considering the measurement range and accuracy, the T7-lux-E. coli
biosensor provided the most accurate and reliable Cr(VI) measurement in these aqueous
matrices. However, for Cr(VI) detection in industrial and domestic effluents, the SP6-lux-E.
coli biosensor was the optimal biosensor in terms of accuracy.

The measurement deviation of the T7-lux-E. coli biosensor for Cr(VI) detection in
real water samples was much lower than that (−13–6.2%) of an O. anthropi YC152 MFC-
based biosensor, and the measurement deviation of the T3-lux-E. coli and SP6-lux-E. coli
biosensors was comparable to that of an O. anthropi YC152 MFC-based biosensor for Cr(VI)
detection [6]. Taken together, these results clearly indicate that the developed recombinant
luminescent bacterial biosensors can determine low Cr(VI) concentrations in different
water bodies.
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Table 3. Cr(VI) measurement in real water samples by using the colorimetric DPC method and biosensors.

Industrial Effluents Domestic Effluents Surface Water

A B C A B C A B C
DPC method 0.482 * 6.72 2.31 0.08 1.21 0.63 0.0212 ND ** 0.0154

T7-biosensor 0.461
(−4.4%) ***

6.83
(1.6%)

2.42
(4.8%)

0.076
(−5.0%)

1.23
(1.7%)

0.68
(7.9%)

0.0221
(4.2%)

0.0061
(–)

0.0158
(2.6%)

T3-biosensor 0.491
(1.9%)

6.43
(−4.3%)

2.21
(−4.3%)

0.083
(3.8%)

1.18
(−2.5%)

0.59
(−6.3%)

0.0243
(14.6%)

0.0065
(–)

0.0137
(−11.0%)

SP6-biosensor 0.478
(−0.8%)

6.62
(−1.5%)

2.25
(−2.6%)

0.081
(1.3%)

1.19
(−1.7%)

0.62
(−1.6%)

0.0251
(18.4%)

0.0083
(–)

0.0171
(11.0%)

* Unit: mg/L; ** not determined; *** Deviation compared with the measured value using colorimetric DPC method.

4. Conclusions

In this study, three novel recombinant E. coli biosensors containing the chrB gene
(from O. anthropi YC211); the T3, T7, or SP6 promoter; and the reporter gene lux were
constructed for the rapid and accurate measurement of low Cr(VI) concentrations in
industrial effluent, domestic effluent, and surface water. Of these biosensors, the T7-lux-E.
coli biosensor exhibited the highest illuminance intensity, the most sensitivity to Cr(VI)
(LOD: 0.0005 mg/L), and the widest measurement range (0.0005–0.5 mg/L) for Cr(VI)
concentrations. Moreover, the SP6-lux-E. coli biosensor had the shortest detection time
(0.5 h) and the highest environmental adaptability but low LOD (0.005–0.5 mg/L). The three
recombinant E. coli biosensors exhibited advantages over previously reported biosystems
in terms of optimal LOD, wide measurement range, and low measurement deviation. To
the best of our knowledge, this is the first report on the use of recombinant biosensors
to monitor the Cr(VI) concentration in real wastewater, especially from the perspective
of whether they meet water quality standards (e.g., Cr(VI) ≤ 0.05 mg/L). In sum, our
biosensors, particularly the T7-lux-E. coli biosensor, are sensitive, reliable, specific, and
stable systems for preliminary in-field detection of Cr(VI) in water samples.
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