
INTRODUCTION

Worldwide, the elderly population is growing, increasing the 
concern over age-related cognitive decline. Cognitive decline 
has a negative impact on quality of life and, healthy brain aging 
is an essential component of overall well-being. Because of the 
nearly global rise in life expectancy and the concomitant em-
phasis on quality of life, healthy brain aging has become an im-
portant focus.1

Normal aging and to a greater degree degenerative brain 
diseases such as Alzheimer’s disease (AD), cause changes in 
the brain’s structure and function. Degenerative changes in 
brain structure and decline in its function are associated with 
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declines in cognitive ability. Mild-to-moderate age-depen-
dent brain volume loss, enlarged periventricular (Virchow-
Robin) spaces, punctiform or minor white matter abnormal-
ities, and iron accumulation in the basal ganglia are examples 
of normal age-related brain changes that can be seen on struc-
tural brain imaging.2 These changes, which are associated 
with cognitive decline, most often affect the domains of at-
tention, memory, and executive function.3,4 AD is accompa-
nied by atrophy in the bilateral medial temporal, parietal, and 
frontal lobes.2 These changes are associated with serious cog-
nitive decline and a number of neuropsychiatric symptoms.

However, depending on the disease progression, neurode-
generative manifestations, such as cerebral atrophy, are de-
tected late in course of AD. Though CSF amyloid-β(Aβ) 1–42 
levels may begin decreasing 25 years before the onset of symp-
toms and brain amyloid deposition occurs in preclinical stage 
of AD,5 the gap between early amyloid detection and struc-
tural brain changes is wide.6 Early detection of AD is a key 
priority in dementia services and research. Therefore, addi-
tional biomarkers in the pathophysiological cascade of AD 
are needed, such as functional brain changes. Functional 
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changes in the brain may be an indirect indicator of trans-
synaptic activity and they usually appear prior to structural 
changes in AD.7 Resting-state functional magnetic resonance 
imaging (RS-fMRI) has recently been highlighted as a new 
technique for interrogating intrinsic functional connectivity 
networks (ICN) without an experimentally determined con-
text.8 Previous studies have shown that ICN changes are sen-
sitive to functional brain changes related to Alzheimer’s dis-
ease pathology across the clinical spectrum.9

Herein, we present a review of the current research on chang-
es in functional connectivity, as measured by RS-fMRI. We 
compare researcher’s outcomes from studies that examine 
normal healthy aging, patients with MCI, and AD.

RESTING-STATE FMRI BASIC 
PRINCIPLES AND CORE LARGE-SCALE 
NETWORKS

Recently, fMRI has largely replaced nuclear medicine tech-
niques because it is non-invasive and does not require use of 
radioactive contrast media, instead, fMRI uses blood-oxygen-
level-dependent (BOLD) contrast.2 In BOLD fMRI, the dif-
ference in magnetic susceptibility between oxygenated and 
deoxygenated blood serves as an intrinsic contrast medium 
through which to compare conditions.

Initially, fMRI was developed to measure two conditions 
(e.g., task or no task) using an activation paradigm, so-called 
task-based fMRI.6 In recent years, there has been an increased 
interest in applying the technique to at-rest conditions, termed 
RS-fMRI.10 RS-fMRI focuses on spontaneous low-frequency 
fluctuations (<0.1 Hz) in the BOLD signal.10 This has led to the 
description of 10–20 RS networks, the most commonly ob-
served of which are: the default mode network (DMN), the sa-
lience network (SN), the central executive network (CEN), the 
visual processing network, the sensorymotor network, the dor-
sal attention network, and auditory network, to name a few.

In many task-based fMRI studies, reversed contrasts re-
vealed consistent deactivation of specific regions,11 including 
the medial prefrontal cortex (mPFC), the posterior cingulate 
cortex (PCC), the precuneus, the anterior cingulate cortex 
(ACC), the parietal cortex, and, in a minority of studies, the 
hippocampus.12 The default mode network (DMN) is so 
named because it is the most active network in the absence of 
a task.13 Among the majority of RS-fMRI studies, the DMN 
gained particular focus because alterations to its functional 
connectivity were observed in subjects who had AD, who had 
MCI, or who were at high risk for AD. The DMN is known to 
be involved in the retrieval of autobiographical episodic mem-
ory as well as self-referential mental processing.14,15

