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Abstract: The main contribution of this paper is to develop a new flowmeter fault detection approach
based on optimized non-singleton type-3 (NT3) fuzzy logic systems (FLSs). The introduced method
is implemented on an experimental gas industry plant. The system is modeled by NT3FLSs, and the
faults are detected by comparison of measured end estimated signals. In this scheme, the detecting
performance depends on the estimation and modeling performance. The suggested NT3FLS is used
because of the existence of a high level of measurement errors and uncertainties in this problem. The
designed NT3FLS with uncertain footprint-of-uncertainty (FOU), fuzzy secondary memberships and
adaptive non-singleton fuzzification results in a powerful tool for modeling signals immersed in
noise and error. The level of non-singleton fuzzification and membership parameters are tuned by
maximum correntropy (MC) unscented Kalman filter (KF), and the rule parameters are learned by
correntropy KF (CKF) with fuzzy kernel size. The suggested learning algorithms can handle the
non-Gaussian noises that are common in industrial applications. The various types of flowmeters are
investigated, and the effect of common faults are examined. It is shown that the suggested approach
can detect the various faults with good accuracy in comparison with conventional approaches.

Keywords: learning algorithm; fault detection; type-3 fuzzy logic; non-Gaussian noise; correntropy
Kalman filter

1. Introduction

Instrument error is defined as the error between the actual and measured values.
The instant error detection in large oil and gas industries, petrochemicals, power plants,
etc., has long been important, and therefore, more research has focused on these industries.
At an oil refinery, for example, everything happens relatively large: liquids flow in tons
per hour, temperatures are measured in the hundreds to thousands of degrees Celsius,
and electricity is generated in megawatts. Thousands and millions of dollars are spent
at any given time because a small or faulty system defect can cause heavy damage to
the whole system and workers or major losses. Therefore, to achieve acceptable safety,
remarkable durability and well efficiency sensor management should be taken to account.
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Due to the importance of processes, in the field of oil and gas jobs, thousands of sensors
have already been installed in and around their physical systems.

Another source of error is the data logger system. In most data acquisition systems
(DASs), there exist both systematic (e.g., nonlinearity) and random (e.g., electronic noise)
error effects simultaneously. While systematic errors are a relatively stable feature of a
DAS, random errors may be smaller or larger in different situations, and it is important
to understand how they reduce the overall system performance. It is obvious that the
higher number of sampling times and the number of bits used in the sampling process
lead to the higher accuracy of analog-to-digital conversion signal. The difference between
the original signal and the digitized signal is called the quantization error. Furthermore,
the difference between the highest and lowest levels of signals that can be converted to
digital by a certain number of bits is called Dynamic Range. Quantization error distorts the
digital signal. This is because the analog signal at the sampling points must be rounded to
the nearest value that can be detected and converted in the system. The higher number of
bits used in the conversion process causes the sampled values to be closer to the original
values, and therefore, the difference between the digital signal and the original analog
signal becomes smaller [1].

2. Literature Review

The sensor fault detection (FD) is an important issue in various studies. Many re-
searchers have paid attention to this problem. For example, in [2], some main features
are identified by FLSs to determine the healthy conditions, and based on the extracted
features, a fault detection method is proposed. In [3], by the curve fitting approach, the
phase difference is detected in Coriolis flowmeters, and its accuracy is compared with
Fourier-based methods. The variable selection method by the use of the causality approach
is studied in [4] for the FD problem in the gas industry. The results are compared with
filter-based and embedded-based methods, and it is shown that model identification by
the suggested variable selection approach improves the FD performance. In [5], the fault
of pressure sensors is studied, and a dynamic model is optimized to predict the pressure.
In this paper, a pressure observe is designed to predict the sensor output, and the conver-
gence is theoretically analyzed. In [6], by the use of Kalman filter, the flow is estimated,
and by the Lyapunov approach, the stability is investigated. In [7], a wireless FD scheme is
developed to detect the current fault in motors, and its energy consumption and detection
accuracy are investigated. In [8], the detectability problem is taken into account, and the
sensor locations are optimized to improve the FD accuracy. The FD of virtual sensors is
studied in [9], and the accuracy of linear regression approaches is investigated. Considering
various sensors, such as temperature and airflow virtual sensors, the suggested method
is examined on a real building in Denmark, and it is shown that abnormal oscillation
in temperature is strongly detected. In [10], a fiber-optic approach is introduced, and its
accuracy and maintenance cost is studied. The variance shift scheme is formulated in [11]
to construct an FD method for a navigation system. In [12], an FD system is developed for
switching systems with uncertain switching modes, and the accuracy of the FD method
is examined on a three-tank system. A multimodal FD approach is designed in [13] to
detect shunt failures. The various FD methods for heating/cooling systems are reviewed
in [14]. In [15], by the use of historical data, the outputs of sensors are predicted, and
by comparison with the measured data, the fault is detected. The frequency estimation
approach is developed in [16] for an FD problem.

