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Abstract: The development of bifunctional ionic polymers as heterogeneous catalysts for effective,
cocatalyst- and metal-free cycloaddition of carbon dioxide into cyclic carbonates has attracted in-
creasing attention. However, facile fabrication of such polymers having high numbers of ionic active
sites, suitable types of hydrogen bond donors (HBDs), and controlled spatial positions of dual active
sites remains a challenging task. Herein, imidazolium-based ionic polymers with hydroxyl/carboxyl
groups and high ionic density were facilely prepared by a one-pot quaternization reaction. Catalytic
evaluation demonstrated that the presence of HBDs (hydroxyl or carboxyl) could enhance the catalytic
activities of ionic polymers significantly toward the CO2 cycloaddition reaction. Among the prepared
catalysts, carboxyl-functionalized ionic polymer (PIMBr-COOH) displayed the highest catalytic
activity (94% yield) in the benchmark cycloaddition reaction of CO2 and epichlorohydrin, which was
higher than hydroxyl-functionalized ionic polymer (PIMBr-OH, 76% yield), and far exceeded ionic
polymer without HBDs groups (PIMBr, 54% yield). Furthermore, PIMBr-COOH demonstrated good
recyclability and wide substrate tolerance. Under ambient CO2 pressure, a number of epoxides were
smoothly cycloadded into cyclic carbonates. Additionally, density functional theory (DFT) calculation
verified the formation of strong hydrogen bonds between epoxide and the HBDs of ionic polymers.
Furthermore, a possible mechanism was proposed based on the synergistic effect between carboxyl
and Br− functionalities. Thus, a facile, one-pot synthetic strategy for the construction of bifunctional
ionic polymers was developed for CO2 fixation.

Keywords: CO2 cycloaddition; cyclic carbonates; bifunctional catalyst; ionic polymers

1. Introduction

Exploring efficient technologies to reduce carbon emission has become the focus of
international concern due to the ever-increasing atmospheric CO2 concentration [1,2]. De-
spite the difficulties, the utilization of CO2 as a renewable building block for the production
of value-added chemicals is deemed one of the most hopeful strategies [3,4]. Recently,
numerous transformation approaches have been developed for CO2 fixation [5,6]. As a
result, catalytic conversion of CO2 into valuable cyclic carbonates has attracted enormous
attention owing to 100% atom efficiency and high product selectivity [7–9].

For chemical conversion of the inert CO2 molecules, effective catalysts are essential to
overcome the large thermodynamic energy barrier. In this context, various catalytic systems,
such as metal salts [10–12], imidazolium salts [13–15], and ammonium salts [16–18], have
been developed for CO2 cycloaddition during the past few decades [19,20]. Generally,
metal-based catalysis systems display high catalytic activity, but they also suffer from
obvious shortcomings, such as the contamination of metal residue and difficulty of product
separation [21–23]. One plausible approach to address these issues is to develop highly
active metal-free catalytic systems [24–26]. Recent advances have demonstrated that organic
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halide salts tailoring suitable HBDs could enhance the catalytic activity significantly, thus
providing a promising strategy for narrowing the gap between metal-free and metallic
catalytic systems [27,28]. Therefore, a number of HBDs-derived homogeneous catalysts
have been developed for CO2 cycloaddition in recent years [29–32]. Despite the significant
advances, homogeneous catalysts are still restrained due to their inherent disadvantages,
such as the high cost of product separation and the difficulty of catalyst recycling.

Poly(ionic liquids) (PILs), which represent a new class of charged polymers featuring
high ionic density and excellent CO2-affinity, have shown enormous potential as heteroge-
neous catalysts for CO2 fixation [33,34]. During the past decade, numerous PILs with Br−

as counterions have been fabricated for cocatalyst and metal-free cycloaddition of CO2 into
cyclic carbonate, owing to the fact that Br− can promote this conversion via nucleophilic-
ity, attacking the β-carbon atom with little steric hindrance in the epoxide ring [13,35,36].
Nevertheless, PILs with monofunctional Br− generally exhibit inferior catalytic activity.
To address this problem, a number of PILs bearing HBDs as electrophile nucleophiles
and Br− as nucleophiles have been developed. Previous studies have shown that PILs
functionalized with HBDs, such as hydroxyl [37–40], carboxyl [41–43], and amino [44,45],
exhibit enhanced catalytic performance, thus showing great potential as promising hetero-
geneous catalysts for CO2 cycloaddition [46]. However, facile fabrication of bifunctional
PILs with high numbers of ionic active sites, adjustable types of HBDs, and controlled
spatial positions of dual active sites still remains a challenging task.

