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Abstract

A major challenge in computational biology is constraining free parameters in mathematical models. Adjusting a parameter
to make a given model output more realistic sometimes has unexpected and undesirable effects on other model behaviors.
Here, we extend a regression-based method for parameter sensitivity analysis and show that a straightforward procedure
can uniquely define most ionic conductances in a well-known model of the human ventricular myocyte. The model’s
parameter sensitivity was analyzed by randomizing ionic conductances, running repeated simulations to measure
physiological outputs, then collecting the randomized parameters and simulation results as ‘‘input’’ and ‘‘output’’ matrices,
respectively. Multivariable regression derived a matrix whose elements indicate how changes in conductances influence
model outputs. We show here that if the number of linearly-independent outputs equals the number of inputs, the
regression matrix can be inverted. This is significant, because it implies that the inverted matrix can specify the ionic
conductances that are required to generate a particular combination of model outputs. Applying this idea to the myocyte
model tested, we found that most ionic conductances could be specified with precision (R2 . 0.77 for 12 out of 16
parameters). We also applied this method to a test case of changes in electrophysiology caused by heart failure and found
that changes in most parameters could be well predicted. We complemented our findings using a Bayesian approach to
demonstrate that model parameters cannot be specified using limited outputs, but they can be successfully constrained if
multiple outputs are considered. Our results place on a solid mathematical footing the intuition-based procedure
simultaneously matching a model’s output to several data sets. More generally, this method shows promise as a tool to
define model parameters, in electrophysiology and in other biological fields.
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Introduction

Mathematical modeling has become an increasingly popular

and important technique for gaining insight into biological

systems, both in physiology, where models have a long history

[1,2], and in biochemistry and cell biology, where quantitative

approaches have gained traction more recently [3,4]. However, as

new models proliferate and become increasingly complex, analysis

of parameter sensitivity has emerged as an important issue [5,6]. It

is clear that to understand a model requires not only knowing the

output generated using the published ‘‘baseline’’ set of parameters,

but also some knowledge of how changes in the model’s

parameters affect its behavior.

During the development of a mathematical model, the choice of

parameters is a critical step. Parameters are constrained by data

whenever this is possible, but direct measurements are frequently

lacking. Often, however, a situation exists in which values for

many parameters are unknown, but a considerable amount is

known about the system’s emergent phenomena. In such cases,

experienced researchers narrow down the values of the unknown

model parameters based on how the model ‘‘ought to behave.’’

Parameter sets that generate grossly unrealistic output are rejected

whereas those that produce reasonable output are tentatively

accepted until they fail in some important respect. The emergent

phenomena considered in this process can be switching or

oscillatory behavior in the case of biochemical signaling models

[3,4], or outputs such as action potential (AP) and calcium

transient morphology in models of ion transport [7–10].

Computational studies, however, have revealed the limitations of

this intuition-based procedure. In particular, work in theoretical

neuroscience has shown that when a single output such as

neuronal firing rate is considered, many different combinations of

model parameters can generate equivalent behavior [11–14].

This general problem is illustrated in Figure 1A, which shows

results from a popular mathematical model of the human

ventricular action potential, that of ten Tusscher, Noble, Noble,

and Panfilov (TNNP; [15]). Random variation of model

parameters revealed that completely different parameter combi-

nations could produce virtually identical AP morphology. This

result is analogous to studies by Prinz et al. examining firing rate in

neuronal cell models [13,14]. However, an interesting aspect of

the simulation is as follows. The two hypothetical cells, although

generating nearly identical APs under normal conditions,

exhibited intracellular Ca2+ transients that differed with respect

to both amplitude and kinetics (Figure 1B). Theoretically, then, a

justifiable choice between these two parameter combinations,

while impossible based only on the results shown in Figure 1A,

could be made by considering the additional information in
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Figure 1B. Such distinctions are frequently made by researchers

with experimental expertise, who either accept or reject models

based on how well they recapitulate a range of observed

phenomena. This process, although somewhat arbitrary and

potentially subject to bias, nonetheless reflects sound reasoning,

since a ‘‘good’’ model should successfully reproduce many

biological behaviors.

Based on results such as those shown in Figure 1, we sought to

formalize and place on a sound mathematical footing the process

of choosing parameters by comparing model output with several

sets of data. In particular, our hypothesis was that examining a

single model output, such as action potential duration (APD),

would fail to constrain parameters, but success would be more

likely if the number of physiological outputs was similar to the

number of free model parameters. We demonstrate that this is true

in the case of the TNNP model [15] through two methods. The

first, an extension of the use of multivariable regression for

parameter sensitivity analysis [16], consists of inverting a

regression matrix and then using this to calculate the changes in

model parameters required to generate a given change in outputs.