Recently, the machine learning methods and artificial intelligence techniques have
been developed for various applications, such as helicopter hydraulic FD problems, medical
diagnosis systems, risk assessment applications, and so on [17–20]. These approaches have
also been employed for FD problems in a few studies. For example, in [21], a neural
network (NN) is used for modeling the signal dynamics and prediction, and based on
the NN model, an FD scheme is developed for pneumatic valves. In [22], the genetic
algorithm is suggested for online optimization of an NN and designing an FD system.
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In [23], an NN-based FD is proposed for hydraulic systems, and it is shown that using NNs
improves the accuracy. A deep learned NN scheme is designed in [24] for the FD problem
in gas turbines. In [25], an FLS is used to approximate the flow pattern, and then based on
the FLS model, the flow is predicted, and an FD scheme is designed. In [26], a recurrent
NN is optimized to detect the fault in the drilling process of gas industries. An FD system
based on NNs is suggested in [27] for reactive distillation, and its diagnosis capability is
compared with conventional approaches. The support vector machine is developed in [28]
for modeling flow patterns and fault detection. In [29], a simple NN is learned by the
backpropagation approach, and it is used for the prediction of fluidization velocity and FD
in gas industries.

The type-3 FLSs (T3-FLSs) have been recently developed to improve the estimation
capability of conventional FLSs and improve the robustness against noisy environments. T3-
FLSs have been employed in various practical problems, such as energy management [30],
gyroscopes [31], forecasting problems [32], industrial 5G converters [33], and so on. In the
aforementioned studies, it is verified that the developed T3-FLSs give a better perfor-
mance in noisy conditions. However, it has not been used for fault detection problems in
industrial systems.

In most of the above reviewed FD methods, the data uncertainties are neglected,
and the signal dynamic/pattern is estimated by the noisy measured data. Furthermore,
the simple learning methods have been used, and they cannot handle the non-Gaussian
noise. The non-Gaussian noise is very prevalent in industrial applications. In this paper,
by the use of a novel approach based on the non-singleton fuzzification, the uncertainty
of historical measurement data is also considered. A type-3 FLS with high estimation
capability in a noisy environment is presented to predict the signal pattern and fault
detection well. The nonlinear Kalman approach with a fuzzy kernel size is formulated for
learning NT3FLS in the presence of non-Gaussian measurement noise.

3. General View on Suggested Approach

The general view of the suggested approach is shown in Figure 1. The main signals
are modeled by the designed NT3-FLS, and then by comparing the measurement signals
and approximated signals, the faults are detected.

Figure 1. General scheme of the type-3 FLS fault detection algorithm.
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4. Non-Singleton Interval Type-3 FLS

The type-3 FLSs can model a higher level of uncertainties in contrast to the type-2
counterparts because the secondary membership and also the upper and lower uncertain-
ties in a type-3 fuzzy set are not crisp values, but they are fuzzy sets. To better see the
difference, consider a horizontal slice in type-3 and general type-2 fuzzy sets, as shown
in Figure 2, we see that the bounds of uncertainties (upper and lower of primary mem-
berships) in the type-3 fuzzy set are not crisp values, but they also interval fuzzy sets.
Furthermore, in comparison with general type-2 MFs, the type-3 MFs have more degrees
of freedom. As shown in Figure 3, a horizontal slice in the type-3 MFs can be represented
by two slices in the general type-2 counterparts. In other words, we theoretically see that
the type-3 MFs can model more levels of uncertainties because of their uncertain secondary
memberships and uncertain FOU, and also from a functionality view point, we see that
the type-3 MFs have more degrees of freedom. The basic idea for type-3 FLSs is presented
in [34]. In this paper, the non-singleton form of basic type-3 FLSs is formulated in a fault
detection scheme.

