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Abstract: In the past 15 years, China has emitted the most carbon dioxide globally. The overuse of
chemical fertilizer is an essential reason for agricultural carbon emissions. In recent years, China
has paid more and more attention to financial support for agriculture. Therefore, understanding the
relationship between chemical fertilizer use, financial support for agriculture, and agricultural carbon
emissions will benefit sustainable agricultural production. To achieve the goal of our research, we
selected the panel data of 30 provinces (cities) in China from 2000 to 2019 and employed a series of
methods in this research. The results demonstrate that: the effect of chemical fertilizer consumption
on agricultural carbon emissions is positive. Moreover, financial support for agriculture has a
significantly positive impact on reducing carbon emissions from agricultural production. In addition,
the results of causality tests testify to one−way causality from financial support for agriculture to
carbon emissions from agricultural production, the bidirectional causal relationship between chemical
fertilizer use and financial support for agriculture, and two−way causality between chemical fertilizer
use and agricultural carbon emissions. Furthermore, the results of variance decomposition analysis
represent that financial support for agriculture will significantly affect chemical fertilizer use and
carbon emissions in the agricultural sector over the next decade. Finally, we provide several policy
suggestions to promote low−carbon agricultural production based on the results of this study. The
government should uphold the concept of sustainable agriculture, increase financial support for
environmental−friendly agriculture, and encourage the research and use of cleaner agricultural
production technologies and chemical fertilizer substitutes.

Keywords: financial support for agriculture; chemical fertilizer use; carbon emissions; agricultural
production

1. Introduction

Global warming, a primary environmental issue, has been widely concerned. Over
the past century, the global average temperature has increased by about 1 ◦C [1]. And
excessive greenhouse gas (GHG) emissions are the primary “culprit”. Therefore, laws
and regulations, such as the Kyoto Protocol, have been promulgated continuously to meet
climate change.

To better understand global environmental issue, many scholars are committed to
the research on environmental issue and made many important contributions, such as the
environmental Kuznets curve (EKC) hypothesis. The EKC hypothesis shows that when
a country’s economic development level is low, environmental pollution is not serious,
with the increase of per capita income, environmental pollution tends from low to high,
but decreases per capita income as increases further. The economic level of developing
countries is low. Moreover, economic growth is preferred than environmental protection
in developing countries [2]. Therefore, environmental pollution in developing countries
is a major issue in the world. China is the worlds’ largest developing country with the
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largest population. Actually, in the past 15 years, China has emitted the most carbon
dioxide globally [3]. Therefore, China can be the focus of research on environmental
pollution in developing countries. At the Leaders’ Climate Summit, China’s government
once again pledged that China will strive to achieve the goal of carbon peaking by 2030 and
carbon neutrality by 2060. It reflected China’s determination to meet global warming.
Agriculture is one of the pillars of China’s national economy. China has to carry out plenty
of agricultural activities to feed nearly a quarter of the global population, with less than
10% of global arable land [4]. Unfortunately, agricultural production has consumed a lot of
agricultural materials, such as fertilizers, fuels, pesticides, and feeds, which are essential
sources of carbon emissions from agricultural production. Moreover, about 20% of China’s
total greenhouse gas emissions came from agricultural activities [5]. Therefore, China must
reduce carbon emissions, especially in agriculture, as soon as possible.

In recent years, China has further promoted rural revitalization based on building a
moderately prosperous society in an all−around way. Agriculture has a more significant
effect on reducing poverty than others in less developed areas [6]. Therefore, China’s
agriculture must develop rapidly. However, with the rapid development of agriculture,
some new situations have occurred. On the one hand, increasing agricultural production
activities will influence chemical fertilizer use. With limited resources, lack of cultivated
land, and rapid population growth, chemical fertilizer, as an agricultural material that
helps to improve yield, has become an important measure to alleviate the pressure on
agriculture [7]. Therefore, China has become the largest user of fertilizers, consuming nearly
40% of the world’s fertilizers [8,9]. At the same time, the overuse of chemical fertilizer led
to an increase in carbon emissions from agricultural production [10].

On the other hand, the government will provide financial support for agricultural
activities. Since 2004, China’s No. 1 central document has been subject to agriculture,
rural areas, and farmers. Furthermore, China’s government has paid increasing attention
to financial support for agriculture. In such a complicated situation, the impact of agri-
cultural production on the environment has gradually become a crucial issue. Therefore,
researching the relationship between chemical fertilizer use, financial support for agricul-
ture, and carbon emissions in the agricultural sector provides a reference and basis for
the environmental protection department to formulate policies to promote low−carbon
agriculture.

Based on the above, we attempt to use the relevant data in China Rural Statistical
Yearbook, China Statistical Yearbook, the China National Bureau of Statistics, and China
Population and Employment Statistics Yearbook from 2000 to 2019 to measure annual
agricultural carbon emissions of 31 provinces (cities) in China and investigate the rela-
tionship between chemical fertilizer use, financial support for agriculture, and carbon
emissions from agricultural production. Compared with the existing literature, the three
main contributions of this paper are reflected as follows. First, we filled the gap in China’s
provincial carbon emissions data from agricultural production by estimating the carbon
emissions from agricultural production of 31 provinces (cities) in China. Second, we used
some dynamic estimation methods to understand the relationship between our interested
variables better. Third, in terms of theoretical significance, this article proved that financial
support for agriculture significantly affected carbon emissions from agricultural production
and explained its mechanism. Furthermore, in terms of practical significance, this work
provided empirical evidence for formulating policies to promote low−carbon agriculture
globally, especially in less developed areas.