Herein, HBDs-functionalized ionic polymers were successfully constructed based
on the polymerization of commercially available 1,3,5-tri(1H-imidazol-1-yl)benzene and
1,3-dibromo compounds using a one-pot quaternization strategy. Through this facile
method, bifunctional PILs bearing high numbers of imidazolium ionic sites, different
types of HBDs, and definite spatial positions of HBDs near Br− anions were successfully
prepared. Consequently, the as-prepared ionic polymer with a carboxyl group (PIMBr-
COOH) showed high catalytic efficiency and nice reusability toward CO2 cycloaddition. On
the basis of the experimental results and DFT calculation, a possible mechanism involving
the synergistic effect of carboxyl and Br− functionalities was proposed.

2. Results and Discussion
2.1. Preparation and Characterization of the Polymers

As depicted in Scheme 1, imidazolium-based ionic polymers bearing hydroxyl and
carboxyl groups, namely PIMBr-OH and PIMBr-COOH, were facilely fabricated via the
quaternization of commercially available 1,3,5-Tri-(1H-imidazol-1-yl) benzene (TIB) with
1,3-dibromo-2-propanol and 3-bromo-2-(bromomethyl)propanoic acid, respectively. For
comparison, HBDs-free ionic polymer (PIMBr) was also prepared through the reaction
of TIB and 1,3-dibromopropane. As hypercrosslinked polymers, the as-obtained PIMBr,
PIMBr-OH, and PIMBr-COOH were insoluble in common solvents (DMF, DMSO, acetoni-
trile, ethanol, water, THF, etc.).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 15 
 

 

 
Scheme 1. Synthetic scheme of PIMBr, PIMBr−OH, and PIMBr−COOH(* means repeating units of 
the polymer). 

To investigate the physicochemical properties of the prepared ionic polymers, a 
number of characterization analyses, including solid-state 13C NMR spectra, FT-IR, XPS, 
TEM, SEM, SEM-mapping, N2 adsorption–desorption, and TGA, were carried out. As 
seen in Figure 1, solid-state 13C NMR spectra of PIMBr, PIMBr-OH, and PIMBr-COOH 
showed similar signal patterns, suggesting their similar chemical structure. The charac-
teristic peaks at about 128, 113, and 105 ppm were attributable to C2 and C5, C3–4, and 
C1 atoms of the polymer molecules [34,35]. In the spectrum of PIMBr, the weak signals at 
around 42 and 47 ppm corresponded to C6–7 atoms of the saturated carbon [38]. Com-
pared to the spectrum of PIMBr, the bands of C6–7 atoms in PIMBr-OH and 
PIMBr-COOH showed obvious blue shifts due to the presence of -OH and -COOH 
groups [38]. It was noteworthy that PIMBr-COOH showed a characteristic peak at 
around 165 ppm, which was related to the carbon atoms of the carboxyl group, thus 
suggesting the successful incorporation of the carboxyl group in PIMBr-COOH [47,48]. 

 
Figure 1. Solid-state 13C NMR spectra of (a) PIMBr, (b) PIMBr−OH, and (c) PIMBr−COOH. 

The FT-IR spectra of the three samples in Figure 2 displayed characteristic peaks of 
imidazolium rings at 1553 and 1105 cm−1, which were attributed to the stretching vibra-
tions of C = C [49,50] and C-N+ bonds [51], respectively. These observations suggested 
the successful incorporation of the imidazolium units in the prepared polymers. For the 
spectrum of PIMBr-COOH, the characteristic peak depicted at 1323 cm−1 was related to 
the C-O vibration of -COOH groups [52], indicating the successful incorporation of the 
carboxyl group in PIMBr-COOH. The bands at around 3386 cm−1 presented in the three 
samples were attributed to the peak of the absorbed H2O. Indeed, the adsorption of at-
mospheric H2O was a common phenomenon in PILs due to their hygroscopic properties 
[38,53]. Thus, FT-IR analyses further proved the successful fabrication of target ionic 
polymers. 