Besides the DMN, other stable ICNs, such as the SN and the 

CEN, have been known to play crucial roles in cognitive pro-
cessing.16 The CEN includes the dorsolateral prefrontal cor-
tex (DLPFC) and the posterior parietal cortex (PPC).17 It plays 
a key role in active maintenance and manipulation of informa-
tion in working memory, and in judgment and decision-mak-
ing in the context of goal-directed behavior.18-20 Additionally, 
the SN mainly consists of the dorsal ACC and the frontoinsu-
lar cortices (FIC). It serves to identify the most relevant stim-
uli for guiding behavior in response to several internal and 
external stimuli.21,22 The right FIC is a core node of the SN 
and plays a critical role in switching between the CEN and 
the DMN,23 which are known to interact competitively dur-
ing cognitive information processing.24,25 Once a salient stim-
ulus is detected, the FIC initiates the appropriate transient 
control signals to engage the CEN to mediate attention, work-
ing memory and other higher-order cognitive processes, all 
while disengaging the DMN.22 This switching mechanism 
helps to focus attention on external stimuli and eventually al-
lows the stimuli to take on added significance or saliency.22

In this review, we focus on the DMN, SN, and CEN to de-
scribe RS-fMRI results from three groups: normal healthy 
aging, MCI and AD.

ANALYTIC TECHNIQUES

There are three main analytic techniques used to assess 
functional connectivity: the seed-based approach, indepen-
dent components analysis (ICA), and graph theory.

 In the seed-based approach, the researcher selects a “seed” 
of interest (region of interest, ROI) and extracts the time 
course of activation at that ROI. This time course is then test-
ed for correlation with the time courses of the rest of the vox-
els of the brain to search for matches.26 Brain regions that are 
positively correlated with each other are thought to belong to 
functionally coupled networks.27

In contrast, in ICA, the researcher does not need to select a 
reference region. Instead, the entire set of four-dimensional 
fMRI data can be decomposed into time courses and associat-
ed spatial maps that describe the temporal and spatial charac-
teristics of the data components.28 ICA seeks underlying com-
ponents of activation that are statistically independent of each 
other. Both seed-based and ICA approaches tend to reveal the 
same networks. However, seed-based analyses are sometimes 
preferred because they can make group comparisons easier.27

 Studies using graph theory with RS-fMRI are emerging. 
In graph theory, ROIs can be represented as nodes.10 Nodes 
define anatomically homogeneous brain regions or individu-
al voxels.29 The fMRI data is spatially parcellated according to 
a structural map of the brain, and correlations are computed 
between activations in all region pairs.27 Typical measure-
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ments taken under graph theory include average path length 
and global connectedness, which is the average length of the 
shortest connections between all pairs of nodes.30 Another 
measure of interest is the clustering coefficient, which is re-
lated to the connectedness of neighboring nodes and reflects 
the presence of small world structures.30

RESTING-STATE FUNCTIONAL MRI 
ALTERATIONS IN THE NORMAL 
HEALTHY AGING

RS-fMRI allows for the investigation of the neural bases of 
age-related cognitive changes, such as attention, information 
processing, and working memory.31,32 To date, the DMN has 
been the main focus of aging-related RS-fMRI research. Many 
studies reported that this network’s activity during rest is 
necessary for memory consolidation.26 Additionally, amyloid 
deposition associated with AD is seen initially and most 
prominently in DMN hubs.12,33,34

Most of the RS-fMRI studies that focused on the DMN 
showed that aging are associated with decreased connectivity 
within this system. After assessing functional connectivity 
within the network, the seed-based and ICA studies produced 
similar results. Several studies reported reduced functional 
connectivity between anterior and posterior components of 
the DMN with advanced age.35,36 Wu et al.37 found greater in-
tegrity and greater preparation of DMN components in 
younger subjects compared to elderly subjects. The reduced 
RS-fMRI activity seen in the DMN in normal healthy aging 
subjects was correlated with executive dysfunction and de-
creased processing speed.2 Graph analysis studies further 
showed that decreased global connectivity and decreased 
nodal efficiency in several major brain hubs became more 
common during the aging process.38 Studies that focused on 
the modularity of functional networks reported that modu-
larity decreased with age, indicating changes in size, composi-
tion, and the topological roles of the networks.39

Age-related resting-state functional connectivity changes 
have been reported not only in the DMN but also in the SN 
and the CEN. Because there are fewer studies of the SN and 
the CEN, age-related resting-state functional connectivity 
changes in these regions are not yet well understood. Onoda 
et al.40 reported that connectivity within the SN decreased 
and certain internetwork connectivities (e.g., SN to auditory 
network, DMN to visual processing network, etc.) also de-
creased with aging. He et al.41 found age-related decreases in 
the positive functional connectivities between the right FIC 
in SN and the CEN and in the negative functional connec-
tivities between the right FIC and the DMN, with and with-
out atrophy correction. In a later study, He et al.42 also found 

that functional impairments of the SN may occur as early as 
in normal aging.