The second method employs Bayes’s theorem to estimate the

probabilities that model parameters lie within certain ranges. The

results, which are generally applicable across different models and

different biological systems, can be of great use when building new

models, and also provide new insights into the relationships

between model parameters and model results.

Results

The overall hypothesis of our study was that if several

physiologically-relevant characteristics of a model’s behavior were

known, this information would be sufficient to constrain some or

all of the model’s parameters. We tested this idea using two

approaches: one based on multivariable regression and the other

based on Bayes’s theorem. We began by generating a database of

candidate models. The parameters that define maximal conduc-

tances and rates of ion transport in the TNNP model [15] were

varied randomly, and several simulations, defining how the

candidate model responded to altered experimental conditions,

were performed with each new set of parameters. In general, the

simulations reflected experimental tests commonly performed on

ventricular myocytes, such as determining the threshold for

excitation or changing the rate of pacing.

For the first approach, the results of these simulations were

collected in ‘‘input’’ and ‘‘output’’ matrices X and Y, respectively.

Each column of X corresponded to a model parameter, and each

row corresponded to a candidate model (n = 300). The columns of

Y were the physiological outputs extracted from the simulation

results, such as action potential duration (APD) and Ca2+ transient

amplitude. Complete descriptions of the randomization procedure

and simulation protocols are provided in the Methods and Text

S1. Outputs are listed in Table 1 and described in detail in

Text S1.

Multivariable regression techniques were used to quantitatively

relate the inputs to the outputs. In the ‘‘forward problem,’’ a

matrix of regression coefficients B was derived such that the

predicted output Ŷ = XB was a close approximation of the actual

output Y. This method has recently been proven useful for

characterizing the parameter sensitivity of electrophysiological

models [16]. We reasoned that a similar approach could be used to

address the question: if the measurable physiological characteris-

tics of a cardiac myocyte are known, can this information be used

to uniquely specify the magnitudes of the ionic currents and Ca2+

transport processes? Specifically, we hypothesized that if: 1)

Ŷ = XB was a close approximation of the true output Y, and 2)

B was a square matrix of full rank, then Xpredicted = YB21 should

be a close approximation of the true input matrix X. This

argument is illustrated schematically in Figure 2.

Figure 3A demonstrates the accuracy of the reverse regression

method. For four chosen conductances, the scatter plots show the

‘‘actual’’ values, generated by randomizing the baseline parame-

Figure 1. Effects of parameter variation on model output. (A)
Drastically different combinations of ionic conductances result in nearly
identical action potential morphology. The bar graphs show log(G/
Gcontrol) for each ionic conductance in the TNNP [15] model, where
Gcontrol is the conductance in the published model (see Table 1 in Text
S1 for full list) (B) Intracellular calcium (Ca2+) transients produced by the
two parameter combinations are distinct, in terms of both amplitude
and kinetics, suggesting that such information could be used to
distinguish between the two parameter sets.
doi:10.1371/journal.pcbi.1000914.g001

Author Summary

Mathematical models of biological processes generally
contain many free parameters that are not known from
experiments. Choosing values for these parameters,
although an important step in the construction of realistic
computational models, is frequently performed using an
ad hoc approach that is a combination of intuition and trial
and error. We have developed a novel method for
constraining free parameters in mathematical models
based on the techniques of linear algebra. We demon-
strate this method’s utility through simulations with a
model of a human heart cell. The underlying premise is
that if the model is only asked to recapitulate one or a few
biological behaviors, the values of the parameters may be
ambiguous; however, if the model must simultaneously
match many features of experimental data, the free
parameters can be determined uniquely. The results
demonstrate that if computational models are to be
realistic, they must be compared with several sets of data
at the same time. This new method should serve as a
valuable tool for investigators interested in developing
realistic mathematical models of biological processes.

Constraining Parameters Using Regression
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ters in the published TNNP model, versus the ‘‘predicted’’ values

calculated with the regression model. The large R2 values (.0.9)

indicate that the predictions of the regression method are quite

accurate. Of the 16 conductances in the TNNP model, 12 could

be predicted with R2.0.7. The four that were less well-predicted

were the Na+ background conductance (GNab), the rapid

component of the K+ delayed rectifier conductance (GKr), the

sarcolemmal Ca2+ pump (KpCa) and the second SR Ca2+ release

parameter (Krel2).

To verify that these encouraging results were not specific to the

TNNP model, we performed similar analyses on additional

models, the human ventricular myocyte model of Bernus et al.