1

0

-1

01

1

1

0

-1

0
1

1

(a)
(b)

Figure 2. Comparison of fuzzy sets: (a) type-3 fuzzy set, (b): type-2 fuzzy set.

Figure 3. Horizontal slice for a type-3 MF.
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Remark 1. It should be noted that the various horizontal slices are used in the computation of the
output of FLS, then the effects of variation of the footprint of uncertainty (FOU) are considered
in computations.

The dynamics of the case-study plant are completely unknown. Furthermore, the
measured data set is stained with noise. Then in this problem, we are facing a high
level of uncertainty, and the type-3 FLSs with better uncertainty modeling capability is
used. Furthermore, the non-singleton fuzzification is used to handle the uncertainty of the
measured data.

The structure of the NT3FLS for modeling the signal dynamic is described in this
section. The general structure is given in Figure 4. The detailed scheme is depicted in
Figure 5. The estimated signal is computed as follows.

Figure 4. The general structure of NT3FLS.

Figure 5. The detailed diagram of NT3FLS.
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(1) The inputs of NT3FLS at sample time t are the value of the target signal at sample
time t and its previous data ψ(t− 1), . . . , ψ(t− τ). The inputs are denoted by ψ1, . . . , ψτ ,
where τ is the number of inputs.

(2) In the second step, the non-singleton fuzzification is computed. Gaussian mem-
bership functions (MFs) are considered to handle the input uncertainties. The standard
division (SD) of this MF represents the uncertainty level of the measured signal. The Gaus-
sian MFs are used because they are derivable, and the non-singleton fuzzification in
Gaussian MFs is also much easier in contrast to triangular counterparts.

(3) The memberships for inputs ψ1, . . . , ψτ are computed. The memberships of ζ̃ l
k

(l − th MF for k− th input) at the slice level
¯
η, η̄ (see Figure 6) are computed as:

ξ̄ ζ̃ l
k|η̄
(ψk) = exp

−
(

ψ̄l
k|η̄ − cζ̃ l

k

)2

σ̄2
ζ̃ l

k|η̄

 (1)

ξ̄ ζ̃ l
k|

¯
η
(ψk) = exp

−
(

ψ̄l
k|

¯
η
− cζ̃ l

k

)2

σ̄2
ζ̃ l

k|
¯
η

 (2)

¯
ξ ζ̃ l

k|η̄
(ψk) = exp

−
(

¯
ψl

k|η̄ − cζ̃ l
k

)2

¯
σ2

ζ̃ l
k|η̄

 (3)

¯
ξ ζ̃ l

k|
¯
η
(ψk) = exp

−
(

¯
ψl

k|
¯
η
− cζ̃ l

k

)2

¯
σ2

ζ̃ l
k|

¯
η

 (4)

where cζ̃ l
k

denotes the center of ζ̃ l
k, σ̄ζ̃ l

k|η̄
/

¯
σ2

ζ̃ l
k|η̄

represent the upper/lower SDs for slice level

η̄, and σ̄ζ̃ l
k|

¯
η

and
¯
σζ̃ l

k|
¯
η

are the SD at slice level
¯
η. The fuzzification terms ψ̄l

k|η̄ , ψ̄l
k|

¯
η
,

¯
ψl

k|η̄ and

¯
ψl

k|
¯
η

are obtained as:

ψ̄l
k|η̄ =

σ̄2
ζ̃ l

k|η̄
ψk + σ2

ψcζ̃ l
k

σ̄2
ζ̃ l
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+ σ2
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(5)
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σ̄2
ζ̃ l
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¯
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Figure 6. Non-singleton fuzzification.