The rest part of this study is divided into the following four sections. Section 2 is a brief
literature review in this field; Section 3 introduces the data source, variables setting, and
methodology; Section 4 shows and discusses the empirical results; Section 5 summarizes
the previous sections and provides discussion and policy recommendations based on the
conclusion and previous research, shortages, and suggestions for future work.
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2. Literature Review

Nowadays, agricultural production accounts for 10–12% of GHG emissions [11]. There-
fore, an increasing number of scholars have concentrated on the significant issue of agri-
cultural carbon emissions. Numerous scholars have estimated carbon emissions from
agricultural activities in the past two decades. Tian et al. [12] identified more than 20 kinds
of carbon sources and estimated carbon emissions from 1995 to 2010 in China’s agricultural
sector. Liu and Gao [13] adopted the MinDW to assess the agricultural carbon emission per-
formance in 11 Changjiang Economic Corridor (CEC) provinces. These researches provided
estimates that could quantify carbon emissions from agricultural activities. Moreover, some
scholars investigated the factors affecting carbon emissions from agricultural production
based on the estimates. From the macroscopic aspect, relative researches are comprehensive,
and the influencing factors of carbon emissions from agricultural activities mainly include
economic development [14,15], agricultural land use [16,17], technological progress [18,19],
agricultural structure adjustment [20], agricultural capital input [10,21] and agricultural
production efficiency [22]. From the micro aspect, researchers mainly focused on individual
farmers. Jiang et al. [23] pointed out that farmers’ willingness to use biomass waste was
helping to reduce carbon emissions in agricultural production. Kipling et al. [24] found
that farmers’ poverty in knowledge was one of the main reasons that prevent farmers
from taking pro−climate actions. Guan et al. [25] indicated that farmers usually refuse to
produce in an environmental−friendly way because of various constraints, such as cost
and labor. They proved that the individual behavior of farmers was significant for pro-
moting low−carbon agriculture from the aspects of farmers’ psychology, cognitive ability,
and realistic constraints, respectively. Given these influencing factors, numerous scholars
actively explore ways to reduce carbon emissions from agriculture. Koondhar et al. [26]
focused on Pakistan’s agricultural sector. They found that the farmers in Pakistan need to
convert from chemical fertilizer and high−carbon energy consumption to organic fertilizer
and clean energy consumption to ensure sustainable cereal food production in Pakistan.
Moreover, Liu et al. [27] found that compared with chemical fertilizer, organic fertilizer
had better protection for the environment without crop yield loss by experimenting in
eastern rural China. They all suggested replacing high−carbon agricultural materials with
environmentally−friendly agricultural materials in agricultural production. However,
previous studies rarely included financial support for agriculture in discussing agricultural
carbon emissions reduction measures.

The previous literature on financial support for agriculture is comprehensive. Fan et al. [28]
researched the relationship between the scale and structure of government spending, agricul-
tural productivity, and rural poverty in India. They suggested that the Indian government
spend more on rural roads and agricultural research to reduce rural poverty. Tang et al. [29]
found that financial support for agriculture has a positive effect on lowering the urban−rural
income gap in a significant way. Rada and Valdes [30] found that agricultural infrastructure
should receive more financial support. The research about financial support for agriculture
mainly focused on its efficiency, scale, structure, and effects on agricultural economic develop-
ment. Unfortunately, relative fields lack research on the relationship between financial support
for agriculture and agriculture carbon emissions [31–34].

However, many scholars have found that financial support for agriculture signifi-
cantly affected the influencing factors of agricultural carbon emissions. Firstly, financial
support for agriculture influences fertilizer use. Some scholars approved the positive
reduction effect of financial support for agriculture on chemical fertilizer use. Fan et al. [35]
found that financial support for agriculture would promote the adoption of some new
technologies, which would increase fertilizer utilization efficiency [36], and farmers may
reduce chemical fertilizer consumption. Wang et al. [37] found that financial support for
agriculture encouraged farmers to use organic fertilizer instead of chemical fertilizer. Guo
et al. [38] found that financial support for agriculture would reduce chemical fertilizer
consumption by adopting technology and scale−up. However, some scholars refuted their
opinions. Scholz and Geissler [39] represented that financial support for agriculture would
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increase farmers’ chemical fertilizer use. Furthermore, Vercammen [40] found that financial
support for agriculture is beneficial to farmers to ease financial constraints. And it may
cause farmers to buy more chemical fertilizers. Secondly, financial support for agriculture
influences agricultural machinery use. Financial support for agriculture would increase the
use of machinery [41]. And it would lead to low energy−environment performance [42].
Thirdly, financial support for agriculture changes the scale and planting structure of arable
land. Yi et al. [43] found that farmers would like to adjust their arable land’s scale and
planting structure to get more financial support related to the scale and planting structure
of arable land.

From the existing research, we note that numerous documents have focused on the
impacts of finance on the environment and fertilizer use, and fertilizer use on the environ-
ment. However, little research discussed the effect of finance on the environment, especially
carbon emissions, from the agricultural level. Moreover, most scholars paid attention to the
environmental impact of part of the financial support for agriculture (such as agricultural
subsidy) on the environment. They seldom discussed the influence of financial support
for agriculture on agricultural carbon emissions at an overall level. Compared with the
existing research, this study discusses the effect of financial support for agriculture on
environment at an overall level, fills the research gap in financial support for agriculture’s
environmental effect, and riches the research on carbon emissions, especially in agriculture.

3. Materials and Methods
3.1. Estimation of Carbon Emissions from Agricultural Production

Agricultural carbon sources mainly involve fossil fuel, fertilizer consumption, defor-
estation, burning, animal digestion and excretion, and arable land [44]. The agricultural
material input in agricultural production is mainly concerned in this study. Therefore,
we use chemical fertilizer, pesticides, mulches, diesel, agricultural plowing, agricultural
irrigation, agricultural electricity, and livestock as carbon sources.