[17], and the ‘‘Phase 1’’ ventricular cell model of Luo and Rudy

[18]. In either case (Figures S3 and S4, respectively), the reverse

regression was highly predictive of most parameters, indicating

that this approach is generally applicable. The outputs used for

these analyses, listed in Text S1, differed somewhat from those

used for the TNNP simulations because the Bernus et al. [17] and

Phase 1 Luo and Rudy [18] models are relatively simple and do

not consider intracellular Ca2+ handling in detail.

Figure 3B illustrates how the quantity and identity of the

outputs in Y affected the accuracy of the predictions. Bar graphs

show R2 values for prediction of each model parameter obtained

by performing the reverse regression in three ways: 1) using all 32

outputs (blue), 2) matrix inversion (green), with the 16 best outputs

as identified by the output elimination algorithm (see Methods),

and 3) using only the 16 rejected outputs (red). The R2 values

computed using the 16 best outputs were virtually identical to

those obtained when all 32 outputs were used whereas R2 values

for most conductances were substantially lower when only the 16

rejected outputs were included. These tests validate the algorithm

which selected the outputs for matrix inversion. Moreover, since

the 16 best outputs performed essentially as well as the full set of 32

outputs, this result implies that the model outputs were not fully

Table 1. Physiological outputs in simulations with TNNP model.

Output # Abbreviation Description

1 APD Action potential duration

2 Vrest Resting membrane potential

3 Vpeak Peak voltage during phase 0

4 dV/dt max Maximum upstroke velocity

5 DCa Ca2+ transient amplitude

6 Vmaxmin Shape parameter to characterize AP

7 Vminmax Shape parameter to characterize AP

8 tminmax Shape parameter to characterize AP

9 BCLalt Alternans threshold

10 Ithresh Stimulation threshold

11 Maxslope Maximum slope of restitution curve

12 Time to peak Time to peak of Ca2+ transient

13 Decay time Time constant of decay of Ca2+ transient

14 APDpause Action potential duration after a long pause

15 DCapause Ca2+ transient amplitude after a long pause

16 Vmaxmin_pause Shape parameter to characterize AP after a long pause

17 Vminmax_pause Shape parameter to characterize AP after a long pause

18 tminmax_pause Shape parameter to characterize AP after a long pause

19 APDdiff Difference in APD between the first and the last AP during pacing

20 DCadiff Difference in DCa between the first and the last AP during pacing

21 APDhypo Action potential duration during hypokalemia

22 APDhyper Action potential duration during hyperkalemia

23 Vmaxmin hypo Shape parameter to characterize AP during hypokalemia

24 Vminmax hypo Shape parameter to characterize AP during hypokalemia

25 tminmax hypo Shape parameter to characterize AP during hypokalemia

26 Vmaxmin hyper Shape parameter to characterize AP during hyperkalemia

27 Vminmax hyper Shape parameter to characterize AP during hyperkalemia

28 tminmax hyper Shape parameter to characterize AP during hyperkalemia

29 Ca2+ Intracellular Ca2+ after 60 seconds of quiescence

30 Na+ Intracellular Na+ after 60 seconds of quiescence

31 K+ Intracellular K+ after 60 seconds of quiescence

32 Frequency Frequency adaptation of APD

For each set of random parameters, simulations were performed to calculate each output in the Table. Methods used for calculation of these outputs are provided in
Text S1. Entries in bold and plain text, respectively, indicate outputs that were retained or rejected for matrix inversion.
doi:10.1371/journal.pcbi.1000914.t001

Constraining Parameters Using Regression
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linearly independent, and the 16 rejected outputs contained

redundant information.

Figure 4 displays, as heat maps, the coefficients for both the

forward and reverse regression problems. The former indicate how

model parameters influence outputs, whereas the latter specify

how changes in model outputs restrict the parameters. Parameter

sensitivities for selected outputs and conductances are shown as

bar graphs to the right. As previously argued for the case of

forward regression [16], these parameter sensitivities help to

illustrate the relationships between parameters and outputs. For

instance, forward regression coefficients indicate that diastolic

[Ca2+] is determined primarily by a balance between SR Ca2+

uptake and SR Ca2+ leak, with other parameters making only

minimal contributions. Conversely, for reverse regression, the

maximal conductance of L-type Ca2+ current (GCa) depends on

many model outputs including action potential duration, Ca2+

transient amplitude, and, in particular, how these are altered with

changes in extracellular potassium. This result underscores the

centrality of intracellular Ca2+ regulation to many cellular

processes.