Scheme 1. Synthetic scheme of PIMBr, PIMBr−OH, and PIMBr−COOH(* means repeating units of
the polymer).
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ber of characterization analyses, including solid-state 13C NMR spectra, FT-IR, XPS, TEM,
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SEM, SEM-mapping, N2 adsorption–desorption, and TGA, were carried out. As seen in
Figure 1, solid-state 13C NMR spectra of PIMBr, PIMBr-OH, and PIMBr-COOH showed
similar signal patterns, suggesting their similar chemical structure. The characteristic peaks
at about 128, 113, and 105 ppm were attributable to C2 and C5, C3–4, and C1 atoms of
the polymer molecules [34,35]. In the spectrum of PIMBr, the weak signals at around 42
and 47 ppm corresponded to C6–7 atoms of the saturated carbon [38]. Compared to the
spectrum of PIMBr, the bands of C6–7 atoms in PIMBr-OH and PIMBr-COOH showed
obvious blue shifts due to the presence of -OH and -COOH groups [38]. It was noteworthy
that PIMBr-COOH showed a characteristic peak at around 165 ppm, which was related to
the carbon atoms of the carboxyl group, thus suggesting the successful incorporation of the
carboxyl group in PIMBr-COOH [47,48].
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Figure 1. Solid-state 13C NMR spectra of (a) PIMBr, (b) PIMBr−OH, and (c) PIMBr−COOH.

The FT-IR spectra of the three samples in Figure 2 displayed characteristic peaks
of imidazolium rings at 1553 and 1105 cm−1, which were attributed to the stretching
vibrations of C = C [49,50] and C-N+ bonds [51], respectively. These observations suggested
the successful incorporation of the imidazolium units in the prepared polymers. For the
spectrum of PIMBr-COOH, the characteristic peak depicted at 1323 cm−1 was related to the
C-O vibration of -COOH groups [52], indicating the successful incorporation of the carboxyl
group in PIMBr-COOH. The bands at around 3386 cm−1 presented in the three samples
were attributed to the peak of the absorbed H2O. Indeed, the adsorption of atmospheric
H2O was a common phenomenon in PILs due to their hygroscopic properties [38,53]. Thus,
FT-IR analyses further proved the successful fabrication of target ionic polymers.
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XPS was conducted to further analyze the chemical structure of the prepared polymers.
As depicted in Figure 3a, C, N, O, and Br elements were identified in the XPS full spectra
of PIMBr, PIMBr-OH, and PIMBr-COOH. The presence of the O element in PIMBr could
be attributed to the absorbed H2O in the polymer network, which was consistent with the
result of the FT-IR analysis. As seen in Figure 3b, the N 1s spectra exhibited two different
peaks at 401 eV and 397 eV, corresponding to the contribution of ionic and non-ionic
N atoms of the imidazolium rings, respectively [54–56]. The C 1s spectra of PIMBr-OH
and PIMBr-COOH in Figure 3c can be deconvoluted into three peaks at around 286, 285,
and 284 eV, which were attributable to C-O, C-N, and C-C bonds, respectively [38,54,57].
The Br 3d spectra in Figure 3d were fitted into two peaks related to the 3d3/2 and 3d5/2
binding energy of Br− [58]. Therefore, XPS analyses further demonstrated the successful
fabrication of target polymers. Element distribution of PIMBr-COOH was also investigated
by EDS mapping. As illustrated in Figure 4, N, O, and Br elements were homogeneously
distributed in the ionic polymer framework, suggesting that the active sites of the prepared
catalyst were well-distributed. For solid catalysts bearing synergistic catalytic sites, the
homogeneous distribution of the active sites was important for achieving synergistic
catalytic performance.
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The porous properties of the prepared polymers were measured by nitrogen physisorp-
tion at 77 K. As summarized in Table 1, PIMBr and PIMBr-OH showed low specific surface
areas of 8.47 and 11.20 m2 g−1, respectively, which were similar to those of ionic polymers
synthesized by the quaternization reaction [59,60]. PIMBr-COOH revealed a moderate
surface area of 36.51 m2 g−1 that was higher than that of PIMBr-OH. The relatively low
surface areas of the three polymers could be ascribed to their high ionic density and flexible
propylene linkers. High ionic density led to strong electrostatic interactions between the
polymer chains [59,60], while the flexibility of the propylene linkers resulted in framework
interpenetration during the framework formation.