The carbon emissions measurement formula is as follows:

C =∑ Ci = ∑ Ti·δi (1)

Among them, C denotes total carbon emissions from agricultural production; Ci repre-
sents the carbon emissions from the i−th source. Ti illustrates the used amount of the i−th
source, and δi expresses the carbon emissions coefficient of the i−th source. We summarize
each carbon source emission coefficient and their references in Table 1 for readers to read.

Table 1. Carbon emission coefficient reference.

Carbon Source Carbon Emission Coefficient Reference

Fertilizer 0.8956 kg/kg Oak Ridge National Laboratory [45]
Pesticides 4.9341 kg/kg Oak Ridge National Laboratory

Mulches 5.18 kg/kg Institute of Resource, Ecosystem, and Environment of
Agriculture, Nanjing Agricultural University [13]

Diesel 0.5927 kg/kg Intergovernmental Panel on Climate Change IPCC [13]
Plowing 312.6 kg/hm2 College of Biological Sciences, China Agricultural University

Irrigation 25 kg/hm2 [46]
Pigs 34.0910 kg/(each·year) Intergovernmental Panel on Climate Change IPCC [13]

Cattle 415.91 kg/(each·year) Intergovernmental Panel on Climate Change IPCC [13]
Sheep 35.1819 kg/(each·year) Intergovernmental Panel on Climate Change IPCC [13]

Agricultural electricity CO2: 0.7921 t·MWh−1 China’s Ministry of Ecology and Environment

3.2. Data and Variables

We use annual data of 30 provinces (cities) in China from 2000 to 2019 for empirical
analysis. The data are collected from the China Rural Statistical Yearbook (2001–2020),



Int. J. Environ. Res. Public Health 2022, 19, 7155 5 of 19

China Statistical Yearbook (2001–2020), the China National Bureau of Statistics, and the
China Population and Employment Statistics Yearbook (2001–2020). This study sets the
following variables: chemical fertilizer use (perfertilizer), agricultural carbon emissions
(percarbon), and financial support for agriculture (agriratio). To mitigate heteroscedasticity,
we process the data logarithmically for the analysis. Moreover, we summarize the definition
and measurement of each variable in Table 2 for readers to read.

Table 2. The definition and measurement of variables.

Variables Definition Measurement

Agricultural carbon emissions
(percarbon)

Average carbon emissions from
agricultural production

Total agricultural carbon emissions
/Arable land area

chemical fertilizer use
(perfertilizer)

Average chemical fertilizer
consumption in agricultural

production

Total chemical fertilizer consumption
/Arable land area

financial support for agriculture
(agriratio)

The ratio of agriculture, forestry, and water in
financial expenditure

Total financial expenditure of agriculture,
forestry, and water/Total financial

expenditure

3.3. Econometric Model

The primary purpose of our study is to contribute to reducing agricultural carbon
emissions. Therefore, we employ the econometric model to explain the relationship be-
tween chemical fertilizer use, carbon emissions from agricultural production, and financial
support for agriculture. The linear relationship between these variables can be expressed
as follows:

lnpercarbon = f(perfertilizer, lnagriratio) (2)

The model used in this study can be expressed as follows:

lnpercarboni,t= c1+β1lnperfertilizeri,t+β2lnagriratioi,t+µ (3)

where c1 represents the intercept term; µ denotes the error term; β1 and β2 illustrate the
coefficients of lnperfertilizer and lnagriratio, respectively.

3.4. Cross−Sectional Dependence Test

In the panel data model analysis, the cross−sectional correlation will lead to cor-
relation or cross−sectional heterogeneity between disturbance terms. They may distort
estimation [47,48]. To investigate the existence of cross−sectional correlation, we decided
to employ the Breusch−Pagan LM test [49], Pesaran Cross−sectional Dependence (CD)
test, and Pesaran scaled Lagrange Multiplier (LM) test [50] in the initial stage of this study.
Proof of cross−sectional dependence test is shown in Appendix A.

3.5. Panel Unit Root Tests

Spurious regression leads to incorrect estimates and will most likely indicate a nonex-
isting relationships. The panel unit root test is necessary for the panel to avoid spurious
regression. Moreover, unit roots in non−stationary series can be eliminated by differenc-
ing [51]. However, most of panel unit root tests have statistical limitations in relation to
sample size and effect of test [52,53]. In this study, to avoid the contingency of the results
of a single panel unit root test, we use the Levin−Lin−Chu (LLC) test [54], IPS test [55],
ADF−Fisher Chi−square test, and PP−Fisher Chi−square test [56–58]. Proof of panel unit
root test is shown in Appendix B.
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3.6. Panel Cointegration Test

Next, we use Kao’s test [59] to test for cointegration. For panel regression model:

yit= xitβ+ zitγ+ εit, i = 1, 2, · · · , N; t = 1, 2, · · · , T (4)

In this formula, yit= yi,t−1+µit, xit= xi,t−1+δit, zitγ denotes a vector of deterministic
components, including constant and linear time trends, εit is the error term.

Kao’s test assumes that there is no cointegration relationship within the variables.
Therefore, εit is a non−stationary I (1) process. So, we need to perform a unit root test for
the estimated error term. First, we use OLS to estimate Equation (4) and set the residual of
Equation (4) as eit. Secondly, we use the ADF test for eit. It is shown as follows:

eit= ρiei,t−1 +
p

∑
m=1

γm∆ei,t−m+vit (5)

In which vit is the error term, ADF statistics ρi and γm indicate the coefficients of
ei,t−1 and ∆ei,t−m. ADF test assumes that H0 is ρi= ρ, ∀i. Moreover, the ADF statistic is
constructed as follows:

ADF =
tADF+

√
6Nσv

2σ0u√
σ2

0u
2σ2v

+ 3σ2v
10σ2

0v

∼ N(0, 1) (6)

Among them, σ2
v= σ2

u+σ
2
uεσ

2
ε, and σ2

0v= σ2
0µ − σ2

0µεσ
2
0ε.