The results shown in Figure 3 demonstrated that most of the

model parameters used to generate the dataset could be

reconstructed using the reverse regression procedure. To provide

evidence that this procedure may be more broadly useful, we

applied the method to a novel test case by performing simulations

with the most recent version of the Hund & Rudy canine

ventricular model [19]. Specifically, we considered changes in

seven parameters corresponding to the condition of heart failure,

as previously modeled by Shannon et al [20]. Figure 5A shows that

implementing these parameter changes dramatically alters both

AP shape and Ca2+ transient amplitude. After performing

simulations under a range of conditions with both normal, healthy

cells and pathological, failing cells (see Methods and Text S1), we

asked how well the reverse regression matrix could calculate the

parameter changes in the failing cells. We found that this method

constrained 5 out of 7 parameters with excellent accuracy, while

changes in two parameters (GKs and Kleak) were overestimated

somewhat by the regression algorithm. This novel test cases

validates our approach and suggests that it may indeed prove a

useful method for developing new models based on experimental

measurements.

The second approach for constraining model parameters is

based on Bayes’s theorem. In statistics, this celebrated result

describes the conditional probability of one event given another in

terms of: 1) the conditional probability of the second event given

the first, and 2) the marginal probabilities of the two events:

P(ADB)~
P(BDA)P(A)

P(B)

In this context, we consider event A that a model conductance lies

within a given range, and event B that a model output is within a

particular range. When many simulations are performed with

randomly varying parameters, the probability P(A) is fixed by the

user, while the probabilities P(B) and P(B|A) can be estimated

from the results. This allows us to approximate P(A|B), which

reflects how well a model parameter is constrained by a particular

simulation result.

Since our hypothesis was that multiple outputs needed to be

considered to constrain model parameters, we were interested in

extensions of Bayes’s theorem to more than two variables, e.g.

P(A|B>C), where B and C are events related to two model

outputs. For instance, B and C could represent, respectively, that

APD and Ca2+ transient amplitude are within particular ranges. If

the conditional probability of the parameter increases as additional

outputs are considered, this validates the thinking underlying the

approach.

The application of this strategy to our data set is illustrated in

Figure 6. The two rows of histograms display distributions of GNa

and GCa, which are typical of the 16 model parameters

considered. The leftmost histogram in each row shows the

distribution of conductance values in the entire population, and

the remaining columns show conductance values for sub-

populations that satisfy constraints on one or more model outputs.

Successive columns from left to right show distributions with

additional model outputs considered, as noted. In either case, the

distributions become progressively narrower, and the conditional

probability is unity once 3 outputs are considered.

This procedure also provides insights into which specific outputs

provide the greatest information about particular model param-

eters. For instance, the distribution of GNa given a certain range of

APD appears similar to the overall distribution of GNa because

these two variables are not strongly correlated (i.e. P(B|A) < P(B)).

In contrast, inclusion of Vpeak, an output highly dependent on

GNa, narrows the distribution significantly. In the case of GCa,

restricting APD to a particular range makes the distribution

narrower, which is to be expected given the relatively strong

correlation between the parameter and the output. Thus, an

approach based on Bayes’s theorem also supports the idea that

model parameters can successfully be constrained if multiple

model outputs are considered.

Discussion

In this study we have presented two methods that can be used to

constrain free parameters in complex mathematical models of

biological systems. The utility of these methods was demonstrated

through simulations with models of ventricular myocytes [15,17–

19], but with modifications the strategies could also be applied to

other classes of models. For instance, these methods could be used

to constrain parameters in models of the sinoatrial node [21,22],

but in this case more useful outputs would be metrics such as inter-

Figure 2. Schematic of input, output and regression matrix
structures. Randomly-varied model parameters are collected in an
input matrix X with dimensions n, corresponding to the number of
trials, by p, corresponding to the number of parameters. Simulation
results define m outputs that are collected in the output matrix Y, with
dimensions an n6m. Regression matrix B, with dimensions p6m, can be
used to predict Y from X, the so-called ‘‘forward problem.’’ If m = n, and
the outputs are linearly independent, then B can be inverted, and YB21

should be a good approximation of X. This is our strategy for
addressing the ‘‘reverse problem.’’
doi:10.1371/journal.pcbi.1000914.g002

Constraining Parameters Using Regression
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beat interval, diastolic depolarization rate, and maximum diastolic

potential [23]. Our results show that model parameters are

difficult to specify uniquely using a limited number of model

outputs as ‘‘targets,’’ but parameters can be constrained

successfully if numerous model outputs are simultaneously

considered [24]. The premise underlying this strategy is therefore

similar to ideas advanced by Sethna and colleagues in discussions

of model ‘‘sloppiness’’ [25,26]. Even if individual parameters are

largely unknown or cannot be measured with precision, predictive

models can still be built if care is taken to match the model’s

output to diverse sets of experimental data.