Several hypotheses have been formulated to explain the 
functional connectivity deficits associated with non-patho-
logical brain aging. Age-related changes in resting state func-
tional connectivity are thought to reflect declines in structural 
connectivity, especially in white matter integrity, dopaminer-
gic deficit, and amyloid deposition in the brain.43

RESTING-STATE FMRI ALTERATIONS 
IN PATIENTS WITH MCI AND AD

Most seed-based and ICA studies indicate that there is de-
creased connectivity in the DMN and other networks in sub-
jects with MCI and AD. The majority of RS-fMRI studies 
found reduced DMN connectivity across widespread regions 
in the frontal, parietal, temporal and occipital regions of AD 
patients.44,45 Using graph analysis, major hubs in the brain 
seem to be affected by MCI and AD. Supkar et al.46 observed 
the loss of small-world organization in the functional brain 
network, characterized by a significantly lower clustering co-
efficient, which is indicative of disrupted local connectivity. 
Brier et al.47 also found that the clustering coefficient and 
modularity were lower in AD patients. In the same study, cog-
nitively normal participants who harbor AD pathologies also 
showed reduced functional connectivity, demonstrating brain 
changes similar to, but smaller than, those seen in AD.47

However, results regarding aberrant functions in the DMN 
from MCI patients were different in patterns from those of 
AD patients. Damoiseaux et al.9 reported decreased connec-
tivity in the posterior DMN alongside increased connectivity 
in the ventral and anterior DMN using ICA. Also using ICA, 
Qi et al.48 found that MCI patients showed a trend toward re-
duced hippocampus activity compared to healthy elderly. 
They also found that reduced functional activity in the bilat-
eral precuneus/posterior cingulate cortex, the right inferior 
parietal lobule, and the left fusiform gyrus indicated network 
deficiency, while increased activity in the left prefrontal cor-
tex, the inferior parietal lobule, and the middle temporal gy-
rus suggested network compensation in MCI patients. Using 
a seed-based approach, the most recent study of MCI patients 
reported increased DMN connectivity between the medial 
prefrontal regions and the posterior cingulate and between 
the posterior cingulated, the parahippocampus and the ante-
rior hippocampus.49 These results suggest that the DMN 
functions aberrantly in MCI patients, which might be due to 
neuronal loss in the initial phase of neurodegeneration. In-
creased functional connectivity between the PCC, the para-
hippocampus, and the anterior hippocampus in MCI pa-
tients may reflect a maladaptive mechanism.49
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Decreased DMN connectivity was even found in unaffect-
ed carriers of familial AD who have pathogenic presenilin-1 
(PSEN1), presenilin-2 (PSEN2), or amyloid precursor protein 
(APP) mutations,50 as well as among subjects with cognitive 
complaints, but normal neuropsychological performance.51 
Also, APOE ε4 carriers showed decreased connectivity of the 

posterior DMN and relatively increased connectivity of the 
SN.52 However, PSEN1-mutation carriers who are between 9 
to 17 years old demonstrated increased functional connectiv-
ity between the posterior cingulate cortex and the medial 
temporal lobe regions, as well as high gray-matter volume in 
their temporal regions.53

Table 1. Schematic summary of the main group differences in RS-fMRI obtained using both the seed-based and independent components 
analysis (ICA) methods

Reference (year)
Intra-network

Inter-network
DMN SN CEN

Healthy aging
Andrews-Hanna et al. (2007)35 ↓ NA NA NA
Damoiseaux et al. (2008)36 ↓ NA NA NA
Wu et al. (2011)37 ↓ NA NA NA
Onoda et al. (2012)40 NA ↓ NA ↓ SN-auditory

↓ DMN-auditory
He et al. (2014)42 NA ↓ NA ↓ SN-CEN

↓ SN-DMN
Amyloid (+) cognitively normal subjects

Hedden et al. (2009)33 ↓ NA NA NA
Mormino et al. (2011)34 ↓ NA NA NA
Sheline et al. (2010)54 ↓ NA NA NA
Lim et al. (2014)56 ↑ — ↓ ↓ DMN-CEN

Mild cognitive impairment
Damoiseaux et al. (2012)9 ↓ Posterior NA NA NA

↑ Ventral, anterior
Qi et al. (2010)48 ↓ Precuneus/PCC, Rt. Inf. parietal, Lt. fusiform NA NA NA

↑ Lt. PFC, Inf. parietal, middle temporal
Gardini et al. (2015)49 ↑ NA NA NA
Sorg et al. (2007)59 ↓ NA NA NA
Agosta et al. (2012)60 ↓ NA NA NA
He et al. (2014)42 NA NA NA ↓ SN-CEN