3.7. Causality Test

Next, we employed the Granger causality test [60] to investigate the causality among
agricultural carbon emissions, financial support for agriculture, and chemical fertilizer use.
The regression model is shown as follows:

Yi,t= ci +
m
∑

k=1
αiXi,t−k +

m
∑

k=1
βiYi,t−k+µi,t, i = 1, 2, · · · , N; t = 1, 2, · · · , T (7)

Yit and Xit are the observed values of two stationary variables for the i-th individual
in the t-th time. ci is the intercept term; Xt−k and Yt−k represent the lag terms of X and Y;
µit is the error term; αi and βi express the coefficients of Xt−k and Yt−k. If {Xi,t} does not
Granger Cause {Yi,t}, Equation (7) will change as follows:

Yi,t= c+
m

∑
n=1

βiYi,t−n+µi,t (8)

Next, we can use OLS to estimate Equations (7) and (8), calculate their residual sum of
squares, respectively, and compute F-statistic. F-statistic is computed as follows:

F =
(SSR0−SSR1)(N− 2n− 1)

n·SSR1
(9)

where N represents sample size, SSR1 and SSR0 denote the residual sum of squares of
Equations (7) and (8), respectively, n indicates that Equation (8) is restricted to n exclusion-
ary constraints.

3.8. Autoregressive Distributed Lag Model (ARDL)

To better understand the dynamic relationship within our interested variables, we
employ the ARDL model [61,62]. Compared with other estimations, the ARDL model has
three advantages: (1) Firstly, whether integration of order 0 or 1, the ARDL model can
estimate the long−run relationship between the variables [63]. (2) Secondly, it is suitable
for small data, easy to operate, and will provide sufficient lags [64]. (3) Thirdly, the error
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correction model (ECM) can be obtained from the ARDL model. We can use ECM to explain
the short−run relationship within the variables. The estimated ARDL formula used in this
study can be expressed as follows:

∆lnpercarbont= α0 +α1lnpercarbont−1+α2lnperfertilizert−1+α3lnagriratiot−1+
p
∑

k=1
β1∆lnpercarbon t−k +

q
∑

k=1
β2∆lnperfertilizert−k +

m
∑

k=1
β3∆lnagriratiot−k+

ωECMt−k+εt, t = 1, 2, · · · , T

(10)

where α1, α2, α3 represent coefficients in the long run; β1, β2, β3 indicate coefficients in
the short run; ECMt−k expresses the error correction term; p, q, and k represent the lag
periods of variables, respectively;ω is ECM−coefficients and εt is the error term.

3.9. FMOLS and DOLS

To ensure the robustness of the outcome in Section 3.8, we further employ two static
models, FMOLS and DOLS, to estimate the long−run relationship between carbon emis-
sions from agricultural production, financial support for agriculture, and chemical fertilizer
use [65,66]. Compare with other methods, FMOLS is a residual−based test suitable for
a small sample size and eliminates sequence correlation and endogeneity among regres-
sors [67]. Moreover, compared with FMOLS, the DOLS estimator has a better sample
property in small sample using Monte Carlo simulations and eliminates correlation among
regressors [68]. The FMOLS can be explained as given:

β̂
∗
GFMOLS = N−1

N

∑
i=1
β̂
∗
GFMOLS,i (11)

In which β̂∗GFMOLS denotes the i-th panel member’s FMOLS estimator. Moreover, the
t-statistic related to it is:

t
β̂
∗
GFMOLS

= N−
1
2

N

∑
i=1
β̂
∗
GFMOLS,i (12)

Then, the DOLS estimator is written as follows:

yit= β′ixi t +
q
∑

j=−q
δij∆xi,t+j+εit (13)

In which q is known as the number of leads/lags for the models. And the estimated
coefficient β′i is expressed as follows:

β̂
∗
DOLS = N−1

N

∑
i=I

(
T

∑
t=1

ZitZi
it

)−1( T

∑
t=1

Zitγ
∗
it

)
(14)

where Zit =
(
xit − xi, ∆xit−j, · · · , ∆xit+k

)
is the 2(k + 1) vector of regressors.

3.10. Variance Decomposition

Although we discussed the “causality” between carbon emissions from agricultural
production, chemical fertilizer use, and financial support for agriculture through the
Granger causality test, the outcome of the Granger causality tests only reflects static
long−run relationships between variables. However, variance decomposition methods,
systematically describing the contribution components of impact changes in each stage,
can reflect the dynamic characteristics of VAR model. A VMA (∞) formula is expressed
as follows:

yi,t =
k
∑
j=1

(θ
(0)
ij εj,t +θ

(1)
ij εj,t−1+θ

(2)
ij εj,t−2 + · · · ), i = 1, 2, · · · , k, t = 1, 2, · · · , T (15)
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Assuming that there is no sequence autocorrelation in εj. And:

E
[
(θ

(0)
ij εj,t+θ

(1)
ij εj,t−1+θ

(2)
ij εj,t−2 + · · · )

2
]
=

∞
∑

q=0
(θ

(q)
ij )

2
σjj, i, j = 1, 2, · · · , k (16)

The contribution degree of each disturbance term to the variance of yi is measured
as follows:

RVCj→i(∞) =
∑∞

q=0 (θ
(q)
ij )

2
σjj

var(yi)
=

∑∞
q=0 (θ

(q)
ij )

2
σjj

∑k
j=1

{
∑∞

q=0 (θ
(q)
ij )

2
σjj

} (17)

In which RVC is the variance contribution rate used to measure the relative contribu-
tion ratio between variables based on impact.