The reverse regression method uses matrix multiplication to

predict a set of parameters, in this case ionic current maximal

conductances, that are most likely to recapitulate a given set of

model outputs. In a recent paper [16], parameter randomization

followed by regression was used to quantify parameter sensitivities

in electrophysiological models. The method presented here is an

extension of this: we added outputs so that the regression matrix B
could be inverted. Each element of this inverted matrix, B21,

therefore indicates how much a physiological output contributes to

the prediction of a particular input conductance (Figure 4). In

experimental studies, metrics derived from data are frequently

used as indirect semi-quantitative surrogates of ionic conductanc-

es. For instance, conventional wisdom holds that action potential

upstroke velocity reflects the availability of Na+ current [27], and

the prominence of the Phase 1 ‘‘notch’’ indicates the contribution

of transient outward K+ current [28,29]. Our reverse regression

method is simply a mathematically more formal extension of this

Figure 3. Predictions of the linear empirical model generated by reverse regression. (A) Scatter plots are displayed for four input
conductances: GNa (top left), GCa (top right), Gto (bottom left) and KNCX (bottom right). Each plot shows the value actually used in the simulations
(abscissa) versus the estimate generated by the regression model (ordinate). The regression was performed on a simulated data set containing 300
samples. (B) R2 values for each conductance in the TNNP model in the reverse regression. The three cases shown correspond to regression performed
with: all 32 outputs (blue); the sixteen ‘‘best’’ outputs (green), and the 16 rejected outputs (red).
doi:10.1371/journal.pcbi.1000914.g003

Constraining Parameters Using Regression
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general strategy, whereby every output can conceivably influence

the prediction of each model parameter.

When applied to the simulations with the TNNP model, reverse

regression was able to generate accurate predictions of most

conductances or rates of ion transport in the model (R2.0.7 for 12

of 16 parameters). Of the 4 parameters that were not predicted

accurately, two, namely Na+ background conductance (GNab) and

the sarcolemmal Ca2+ ATPase (KpCa) are considered to be relatively

unimportant for normal cellular physiology. The parameter Krel2

(crel in the original TNNP model), was also predicted poorly, most

likely because it is partially redundant with the parameter Krel1 (arel

in the original TNNP model), which was well constrained by the

analysis. The surprise in our simulations was the poor prediction of

the rapid component of the delayed rectifier current, GKr, since this

current contributes to AP repolarization [30,31], and block of IKr is

the primary cause of drug-induced long QT syndrome [32,33]. It

should be noted, however, that our prediction of the conductance

corresponding to the slow delayed rectifier, GKs, was accurate. This

suggests that in the TNNP model, these conductances serve similar

functions and perhaps compensate for each other.

Figure 4. Parameter sensitivities for forward and reverse regression. Values in the forward regression matrix B and reverse regression matrix
B21 are shown as ‘‘heat maps,’’ with white representing values near zeros, and blue and red indicating positive and negative values, respectively. (A)
The forward regression matrix B, where each row represents the contributions of each of the conductances to a particular output. The bar graphs
corresponding to two of these outputs (APD and diastolic [Ca2+]) are shown to the right. (B) The reverse regression matrix B21, where each row
represents the contributions of each of the outputs to a given conductance. The bar graphs corresponding to two of these conductances (GNa and
GCa) are shown to the right.
doi:10.1371/journal.pcbi.1000914.g004

Constraining Parameters Using Regression
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A similar conclusion can be drawn from the simulations in

which we used the reverse regression procedure to reconstruct the

parameters corresponding to heart failure in the Hund & Rudy

[19] model (Figure 5). Five out of the seven parameters altered in

the heart failure cell were predicted accurately by the reverse

regression procedure. The two that were not predicted accurately,

Kleak, and GKs, have relatively minor effects in the Hund & Rudy

model, although these are more important in some other models.

Thus, these methods are not only useful for constraining

parameters; they can provide novel insight into the relative

importance of particular model parameters in determining

physiological function.