Table 1. Physical properties of PIMBr, PIMBr-OH, and PIMBr-COOH.

Entry Samples SBET (m2·g−1) a V (cm3 g−1) b D (nm) c

1 PIMBr 8.47 0.14 65.69
2 PIMBr-OH 11.20 0.15 54.89
3 PIMBr-COOH 36.51 0.28 30.90

a BET surface area. b Total pore volume. c Adsorption average pore diameter (4 V/A by BET).

The morphologies of the prepared polymers were analyzed SEM (Figure 5). It is worth
noting that PIMBr-COOH showed a sponge-like morphology that comprised irregular
reunion particles. This rough surface structure endowed the polymer with abundant
absorption and active sites for CO2 fixation. PIMBr and PIMBr-OH displayed irregular
agglomeration structures of large particles, and the particle size was much greater than that
of PIMBr-COOH. A representative TEM image of PIMBr-COOH (Figure 5d) revealed that
the diameter of the aggregated particles was in a range of tens to hundreds of nanometers.
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As polymer-based solid catalysts, the thermal stability of the polymers is a critical
aspect of their practical application. Therefore, TGA was conducted to analyze their
thermal stability over the temperature range of 25–600 ◦C. As depicted in Figure 6, three
samples showed similar thermogravimetric behavior. The initial weight loss (2–5 wt%) that
occurred below 150 ◦C could be assigned to the removal of the absorbed water, a common
phenomenon for ionic polymers [49,61]. For PIMBr and PIMBr-OH, the main weight loss
took place above 250 ◦C. Compared to PIMBr and PIMBr-OH, PIMBr-COOH exhibited a
lower decomposition temperature and a higher weight loss rate. These could be owing to
the high oxygen content and easy decomposition of –COOH groups. TGA results indicated
that the three samples could be stable at 220 ◦C. For CO2 cycloaddition, the reaction was
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generally performed below 150 ◦C; therefore, the prepared polymers were stable enough to
promote such CO2 conversion.
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2.2. Catalytic Performance

With the target ionic polymers in hand, their catalytic performance was evaluated in
the CO2 cycloaddition reaction to certify the rational design of HBDs-functionalized PILs.
At the beginning of the study, catalytic activities of PIMBr, PIMBr-OH, and PIMBr-COOH
were compared in the cycloaddition of CO2 into less-volatile epichlorohydrin (model
reaction). As summarized in Table 2, 1 mol% of HBDs-free PIMBr afforded a 54% yield of
target cyclic carbonate at 100 ◦C for 4 h (Table 2, entry 1). Notably, under the same reaction
conditions, PIMBr-OH and PIMBr-COOH provided much higher yields, reaching up to 76%
and 94%, respectively (Table 2, entries 2 and 3). Given that PIMBr, PIMBr-OH, and PIMBr-
COOH had similar chemical structures and ionic densities, the higher catalytic activities
of PIMBr-OH and PIMBr-COOH can be due to the synergistic catalytic effect between
hydroxyl/carboxyl HBDs and Br− [62–64], which was able to promote the rate-determining
step (i.e., epoxide ring opening) of the reaction, thereby accelerating the reaction rate.
Compared to PIMBr-OH, the higher catalytic activity of PIMBr-COOH should be ascribed
to its stronger hydrogen bonding interaction with epichlorohydrin molecular [47]. To
confirm these assumptions, DFT calculations were carried out. As depicted in Figure 7, the
results of DFT calculation were consistent with those of catalytic evaluation. Hydrogen
bonds with the bond lengths of 1.930 and 1.740 Å were formed between epichlorohydrin,
PIMBr-OH, and PIMBr-COOH. The shorter H-bond length between epichlorohydrin and
PIMBr-COOH suggested a stronger hydrogen bond interaction. Accordingly, the bond
length of the C–O bond in the epichlorohydrin ring was lengthened from 1.440 Å to 1.441
and 1.442 Å after interaction with PIMBr-OH and PIMBr-COOH, respectively. Therefore,
the results of the catalytic evaluation and DFT calculations verified the importance of
suitable HBDs in boosting the catalytic efficiency of ionic polymers.
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Table 2. Catalytic performances of different catalysts in the cycloaddition of epichlorohydrin with
CO2
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Entry Catalysts Yield (mol%) b Sel. (mol%) c