4. Results
4.1. Cross−Sectional Dependence Tests

Table 3 illustrates the results of cross−sectional dependence tests. We can find that
the existence of cross−sectional correlation among variables cannot be rejected at a 1%
significance level. The results represent a correlation among different provinces (cities) in
China, which may indicate that these provinces (cities) in China have similar behavior in
terms of emission from agricultural production.

Table 3. The results of cross−sectional dependence tests.

Test Statistic Prob.

Breusch−Pagan LM 2281.3470 0.0000
Pesaran scaled LM 62.5970 0.0000

Pesaran CD 7.2394 0.0000

4.2. Unit Root Tests

The results of unit root tests (LLC, IPS, ADF−Fisher, and PP−Fisher tests) are shown
in Table 4. The results reveal that all the variables are non−stationary at the 1% significance
level, except lnagriratio, which rejected the null hypothesis when only individual effects
are considered. Moreover, all the variables were stationary after the first−order difference.

Table 4. The results of unit root tests.

Variables Level First−Difference

Intercept Intercept and Trend Conclusion None Intercept and Trend Conclusion

LLC test

Lnpercarbon 0.6898 0.9999 N 0.0000 0.0000 S
Lnperfertilizer 0.0000 1.0000 U 0.0000 0.0000 S

Lnagriratio 0.0000 0.7712 U 0.0000 0.0000 S
IPS test

Lnpercarbon 0.9691 1.0000 N 0.0000 0.0000 S
Lnperfertilizer 0.1394 1.0000 N 0.0000 0.0000 S

Lnagriratio 0.0000 1.0000 U 0.0000 0.0000 S
ADF−Fisher

Chi−square test

Lnpercarbon 0.9037 0.9564 N 0.0000 0.0000 S
Lnperfertilizer 0.2152 1.0000 N 0.0000 0.0000 S

Lnagriratio 0.0000 1.0000 U 0.0000 0.0000 S
PP−Fisher

Chi−square test

Lnpercarbon 0.9539 1.0000 N 0.0000 0.0000 S
Lnperfertilizer 0.0194 1.0000 N 0.0000 0.0000 S

Lnagriratio 0.3108 1.0000 N 0.0000 0.0000 S

Note: U indicates Unknown, N indicates non−stationary, and S indicates stationary.
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4.3. Panel Cointegration Test

Table 5 illustrates the results of Kao’s test (ADF). The results demonstrate that the
t−statistic is significant at the 1% level. Therefore, co−integration between the variables
exists. The passing of panel cointegration test allowed us to examine the effects of fertilizer
and financial support for agriculture on agricultural carbon emissions.

Table 5. The results of Kao’s test (ADF).

Null Hypothesis t−Statistics Prob.

ADF No co−integration −6.523558 0.0000

4.4. VAR Stability Test

The VAR model of financial support for agriculture, fertilizer, and agricultural carbon
emissions is established in this study, and the optimal lag period is 2. Figure 1 represents the
inverse roots of the AR characteristic polynomial. All the inverse roots of AR characteristic
polynomial are not outside the unit circle, supporting the VAR model’s stability. Hence, we
can use variance decomposition to make inferences in a statistical sense.
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4.5. Benchmark Results

Table 6 shows the results of ARDL in the short−run and the long−run. The variables’
long−run and short−run coefficients are all significant at 5%. The long−term coefficient of
lnperfertilizer suggests that agricultural carbon emissions will increase by 1.1713% with a
1% increase in chemical fertilizer use. Moreover, the short−term coefficient of lnperfertilizer
implies that a 0.65% increase in agricultural carbon emissions will occur when chemical
fertilizer consumption increases by 1%. The results represent that the growth of carbon
emission from agricultural production caused by chemical fertilizer use will gradually
increase with chemical fertilizer consumption.
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Table 6. The results of ARDL analysis.

Variable Coefficient Std.Error t−Statistic Prob.

Long Run
Equation

Lnperfertilizer 1.1713 0.0392 29.9010 0.0000
Lnagriratio −0.2015 0.0550 3.6665 0.0003

Short Run
Equation

CointeQ01 −0.0447 0.0173 −2.5799 0.0103
D(Lnperfertilizer) 0.6500 0.0649 10.0108 0.0000
D(Lnagriratio) −0.0551 0.0148 −3.7361 0.0002

C 0.0484 0.0212 2.2830 0.0230

In addition, the long−term coefficient of lnagriratio denotes that agricultural carbon
emissions will decrease by −0.20% with a 1% increase in financial support for agriculture.
Moreover, the short−term coefficient of lnperfertilizer represents that a 0.06% decrease in
agricultural carbon emissions will occur when financial support for agriculture increases
by 1%.

Finally, the coefficient of the error−correction term expresses that if the agricultural
carbon emissions exceed the equilibrium level by 1% in the last year, the agricultural carbon
emissions will be corrected by −4.47% this year. The ARDL estimates generally show a
long−run and short−run relationship between all variables.

4.6. Robustness Check

Table 7 expresses the results of FMOLS and DOLS. The coefficients of chemical fer-
tilizer use in FMOLS and DOLS are 0.9267 and 0.9710, respectively. Furthermore, the
coefficients of financial support for agriculture in FMOLS and DOLS are −0.1563 and
−0.1713, respectively. Moreover, the above coefficients are all significant at the 1% level.
Therefore, we can conclude that financial support for agriculture and agricultural carbon
emissions have negative association, and chemical fertilizer use would increase agricul-
tural carbon emissions in a significant way. The results of DOLS and FMOLS confirm the
long−term estimation of the ARDL model.