(4) The l − th rule is written as:

If ψ1 is ζ̃ l
1 and . . . ψτ is ζ̃ l

τ Then
ŷl ∈ [

¯
wl , w̄l ]

(9)

The rule firings ϑ̄ and
¯
ϑ at slice levels

¯
η and η̄ are computed as:

ϑ̄l
η̄ = ξ̄ ζ̃ l

1|η̄
(ψ1)× · · · × ξ̄ ζ̃ l

τ|η̄
(ψτ) (10)

ϑ̄l

¯
η = ξ̄ ζ̃ l

1|
¯
η
(ψ1)× · · · × ξ̄ ζ̃ l

τ|
¯
η
(ψτ) (11)

¯
ϑl

η̄ =
¯
ξ ζ̃ l

1|η̄
(ψ1)× · · · ×

¯
ξ ζ̃ l

τ|η̄
(ψτ) (12)

¯
ϑl

¯
η =

¯
ξ ζ̃ l

1|
¯
η
(ψ1)× · · · ×

¯
ξ ζ̃ l

τ|
¯
η
(ψτ) (13)

(5) By type-reduction of [34], ĝ(ψ|θ) is:

ŷ(ψ|θ) = θTλ (14)

where θ = [
¯
w1, . . . ,

¯
wN , w̄1, . . . , w̄N ]

T denotes the vector of consequent parameters and
λ =

[
¯
λ1, . . . ,

¯
λN , λ̄1, . . . , λ̄N

]T and λ̄l and
¯
λl are as:

λ̄l =

β

∑
N=1 ¯

η
h

f̄ l

¯
η

h

β

∑
h=1

(
η̄h +

¯
η

h

) +

β

∑
h=1

η̄h f̄ l
η̄h

β

∑
h=1

(
η̄h +

¯
η

h

) (15)

¯
λl =

β

∑
N=1 ¯

η
h¯

f l

¯
η

h

β

∑
h=1

(
η̄h +

¯
η

h

) +

β

∑
h=1

η̄h
¯
f l
η̄h

β

∑
h=1

(
η̄h +

¯
η

h

) (16)
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where, f̄ l

¯
η

h
, f̄ l

η̄h
,

¯
f l

¯
η

h
and

¯
f l
η̄h

are as:

f̄ l

¯
η

h
=

ϑ̄l

¯
η

h
N
∑

l=1

(
ϑ̄l

¯
η

h
+

¯
ϑl

¯
η

h

) (17)

f̄ l
η̄h

=
ϑ̄l

η̄h
N
∑

l=1

(
ϑ̄l

η̄h
+

¯
ϑl

η̄h

) (18)

¯
f l

¯
η

h
= ¯

ϑl

¯
η

h
N
∑

l=1

(
ϑ̄l

¯
η

h
+

¯
ϑl

¯
η

h

) (19)

¯
f l
η̄h

= ¯
ϑl

η̄h
N
∑

l=1

(
ϑ̄l

η̄h
+

¯
ϑl

η̄h

) (20)

5. Learning Algorithm

In this section, the rules and MF parameters and fuzzification level are optimized.

5.1. Rule Parameters

To adjust the consequent (rule) parameters of NT3FLS, the CKF is applied as:

θc(t) = θc(t− 1) + γ(t)
(

y− λT(t− 1)θc(t− 1)
)

(21)

where
γ(t) =

(
IM + λTλ(t)λ

)−1
λ(t)λ (22)

λ(t) = Fσ̂

(∥∥∥y− λT(t− 1)θc(t− 1)
∥∥∥) (23)

where Fσ̂ denotes the kernel function. The kernel size σ is obtained by an FLS [35].

5.2. Antecedent Parameters

The centers of MFs cζ̃ and the level of fuzzifications σψ are tuned by MUKF as follows.