Two important factors influencing the accuracy of the

conductance predictions are the number and quality of the

outputs. Mathematically, inversion of the regression matrix B

requires that the columns be linearly independent, which in turn

requires independence of the columns of Y, i.e. the outputs. In

contrast, linear dependence would imply that the outputs contain

redundant information. Since we did not know a priori which

outputs would be informative and which would be partially

redundant, we implemented an algorithm to remove outputs

sequentially and find a set of 16 that yielded the best results. This

resulted in the unexpected elimination of seemingly important

outputs such as the maximal upstroke velocity, a metric closely

related to Na+ conductance. However, it is important to note that

this result does not argue against the usefulness of upstroke velocity

as a metric, it merely indicates that the information contained in

this output has already been captured by the 16 that were selected.

These considerations suggest a future application of these

techniques, besides their obvious utility in the construction of new

Figure 5. Application of reverse regression to constrain model parameters in heart failure. Simulations were performed with the Hund &
Rudy model of the dog ventricular myocyte [19], with changes made to 7 model parameters to replicate changes occurring in heart failure, as
previously simulated by Shannon et al. [20]. (A) The differences between normal and pathological states is shown by contrasting the action potential
waveforms and Ca2+ transients. The action potential is triangular in shape in heart failure while the Ca2+ transient is dramatically reduced in the failing
cell. The directional changes in the 7 altered parameters are also indicated. (B) The true values of the changed parameters are shown alongside the
values predicted by reverse regression. Each is represented as a multiple of the baseline parameter value, where no change is indicated by the
dashed line. Note the break in the y-axis, reflecting the fact that the reverse regression procedure overestimates the change in the parameter Kleak.
Similarly, the regression model overestimates the change in GKs, as the height of this bar, 0.86% of the control value, is difficult to visualize on this
scale.
doi:10.1371/journal.pcbi.1000914.g005

Constraining Parameters Using Regression
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mathematical models. Since the regression analyses provide insight

into which physiological measures are independent and which are

partially redundant, these types of simulation studies can be used

to prioritize experiments. Experimental studies consume the

valuable resources of reagents, animals, and person-hours, and

computational approaches that could reliably distinguish between

more informative and less informative experiments would

therefore be quite valuable. For example, the pacing cycle length

at which a myocyte begins to exhibit APD alternans (BCLalt) is an

important quantity related to the arrhythmogenic potential of the

cardiac substrate [34,35]. Determining this threshold, however,

requires time-consuming experiments in which myocytes must be

paced at many different rates. This output was rejected by our

elimination algorithm, suggesting that, at least in the TNNP

model, the information provided by this difficult experiment is not

different from that contained in other, perhaps simpler, measure-

ments. Our current work is focused on formalizing these ideas and

developing methods to quantify the relative information content of

different experimental measurements.

We should note that the outputs chosen for our analysis are

physiologically meaningful metrics that are measured routinely in

isolated cardiac myocytes. We purposely excluded measures that

quantify how cellular behavior changes after application of a

pharmacological agent. Since the explicit purpose of adding a drug

is often to deduce the importance of the drug’s primary target, we

felt that including these metrics would, for an existing model, make

the parameter constraint problem fairly trivial. In future studies,

however, including these outputs will undoubtedly improve the

predictive power of these methods. Similarly, the addition of more

columns to the matrix Y corresponding to results from voltage-

clamp experiments should also improve the accuracy of the

method. These extensions will likely be necessary if maximal

conductances are essentially unknown, or if ionic current kinetic

parameters are also to be constrained.

In the field of cardiac electrophysiology, a few modeling studies

have examined issues of parameter sensitivity [6,16,36,37],

parameter estimation [38,39], and model identifiability [40]. For

example, Fink and Noble recently assessed the adequacy of whole-

cell voltage clamp records for uniquely determining parameters in

models of ion channel gating [40]. These analyses suggested that

optimized voltage clamp protocols might be more efficient for

parameter identification than protocols currently used in exper-

iments. More studies that address these sorts of issues have been

performed in computational neuroscience. For instance, analogous

to the results shown in Figure 1A, several studies have shown that

different combinations of model conductances can produce

seemingly identical behavior, either in isolated neurons [11,13]

or in models of small neuronal networks [14]. Olypher and

Calabrese then generalized this result by demonstrating that, close

to a particular location in parameter space, infinitely many

parameter combinations can produce the same level of activity as

the original location, and these authors derived 262 sensitivity

matrices to demonstrate these compensatory changes [41]. Our

reverse regression approach is essentially an extension of this idea

to multiple dimensions, with the implicit assumption that

considering additional linearly-independent model outputs will

increase the likelihood of determining parameters uniquely.