Table 7. The results of the robustness check.

Variable Coefficient Std.Error t−Statistic Prob.

FMOLS
Lnperfertilizer 0.9267 0.0230 40.2135 0.0000

Lnagriratio −0.1563 0.0125 −12.5067 0.0000
DOLS

Lnperfertilizer 0.9710 0.0214 45.3548 0.0000
Lnagriratio −0.1713 0.0134 −12.7897 0.0000

4.7. Granger Causality Test

Table 8 shows the Granger causality test’s results on agricultural carbon emissions,
chemical fertilizer use, and financial support for agriculture. The results represent one−way
causality between financial support for agriculture and agricultural carbon emissions at
the 1% significance level. Moreover, the Granger causality test shows the two−way causal-
ity between chemical fertilizer consumption and agricultural carbon emissions and the
two−way causality between financial support for agriculture and chemical fertilizer use.
The results indicate that financial support for agriculture helps to predict carbon emissions
from agricultural production. Moreover, financial support for agriculture may have poten-
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tial for reducing carbon emissions from agricultural production. The Granger causalities
between carbon emissions from agricultural production, financial support for agriculture,
and chemical fertilizer use are shown in Figure 2 for readers to better understand.

Table 8. Pairwise Granger causality tests.

Null Hypothesis: F−Statistic Prob.

LNPERFERTILIZER does not Granger Cause
LNPERCARBON 6.4082 0.0000

LNPERCARBON does not Granger Cause
LNPERFERTILIZER 8.2025 0.0000

LNAGRIRATIO does not Granger Cause
LNPERCARBON 6.7647 0.0000

LNPERCARBON does not Granger Cause
LNAGRIRATIO 0.8131 0.6164

LNAGRIRATIO does not Granger Cause
LNPERFERTILIZER 2.6765 0.0044

LNPERFERTILIZER does not Granger Cause
LNAGRIRATIO 2.6333 0.0050
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Figure 2. The Granger causalities between variables. A → B represents A Granger cause B. For
example, financial support for agriculture → agricultural carbon emissions means that there is a
one−way causality between chemical fertilizer use and agricultural carbon emissions.

4.8. Variance Decomposition

Table 9 shows the variance decomposition results of the 15−year forecast period. In
the 15−th period, 96.55% of agricultural carbon emissions can be explained by itself, and
the contribution of financial support for agriculture and chemical fertilizer use is 0.22%
and 3.22%, respectively. Moreover, the contribution of financial support for agriculture to
chemical fertilizer use is 92.36% in the 15−th period. The results illustrate that chemical
fertilizer consumption and financial support for agriculture will continue to affect carbon
emissions from agricultural production. In addition, financial support for agriculture will
be a critical contribution to fertilizer use.
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Table 9. Variance decomposition results.

Period S.E. Lnpercarbon Lnperfertilizer Lnagriratio

Variance Decomposition of Lnpercarbon:
1 0.15 100.00 0.00 0.00
2 0.20 99.63 0.09 0.27
3 0.23 99.52 0.18 0.29
4 0.26 99.40 0.32 0.28
5 0.27 99.24 0.50 0.26
6 0.29 99.05 0.71 0.24
7 0.30 98.82 0.95 0.23
8 0.30 98.57 1.21 0.22
9 0.31 98.30 1.49 0.21
10 0.31 98.02 1.77 0.21
11 0.32 97.72 2.07 0.21
12 0.32 97.43 2.36 0.21
13 0.32 97.13 2.65 0.21
14 0.32 96.84 2.94 0.22
15 0.33 96.55 3.22 0.22

Variance Decomposition of Lnperfertilizer:
1 0.15 88.81 11.19 0.00
2 0.20 88.18 11.70 0.13
3 0.24 87.60 12.29 0.11
4 0.26 87.15 12.76 0.09
5 0.27 86.72 13.20 0.09
6 0.29 86.28 13.61 0.10
7 0.30 85.84 14.02 0.14
8 0.30 85.39 14.42 0.19
9 0.31 84.92 14.82 0.26
10 0.31 84.44 15.22 0.35
11 0.31 83.95 15.61 0.44
12 0.32 83.46 15.99 0.55
13 0.32 82.97 16.37 0.67
14 0.32 82.46 16.75 0.79
15 0.32 81.95 17.12 0.92

Variance Decomposition of Lnagriratio:
1 0.23 0.67 20.86 78.47
2 0.31 0.79 27.80 71.41
3 0.36 0.88 29.15 69.97
4 0.40 0.93 29.19 69.88
5 0.43 0.96 28.71 70.32
6 0.46 0.98 28.01 71.00
7 0.48 1.00 27.21 71.79
8 0.49 1.00 26.37 72.62
9 0.51 1.00 25.54 73.45

10 0.52 1.00 24.74 74.26
11 0.53 0.99 23.99 75.02
12 0.54 0.98 23.30 75.72
13 0.55 0.97 22.67 76.36
14 0.55 0.95 22.12 76.93
15 0.56 0.94 21.65 77.42