1 PIMBr 54 >99
2 PIMBr-OH 76 >99
3 PIMBr-COOH 94 >99

a Reaction conditions: epichlorohydrin (43 mmol), catalyst (1 mol%, according to the amount of Br−), CO2 (1 MPa),
reaction temperature (100 ◦C), and 4 h. b Determined by GC. c 3-Chloro-1,2-propanediol was identified as the
only by-product.
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Having the optimal catalyst in hand, the influences of reaction parameters, such as
temperatures, CO2 pressure, and reaction time, were investigated to optimize the reaction
conditions. As illustrated in Table 3, the results indicate that reaction temperature had
a great impact on the catalytic activity. The yield of target cyclic carbonate exhibited an
obvious increment when the reaction temperature increased from 40 to 100 ◦C (Table 3,
entries 1–3). At 100 ◦C, the effect of CO2 pressure was also evaluated. As summarized in
Table 3, the product yield decreased gradually as the CO2 pressure reduced from 1 MPa to
0.1 MPa. Notably, 77% yield and high selectivity of target carbonate were still observed at
ambient CO2 pressure. The good catalytic performance under low CO2 pressure should
be assigned to the high ionic density and porous structure of the PIMBr-COOH catalyst.
Under ambient CO2 pressure, the effect of reaction time was also checked. As displayed in
Figure 8, the product yield increased from 31% to 96% when the reaction time extended
from 1 to 6 h. Therefore, we obtained the optimal reaction conditions: PIMBr-COOH
(1 mol%), 100 ◦C, CO2 pressure (0.1 MPa), and 6 h.
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Table 3. Effect of temperature and CO2 pressure for the cycloaddition of epichlorohydrin with CO2
a.

Entry Temp. (◦C) PCO2 (MPa) Yield (mol%) b Sel. (mol%) c

1 60 1 4 >99
2 80 1 44 >99
3 100 1 94 >99
4 100 0.5 90 >99
5 100 0.25 82 >99
6 100 0.1 77 >99

a Reaction conditions: epichlorohydrin (43 mmol), PIMBr-COOH (1 mol%, 90 mg), 100 ◦C, and 4 h. b Determined
by GC. c 3-Chloro-1,2-propanediol was identified as the only by-product.
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Apart from catalytic activity, the recyclability of the solid catalysts is also a crucial
indicator for evaluating their potential in industrial applications. Therefore, the recycling
performance of PIMBr-COOH was evaluated under optimal reaction conditions. At the end
of each catalytic run, the solid catalyst was centrifugally separated, washed with ethanol,
dried under a vacuum, and then directly engaged in the next catalytic cycle. As shown in
Figure 9, PIMBr-COOH showed nice recyclability and could be used at least six times. The
initial activity decrease after the first run might be attributed to the partial pore blocking
during the first catalytic run. For comparison, the catalytic performance of some previously
reported metal and cocatalyst-free heterogeneous catalysts is listed in Table 4. Notably,
PIMBr-COOH showed better catalytic performance than most of the previously reported
solid and metal-free catalysts. In terms of the salient features, such as facile preparation,
high numbers of ionic active sites, controlled spatial positions of dual active sites, high
catalytic activity, and effective catalyst recyclability, the designed bifunctional ionic polymer
was shown to be a promising heterogeneous and environmentally friendly catalyst for
CO2 cycloaddition.
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Table 4. Comparison of the catalytic performance of PIMBr-COOH with some previously reported
metal and cocatalyst-free heterogeneous catalysts under close reaction conditions.

Entry Catalysts Epoxide a Catal. Usage b Conditions Yield (mol%) Reused Times Ref.