Given that parameters in neuronal models cannot be uniquely

specified using only a metric such as firing rate, a few studies have

combined genetic algorithms with more sophisticated data-

matching strategies such as phase-plane analysis [11] or multiple

objective optimization [42]. Our methods offer both advantages

and disadvantages compared with these alternative strategies. The

primary advantage here is that reverse regression is simple and

intuitive, and the outputs considered are well-defined metrics that

are readily obtainable in the laboratory. We can therefore easily

relate, in a way that other techniques do not allow, the observable

characteristics of the cardiac myocyte to the membrane densities

of the important ion channels. The main drawbacks of our

approach are: 1) that we only perform a local search around the

baseline model and 2) that we assume a linear relationship

between changes in parameters and changes in outputs. While

Figure 6. Illustration of Bayesian probability approach. (A) Distributions of GNa with different constraints. From left to right, histograms show
GNa values in the complete data set; given that APD is in a particular range (from 295–298 ms, representing 10% of the samples); given that APD and
Vrest (284.96 to 285.02 mV) are in particular ranges; given that APD, Vrest, and Vpeak (37.05 to 37.81 mV) are in particular ranges. (B) Distributions of
GCa, given the same constraints as in (A).
doi:10.1371/journal.pcbi.1000914.g006
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linear approximations to these input-output relationships have

been shown to work well in cardiac models [16], particularly when

conductances are expressed in log-transformed units, this assump-

tion may not hold in all classes of models [43]. This limitation is

evident in the simulations shown in Figure 6 in that: 1) two

parameters were poorly predicted by the regression model; and

2) in these simulations, the parameter search was constrained to

only seven possibilities rather than allowing any model parameter

to contribute to the phenotype. Future studies will likely improve

on these strategies and combine aspects of several approaches to

refine methods for determining parameters in complex models of

biological processes.

In summary, we have presented new methods for constraining

free parameters in mathematical models, and demonstrated their

utility through analyses of a common model of the ventricular

myocyte. The approaches we describe have potentially broad

implications. Analysis tools such as these can be used to obtain

new insight into the relationships between model parameters,

model outputs, and experimental data. The ideas offer hope that,

even if some model parameters cannot be directly measured, a

close comparison of data to model output can still discriminate

between possibilities and produce a model with strong predictive

power.

Methods

This computational study aimed to extend the use of regression

to develop methods for constraining free parameters in mathe-

matical models. The ideas were tested through simulations using

the TNNP model [15] of the human ventricular action potential

(described in more detail in the Supporting Information). First,

regression was used to derive a matrix (B) whose elements indicate

how changes in input parameters, namely maximal ionic

conductances, affect physiologically-meaningful model outputs.

The regression matrix was then inverted, thereby deriving a new

matrix (B21) that specifies the ionic conductances required to

produce a given set of model outputs.

In the first stage, the input matrix X was generated by randomly

scaling 16 parameters in the TNNP model. A total of 300 random

sets of parameters were generated such that X had dimensions

300616. To compute the output matrix Y, several simulations

were performed with each of the 300 models defined by a given

parameter set. These simulations reflected standard electrophys-

iological tests such as the response of the myocyte to changes in

pacing rate or extracellular potassium concentration. The

calculation of some of these outputs is illustrated in Figure S1.

The 32 outputs computed from these simulations, listed in Table 1,

ranged from straightforward measures such as action potential

duration (APD) and Ca2+ transient amplitude to more abstract

metrics such as the minimum cycle length required to induce APD

alternans [34].

The 16632 matrix B relates the inputs to the outputs such that

Ŷ = XB is a close approximation of the true output matrix Y. To

allow for inputs and outputs expressed in different units to be

compared, values in X and Y were converted into Z-scores – i.e.

each column was mean-centered and normalized by its standard

deviation. The results of the ‘‘forward’’ regression performed in

the first stage are shown in Figure S2.

The second stage of the computational experiment aimed to

determine if the input matrix X could be inferred, assuming the

output matrix Y was known. Since Ŷ = XB<Y, we reasoned that

YB21 should be a close approximation of X, provided that B is an

invertible matrix. We performed an iterative procedure to

determine the 16 most appropriate outputs for this matrix

inversion. First, with the full 300632 matrix Y, ‘‘reverse

regression’’ was performed to derive a matrix B9 such that

YB9<X. We then removed each of the columns of Y and

performed the reverse regression with the remaining 31 outputs.

The output whose removal caused the smallest change in the

prediction of X (quantified by R2) was deemed the least essential

and was removed permanently. This procedure was repeated to

reduce the number of outputs from 31 to 30, etc., until Y had

dimensions 300616.