5. Conclusions

The main work of this study is to investigate the relationship between agricultural car-
bon emissions, chemical fertilizer use, and financial support for agriculture by the analysis
of panel data for the period 2000–2019 in China. Firstly, we proved the cross−sectional
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correlation of variables by using the Breusch−Pagan LM test, Pesaran LM test, and Pe-
saran CD test [49,50]. Then we used unit root tests [54–58] and found that all variables
are I (1) process. Next, we found a long−term co−integration relationship between agri-
cultural carbon emissions, chemical fertilizer use, and financial support for agriculture
through Kao’s residual panel cointegration test [59]. Based on the above, we established the
estimates through the ARDL model [61,62] and found the dynamic relationship between
agricultural carbon emissions, chemical fertilizer use, and financial support for agriculture.
The results of ARDL illustrate that financial support for agriculture has a significantly
negative effect on carbon emissions from agricultural production in the short term and
a positive effect in the long term. Next, we employed FMOLS and DOLS to check the
robustness of the ARDL estimates, and the robustness of the long−term ARDL estimate
is confirmed. In addition, we found two−way causality between chemical fertilizer use
and agricultural carbon emissions, two−way causality between chemical fertilizer use and
financial support for agriculture, and one−way causality between financial support for
agriculture and agricultural carbon emissions through Granger causality tests [60]. Finally,
we found that chemical fertilizer consumption and financial support for agriculture will
continue to affect agricultural carbon emissions, and chemical fertilizer consumption will
be significantly affected by financial support for agriculture. In general, financial support
for agriculture have a negative effect on carbon emissions from agricultural production,
and financial support for agriculture influences chemical fertilizer use significantly.

The above studies clearly demonstrate the dynamic relationship between financial
support for agriculture, chemical fertilizer use, and carbon emissions from agricultural
production. We found that financial support for agriculture and chemical fertilizer use
has a long−term association. The findings of us are similar to Koondhar et al. [26] and
Ismael et al. [69]. However, we have not explored the causal relationship between financial
support for agriculture and chemical fertilizer use. In addition, the positive effect of
chemical fertilizer use on carbon emissions from agricultural production is also found
in this research. The result of our study is similar to the results of Huang et al. [33].
This phenomenon may be due to China has overuse of chemical fertilizers to ensure the
grain output. NBSC [70] indicated that since 1990, China’s fertilizer consumption had
increased by 103%, but only 50% in return for grain production. The overuse of fertilizer
will lead to severe problems such as soil nutrient depletion, soil acidification, nutrient
run−off, and reduced biological diversity. These issues caused by the overuse of fertilizer
will reduce agricultural production efficiency and lead to more chemical fertilizer use to
improve agricultural production efficiency. Moreover, the results of our study express
that the increase in financial support for agriculture leads to a decline in carbon emissions
from agricultural production. The results are similar to the finding of Liu et al. [31],
Han et al. [32], Huang et al. [33], and Chen and Chen [34]. They all found that financial
support for agriculture reduced agricultural carbon emissions. The main reason for it is
the increase in China’s agricultural production efficiency. China’s agricultural production
efficiency continues to improve [71]. When the agricultural production efficiency is at a
high level, increasing financial support for agriculture can not only meet the basic capital
needs for agricultural production, but also promote the agricultural production structure
transiting from traditional agriculture to green agriculture, so as to reduce agricultural
carbon emissions.

Based on our findings, there are several policies put forward by us for promoting
sustainable agricultural production. Firstly, the government should uphold the concept of
sustainable agriculture, increase financial support for environmental−friendly agriculture,
and encourage the research and use of cleaner agricultural production technologies and
chemical fertilizer substitutes to ensure that agriculture, especially in undeveloped areas,
promotes economic development with less carbon emissions. Secondly, the government
should stop farmers from blindly investing in agricultural production factors, especially
chemical fertilizer, for high yield by strengthening the awareness of farmers’ environmental
production, improving the carbon tax system, and implementing reward and punishment
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measures for agricultural carbon emissions. Thirdly, the government, especially those of
developing countries, can establish cooperative relations with the countries with developed
sustainable agriculture and introduce advanced low−carbon management technologies
and systems from them.

This study provides substantial evidence for reducing agricultural carbon emissions,
fills the research gap in financial support for agriculture’s environmental effect, and riches
the research on carbon emissions, especially in agriculture, based on previous research.
However, our study still has some deficiencies: this study uses small dataset, which is
a restriction of the study, although methods suitable for small dataset is used in this
study. Moreover, the research lacks research on the mechanism of financial support for
agriculture affecting carbon emissions from agricultural production. It only considers
the impact of financial support for agriculture on chemical fertilizer use. In addition,
due to the differences in different parts of China, there is a spatial effect in the impact of
financial support for agriculture on agricultural carbon emissions [32]. We ignore it in this
study. Therefore, we suggest that future research can consider the spatial effect of financial
support for agriculture on carbon emissions from agricultural production and focus on the
mechanism of financial support for agriculture affecting carbon emissions from agricultural
production to implement targeted financial support for agriculture for different regions to
reduce carbon emissions from agricultural production.
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Appendix A.

Assuming ρ̂ij is the correlation coefficient of the residuals obtained from the OLS
estimation based on the sample, it is computed as follows:

ρ̂ij = ρ̂ji =
∑T

t−1 eitejt(
∑T

t−1 e2
it

) 1
2
(

∑T
t−1 e2

jt

) 1
2

(A1)

where eit and ejt are standard errors, and the above tests can be computed as follows:

LM =
N−1

∑
i=1

N

∑
j=i+1

Tρ̂2
ij → χ2

(
N(N− 1)

2

)
(A2)

The probability density function of χ2(n) is expressed as follows:

f(x) =

{ 1
2

n
2 Γ(n/2)

x
n
2−1e−

x
2 , x > 0

0, x ≤ 0
(A3)
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In which, n is free degree, and Γ(n) =
∫ +∞

0 xn−1e−xdx.