1 PIMBr-COOH ECH 1 mol% 100 ◦C, CO2 0.1 MPa, 6 h 96 5 This work
2 PCm3Lm1Nm2 PO 2 mol% 100 ◦C, CO2 1.2 MPa, 8 h. 79 4 [65]
3 PDMBr PO 1.3 mol% 110 ◦C, CO2 1 MPa, 4 h 98.7 5 [66]
4 SAIL-4 PO 3 mol% 100 ◦C, CO2 1.5 MPa, 3 h 99 5 [67]
5 PQPBrCOOH ECH 1 mol% 120 ◦C, CO2 0.1 MPa, 8 h 97.8 8 [25]
6 PIL-2 ECH 10 mg 100 ◦C, CO2 1 MPa, 4 h 81.2 - [17]
7 CTF-TPM-400 ECH 3 wt% 100 ◦C, CO2 0.7 MPa, 24 h 99 5 [68]
8 ImIP@TT-COF ECH ~3.52 wt% 120 ◦C, CO2 0.1 MPa, 10 h 99 6 [69]

a Epichlorohydrin, ECH; propylene epoxide, PO. b Based on the amount of Br−.

To investigate the general applicability of the PIMBr-COOH catalyst in the CO2 cy-
cloaddition reaction, epoxides bearing different functional groups were tested. As shown in
Table 5, epoxides with electron-withdrawing groups, such as bromide and alkoxy, worked
well and reacted with CO2 smoothly to afford excellent yields of corresponding products
in 6 h (Table 5, entries 1–4). Epoxides bearing electron-donating alkyl groups could also
provide excellent yields of target cyclic carbonates, but prolonged reaction times are needed
(Table 5, entries 5 and 6). As a representative example of sterically hindered epoxide,
styrene oxide provided a high yield of corresponding cyclic carbonate in 6 h (Table 5,
entry 7). These results further revealed that the prepared PIMBr-COOH is a promising
heterogeneous catalyst for CO2 cycloaddition reaction.

Table 5. Cycloaddition of CO2 with various epoxides catalyzed by PIMBr-COOH a.
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Entry R T (h) Yield (mol%) b Sel. (mol%)

1 -CH2Br 6 96 >99

2 -
CH2O(CH2)3CH3

6 95 >99

3 -CH2OPh 6 98 >99
4 -CH2OCH2Ph 6 94 >99
5 -CH3 10 99 >99
6 -(CH2)3CH3 10 99 >99
7 -Ph 6 90 >99

a Reaction conditions: epoxide (43 mmol), PIMBr-COOH (1 mol%, 90 mg), CO2 (0.1 MPa), and 100 ◦C. b Deter-
mined by GC.

2.3. Plausible Reaction Mechanism

Based on the experimental results and literature data [44,48,49,70], a plausible mech-
anism for CO2 cycloaddition reaction using PIMBr-COOH as a catalyst was proposed
(Scheme 2). Firstly, the carboxyl group in PIMBr-COOH coordinated with the oxygen atom
in epichlorohydrin, leading to the formation of a hydrogen bond and thereby activating
the C-O bond of the epichlorohydrin ring. Subsequently, the epichlorohydrin ring was
opened via the nucleophilic attack of Br− on the β-carbon atom with little steric hindrance
in epichlorohydrin, leading to the formation of a bromoalkoxide intermediate. Then, an
alkylcarbonate anion was produced through the reaction between the bromoalkoxide in-
termediate and CO2. Lastly, target cyclic carbonate was generated via the intermolecular
ring-closing of the alkylcarbonate anion. Meanwhile, PIMBr-COOH was regenerated and
participated in the next catalytic cycle.
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3. Methods and Materials
3.1. Chemicals

1,3-Dibromopropane (98%), N,N-dimethylformamide (99.9%), ethanol, 3-bromo-2-
(bromomethyl)propionic acid (98%), 1,3-dibromo-2-propanol (95%), and epoxides were
of analyzed grades and purchased from Energy Chemical (Shanghai, China). TIB (98%)
was obtained from Alchemy Co. Ltd. CO2 was obtained from a local manufacturer with a
purity of 99.9%.

3.2. Synthesis of PIMBr, PIMBr-OH and PIMBr-COOH

HBDs-functionalized PILs were fabricated via a one-pot quaternization strategy. In
detail, TIB (1.73 mmol, 0.48 g) and 3-bromo-2-(bromomethyl)propionic acid (2.32 mmol,
0.57 g) were added to N,N-dimethylformamide (30 mL) in a 100 mL pressure-resistant tube.
After replacing the interior air with N2, the tube was transferred to an oil bath, stirred, and
heated under 100 ◦C for 24 h. Subsequently, the tube was removed from the oil bath and
cooled naturally to room temperature. Next, the resultant solid was washed thoroughly
with ethanol, filtered, and dried under vacuum (80 ◦C) for 24 h. Finally, 1.03 g of white solid
(98% yield) were obtained and named PIMBr-COOH (1.03 g). Following the same synthesis
procedures of PIMBr-COOH, PIMBr and PIMBr-OH were also successfully fabricated
in nearly quantitative yields by taking the place of 3-bromo-2-(bromomethyl)propionic
acid with other 1,3-dibromo compounds, i.e., 1,3-dibromopropane and 1,3-dibromo-2-
propanol, respectively.