A further set of simulations was performed with the 2008

version of the Hund and Rudy model of the canine action

potential [19]. In these simulations, we sought to determine

whether changes in model parameters in heart failure could be

determined using the reverse regression procedure. We simulated

the changes in parameters used by Shannon et al to simulate heart

failure in their model of the rabbit action potential [20]. This

involved alterations to seven model parameters: GK1, GKs, Gto,

KNCX, KRyR, KSERCA, and Kleak. Simulations were performed

under three conditions: normal extracellular [K+]o (5.4 mM),

hypokalemia ([K+]o = 3 mM) and hyperkalemia ([K+]o = 8 mM).

In these simulations, a total of 33 model outputs were calculated to

constrain the parameters (see Text S1 for full list). Reverse

regression was performed to map the 33 outputs from the

simulated failing myocyte to the predicted 7 parameter changes.

In the second approach, based on Bayes’s theorem, we were

interested in estimating P(A|B) from P(B|A), P(A), and P(B). In

this context, A is that a parameter is in a particular range, and B is

that a model output is in a specified range. To estimate P(B|A)

from the set of 300 simulation results, we sorted the values in each

column of X and Y, then computed the percentile ranges. This

allowed us to easily select, for instance, 10% of the values of a

particular output centered around a given value. To generate

histograms such as those shown in Figure 4, we first plotted the

distribution of all the tested values of a given conductance. Then

we selected the conductance values corresponding only to those

trials for which APD fell within a particular range, and generated

the histogram of this set. From this subset of conductances, we

then selected the conductance values corresponding to those trials

for which Vrest was in a certain range, etc. To allow for visual

comparison, each histogram was normalized to the total number

of values of the subset. To ensure that this procedure found a set of

conductances that actually existed in the data set, we first

identified the ‘‘best’’ trial for which the difference between Y
and Ŷ was minimal. The output ranges used to select the subsets of

conductances all represented deviations of 65% around these

values.

A bundle containing the MatlabTM code used to generate the

results presented in the manuscript has been uploaded as Protocol

S1 in the Supporting Information.

Supporting Information

Figure S1 Examples of several of the outputs calculated from the

simulations. (A) Shape parameters that are extracted from the AP

waveform. These characterize the ‘‘spike and dome’’ morphology

typical of epicardial myocytes. The loss of spike and dome

indicates an abnormality possibly resulting from a pathological

state. (B) Illustration of BCLalt , the minimum basic cycle length

required to induce APD alternans. When the cell is paced at

BCL = 285, no alternans is observed. However, the characteristic

alternating long-short pattern is seen at BCL = 280. (C) Illustration

of the process used to determine the threshold stimulus current

required to induce an action potential. Sub- and supra-threshold

stimuli are applied iteratively until the correct magnitude of the
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threshold stimulus, in this case 15.9 pA/pF is determined. (D)

Illustration of maximum slope of the APD restitution curve.

Slopes.1 may indicate increased arrhythmia risk.

Found at: doi:10.1371/journal.pcbi.1000914.s001 (0.63 MB EPS)

Figure S2 Bar graph showing the R2 values for each of the 32

outputs of the TNNP model predicted by the forward PLS

regression. Most of these outputs (27 of 32) had R2 values.0.9.

The outputs that could not be predicted well were among those

that were rejected by the algorithm that narrowed the total

number of outputs down to 16 for the matrix inversion.

Found at: doi:10.1371/journal.pcbi.1000914.s002 (0.18 MB EPS)

Figure S3 Scatter plots showing the R2 values of the reverse

regression predictions for 8 of the conductances in the Bernus [17]

model. Prediction of mode of the conductances (6 of 8) was quite

accurate (R2 values.0.7). The background Na+ conductance was

poorly predicted; however, this conductance, however, plays only

a minor role in the physiological behavior of the Bernus [17]

model.

Found at: doi:10.1371/journal.pcbi.1000914.s003 (1.25 MB EPS)

Figure S4 Scatter plots showing the R2 values for 6 of the

conductances in the Luo-Rudy (LR1) model [18] predicted by the

reverse PLS regression. All of these conductances had R2

values.0.65, and 5 out of 6 had R2.0.85.

Found at: doi:10.1371/journal.pcbi.1000914.s004 (1.02 MB EPS)

Protocol S1 Bundle containing Matlab code used by the authors

to generate the results presented in the manuscript. The file

‘READ ME’ within the bundle explains the function of each

individual program.

Found at: doi:10.1371/journal.pcbi.1000914.s005 (0.11 MB ZIP)

Text S1 Supplementary methods.

Found at: doi:10.1371/journal.pcbi.1000914.s006 (0.09 MB

DOC)
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