LM =

√
1

N(N− 1)

N−1

∑
i=1

N

∑
j=i+1

(
tρ̂2

ij − 1
)
→ N(0, 1) (A4)

CD =

√
2T

N(N− 1)

N−1

∑
i=1

N

∑
j=i+1

(
ρ̂ij

)
→ N(0, 1) (A5)

The probability density function of N(u,σ2) can be shown as follows:

f(x) = 1√
2πσ

e(−
(x−u)2

2σ2 ) (A6)

where u is the mean and σ is the standard deviation. T represents the time, and N denotes
the sample size.

Equation (A2) is the Breusch−Pagan LM test, which applies to fixed time T and small
sample size N, Equation (A4) is the Pesaran LM test, which is suitable for changeable time
T and large sample size N, and Equation (A5) is the Pesaran CD test, which is used for
fixed time T and large sample size N.

Appendix B.

Appendix B.1. LLC Test

The LLC test uses standard surrogate variables excluding the influence of autocorrela-
tion and deterministic items and still employs the form of ADF tests. The ADF test formula
of the LLC test is:

∆yit= ρiyi,t−1 +
Pi

∑
L=1

θiL∆yi,t−L+αmidmt+εit , i = 1, 2, · · · , N; t = 1, 2, . . . , T; m = 1, 2, 3 (A7)

In which, dmt is used to indicate the vector of deterministic variables and αmi is used
to indicate the corresponding vector of coefficients for a particular model. d1t = Ø (the
empty set); d2t = {1} and d3t = {1; t}. Its null hypothesis is H0: ρ = 0 (unit root exists).
Then performing ADF regression based on Equation (A7). After determining the lag order,
running two auxiliary regressions to get two orthogonal residuals êit and v̂i,t−1. Σε̂i,t is
a standard deviation sequence generated by the regression. Êit is obtained by running
∆yit’s regression on ∆yi,t−L(L = 1, 2, · · · , Pi) and dmt, v̂i,t−1 is obtained by running yi,t−1’s
regression on ∆yi,t−L(L = 1, 2, · · · , Pi) and dmt. Standardizing êit and ṽi,t−1 as follows:

ẽit =
êit

σ̂εi

(A8)

Ṽi,t−1 =
Ṽi,t−1

σ̂εi

(A9)

Then constructing the long−term variance of Equation (A7):

σ̂2
yi
=

1
T− 1

T

∑
t=2

∆yit
2 + 2

K

∑
L=1

WKL

[
1

T− 1

T

∑
t=2+L

∆yit
2∆yi,t−L

]
(A10)

Letting ŜN be the mean standard error, and ŜN is computed as follows:

ŜN =
1
N

N

∑
i=1

Ŝi (A11)



Int. J. Environ. Res. Public Health 2022, 19, 7155 16 of 19

Ŝi =
σ̂2

yi

σ̂2
εi

(A12)

Among them, σ̂2
εi

is the short−term variance.
Next, estimating T−statistic, traditional T−statistic is computed as follows:

tρ =
ρ̂

σ̂(ρ̂)
(A13)

ρ̂ =
N

∑
i=1

t

∑
t=2+Pi

ṽi,t−1ẽit

∑N
i=1 ∑t

t=2+Pi
ṽi,tt− 1

(A14)

σ̂(ρ̂) =
σ̂ε̃

∑N
i=1 ∑T

t=2+Pi
ṽ2

i,t−1
(A15)

σ̂2
ε̃ =

1
NT̃

N

∑
i=1

T

∑
t=2+Pi

(ẽit − ṽi,t−1)
2 (A16)

Among them, σ̂2
ε̃ is the variance estimate of ε̃it.

Based on Equation (A13), the adjusted T−statistic is computed as follows:

t∗ρ =
tρ −NT̃S̃Nσ̂

2
ε̃σ̂(ρ̂)µ

∗
mT̃

σ∗
mT̃

(A17)

In which µ∗
mT̃

is the adjusted mean, and σ∗
mT̃

is the adjusted standard deviation. And
the LLC test proves t∗ρ ∼ N (0, 1).

Appendix B.2. IPS Tes

ADF test formula for the IPS test is:

∆yit= ρiyi,t−1 +
Pi

∑
L=1

θiL∆yi,t−L+αmidmt+εit , i = 1, 2, · · · , N; t = 1, 2, . . . , T (A18)

The IPS test assumes that H0 is ρi= 0, the hypothesis of the IPS test permits the unit
root to exist in some individual time data. Moreover, it requires that the stable individual
time data part is non−zero, and lim

N→∞
N1/N = δ, 0 < δ < 1.

The T−statistic of the IPS test is computed as follows:

tρi =
1
N

N

∑
i=1

tρi (A19)

tρi is the ADF statistic of the i−th sequence, then constructing the IPS test statistics as follows:

Zt =
[tρi − E(tρi)]√

Var(tρi)
N

∼ N(0, 1) (A20)

Appendix B.3. ADF−Fisher and PP−Fisher Tests

ADF−Fisher test and PP−Fisher test are all based on the Fisher test. Firstly, the ADF
and PP tests are performed on the time series of each individual. Then the sum of the
probability pi corresponding to ADF−statistics and the sum of probability Pi corresponding
to PP−statistic are used to construct the ADF−Fisher statistic and PP−Fisher statistic,
respectively. ADF−Fisher and PP−Fisher tests assume that H0 the existence of unit root.
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Under the hypothesis, the ADF−Fisher statistic and PP−Fisher statistic are expressed
as follows:

ADF-Fisher = −2
N

∑
i=1

log(pi)→ χ2(2N) (A21)

PP-Fisher = −2
N

∑
i=1

log(Pi)→ χ2(2N) (A22)

References
1. Intergovernmental Panel on Climate Change. Contribution of Working Group I to the Fifth Assessment Report of the Inter−Governmental

Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013.
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