3.3. Catalytic Performance

In a typical reaction of catalytic CO2 cycloaddition, catalysts (PIMBr-COOH, PIMBr-
OH, or PIMBr) and epoxide were successively added to a 25 mL high-pressure reactor
equipped with a magnetic stirrer. After purging with CO2 several times, the reactor was
charged with CO2 to 1 MPa and reacted at a pre-set temperature for the required time. After
reaction completion, the system was cooled to room temperature. The resultant mixture
was separated by centrifugation, and the obtained liquid was analyzed by GC and GC-MS
using dimethylacetamide as the internal standard.

3.4. Characterization

Solid-state 13C NMR measurements were analyzed on a Bruker Avance 400 NMR
spectrometer (Zurich, Switzerland) with a 4 mm rotor spinning module. FT-IR measure-
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ments were recorded on a Nicolet Nexus FT-IR spectrometer (Madison, WI, USA) using
the KBr pellet technique over a range of 4000–400 cm−1 at 4 cm−1 resolution and 32 scans.
X-ray photoelectron spectroscopy (XPS) analyses of the prepared PILs were performed on
a Thermo Fisher Scientific K-Alpha spectrometer (Waltham, MA, USA) equipped with Al K
radiation (1486.68 eV). Porous properties of the prepared PILs were measured at 77 K on a
Micromeritics ASAP2460 after degassing at 100 ◦C for 8 h. A scanning electron microscope
(FE-SEM, Hitachi S-4800, accelerateel voltage: 5 kV (Tokyo, Japan) with energy-dispersive
X-ray spectroscopy (EDS) and a transmission electron microscope (TEM, FEI Talos F200X),
operating at a high voltage of 200 kV, were used to investigate the morphology of the
materials. Thermogravimetric analysis (TGA, Netzsch, Bavaria, Germany) was carried out
using a NETZSCH STA 449F3 over a temperature range from 25 to 600 ◦C at a heating rate
of 10 ◦C/min under a dynamic N2 atmosphere. GC and GC-MS analyses were recorded on
SCION 456-GC and Agilent 6890/5973 GC-MS, respectively.

3.5. DFT Calculation

DFT calculations were performed to investigate the hydrogen-bond interactions be-
tween epichlorohydrin and designed catalysts using the Gaussian 09 package. The geom-
etry of all molecules was optimized by the B3LYP-GD3 level using the 6-31G* [25] basis
set [71]. The same level of frequency analysis was used to ensure the minimum potential
energy surface of the optimized geometry.

4. Conclusions

In summary, novel ionic polymers with different types of HBDs, high numbers of
imidazolium ionic sites, and controlled spatial positions of dual active sites were facilely
constructed by a one-pot quaternization strategy. Impressively, the presence of hydroxyl
and carboxyl groups boosted the catalytic activities of ionic polymers significantly toward
the cycloaddition reaction of CO2 into epoxides. Carboxyl-functionalized ionic polymers
displayed higher catalytic activity than those of HBDs-free and hydroxyl-functionalized
ionic polymers. DFT calculation demonstrated that the formation of hydrogen bonds
between epoxide with HBDs of ionic polymers facilitated the ring-opening step, and the
higher catalytic activity of PIMBr-COOH was mainly attributed to its stronger hydrogen
bond interaction with the epoxide substrate. Additionally, PIMBr-COOH exhibited good
recyclability and was able to be reused at least five times. Under ambient CO2 presence, a
series of substituted epoxides were smoothly transformed into cyclic carbonates in excellent
yields under solvent-, cocatalyst-, and metal-free reaction conditions. This research thus
represents a reliable strategy for direct fabrication of carboxyl-functionalized ionic polymers
towards efficient CO2 conversion.
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