↓ SN-DMN
Brier et al. (2012)44 ↓ ↓ NA NA
Wang et al. (2013)51 ↓ NA NA NA
Bai et al. (2008)62 ↓ NA NA NA

Alzheimer’s disease
Balachandar et al. (2015)7 ↓ NA ↑ NA
Brier et al. (2012)44 ↓ ↓ NA NA
Zhang et al. (2009)45 ↓ NA ↑ NA
Agosta et al. (2012)60 ↓ ↑ ↑ NA
Zhou et al. (2010)61 ↓ ↑ NA NA
He et al. (2014)42 NA ↓ NA ↓ SN-CEN

↓ SN-DMN
DMN: default mode network, SN: salience network, CEN: central executive network, ↓: decreased functional connectivity, ↑: increased functional 
connectivity, —: not different, NA: not applicable, PCC: posterior cingulate cortex, PFC: prefrontal cortex. RS-fMRI: Resting-state functional 
magnetic resonance imaging
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There are several studies that look into the association be-
tween amyloid-β deposition and functional brain connectiv-
ity. Several previous studies reported that reduced functional 
connectivity of the DMN can be found in cognitively normal 
subjects with brain amyloid burden.33,34,54 Using graph analy-
sis, a decreased number of hubs and reduced connectivity 
within the DMN were found both MCI and AD, as well as in 
healthy elderly with amyloid-β deposition on positron emis-
sion tomography (PET) images.33,55 However, Lim et al.56 re-
ported that the functional connectivity of the DMN among 
older adults with normal cognition was greater, while the SN 
was not different, and the CEN was lower in among the Pitts-
burgh compound B-positive group, compared to the Pitts-
burgh compound B-negative group. The authors explained 
that the discrepancy in DMN result might be attributed to the 
“acceleration” and “brain reserve” hypotheses. The accelera-
tion hypothesis predicts that the initiation of amyloid-β de-
position by independent events instigates a milieu of higher 
functional connectivity that accelerates this deposition, which 
eventually leads to functional disconnection or metabolic 
deterioration in subjects with amyloid burden.57,58 The brain 
reserve hypothesis states that higher brain metabolism and 
functional connectivity represent stable traits that impart the 
capacity to withstand amyloid-β deposition and maintain 
normal cognition.57

Results in the SN and CEN appear to be less consistent. Sorg 
et al.59 found reduced connectivity in the DMN and central ex-
ecutive network (CEN) hubs of MCI patients. Agosta et al.60 re-
ported decreased connectivity in the DMN among MCI and 
AD patients, as well as increased mean connectivity in the CEN 
among AD patients. Balachandar et al.7 reported decreased 
connectivity in the DMN and increased connectivity in CEN in 
mild AD patients. Zhou et al.61 reported increased functional 
connectivity in the SN of AD patients. However, He et al.42 
found that both the structural and functional organizations of 
the SN are impaired in MCI and AD patients.

The summary of the main group differences in RS-fMRI ob-
tained using both the seed-based and independent components 
analysis (ICA) methods is provided in Table 1.

CONCLUSIONS

According to a number of empirical studies, subjects who 
are aging healthfully, those who have MCI and those who 
have AD all show changes in functional connectivity in three 
large-scale networks–the DMN, SN, and CEN–based on RS-
fMRI results. These findings help build an understanding of 
the neural substrates in the aging brain and during patholog-
ical degenerative processes.

Previous studies have shown that the ICN changes that are 

observable in RS-fMRI are sensitive to the functional brain 
changes that are often seen across the spectrum of AD pathol-
ogy.9 The ICN changes seen on RS-fMRI are potentially sen-
sitive, non-invasive biomarkers of AD. Among the ICNs, the 
DMN, SN and CEN have turned out to be particularly im-
portant for maintaining higher cognitive function; hence, the 
use of the term “core” neurocognitive networks. In particular, 
the DMN has been the most investigated resting-state net-
work. And most RS-fMRI studies report reduced DMN con-
nectivity in normally aging, MCI and AD subjects. However, 
reduced DMN connectivity has also been reported to be as-
sociated with a variety of other diseases, such as Parkinson’s 
disease and multiple sclerosis, and is by no means specific to 
AD.6 Besides, DMN, SN and CEN abnormalities are wide-
spread in psychiatric, as well as in neurological disorders.16 
Different studies have revealed that there are both consisten-
cies and discrepancies in ICN changes among normally ag-
ing, MCI and AD subjects, possibly due to methodological 
differences and/or clinical heterogeneity among subjects.62 
These limitations have recently been overcome and it is ex-
pected that clinical applications of RS-fMRI in normal aging, 
MCI and AD will continue to increase.
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