(1) The designed NT3FLS is rewritten as:

θa(t) = θa(t− 1) + Φ(t)
ŷ(t) = NT3FLS(ψ(t)|θa(t)|θc(t)) +<(t)

(24)

where,
ψ = [ψ1, . . . , ψτ ] (25)

θa =
[
cζ̃1

1
, . . . , cζ̃N

1
, . . . , cζ̃1

n
, . . . , cζ̃N

n
, σψ

]T
(26)

where, θc(t) is vector of rule (consequent) parameters, c
ζ̃

j
i

is the center of j− th MF

for i− th input ψi, σψ is the level of fuzzification and N is the number of MFs.
(2) Initialize the vector θa and θc.
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(3) The sigma-points are defined as:

θ̃κ
a (t) = θa(t)

+
(√

(da + λ)ϕ(t)
)κ

, κ = 1, . . . , da

θ̃κ
a (t) = θa(t)

−
(√

(da + λ)ϕ(t)
)κ−da

, κ = da + 1, . . . , 2da

θ̃κ
a (t) = θa(t), κ = 0

(27)

where da denotes the number of elements of vector θa, ϕ is covariance matrix of

θa,
(√

(da + λ)ϕ(t)
)κ

is the κ-th column of
(√

(da + λ)ϕ(t)
)κ

and λ denotes the
turning factor.

(4) Compute ŷ(t) (estimated signal) as:

ŷ(t) = 1
2(da+λ)

2da
∑

κ=1
NT3FLS

(
ψ(t)|θ̃κ

a (t)|θc(t)
)
+

λ
da+λ NT3FLS

(
ψ(t)|θ̃0

a(t)|θc(t)
) (28)

(5) Compute ϕ̃ and R̃ as:
λ̃a = ΥΛψ−1

ψ ΥT
Λ

R̃ = Υrψ−1
y ΥT

r
(29)

where [
ϕ 0
0 R

]
=

[
ΥΛΥT

Λ 0
0 ΥrΥT

r

]
= ΥΥT (30)

ψψ = diag(Gσ(χ1), . . . , Gσ(χda))

ψy = diag(Gσ(χda+1), . . . , Gσ(χL))
(31)

χ = Υ−1
[

θa
y− ŷ + Hθa

]
− Υ−1

[
I
H

]
θa (32)

H = λT
xyλ−1 (33)

λT
xy = 1

2(da+λ)

2da
∑

κ=1
θ̃κ

a
[
NT3FLS

(
ψ|θ̃κ

a |θc
)]T − θaŷ

λ
da+λ θ̃0

a
[
NT3FLS

(
ψ|θ̃0

a |θc
)]T

(34)

L represents the dimension of χ, and Gσ(χ) is:

Gσ(χ) = exp
(
−χ2

2σ

)
(35)

The value of σ is obtained by a FLS [35].
(6) θa and ϕ are updated as:

θa(t + 1) = θa(t) + γ(t)(y(t)− ŷ(t)) (36)

ϕ(t + 1) = (I − γ(t)H(t))ϕ(t)(I − γ(t)H(t))T

+γ(t)R(t)γT(t)
(37)

where γ(t) is

γ(t) = λ̃a(t)HT(t)
(

R̃(t) + H(t)λ̃a(t)HT(t)
)−1

(38)

6. Data Description

The trajectory of the peak of consumption per hour is depicted in Figure 7. The total
number of data is 28,673. We see that the peak of consumption is increased each year.
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The main reason is the changing of lifestyle and the development of gas supply for vari-
ous areas.
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Sample (per hour) 104
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Figure 7. The peak of gas consumption in per hour.

The diagrams of the consumption lines in the Ilam CGS station are examined below.
For each line, 1460 data have been recorded. Data are related to the daily consumption
from 21 March 2017 to 20 March 2021. The trajectories for consumption lines 1–3 and total
consumption are shown in Figures 8–10. It is seen that consumption is rapidly changed.
For example, around the 700th day, the total consumption has suddenly reached 30% of
its value.
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Figure 8. The trajectory of consumption line 1.
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Figure 9. The trajectory of consumption line 2.
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Figure 10. The trajectory of consumption line 3.

7. Simulation
7.1. Modeling

The estimation capability of the suggested NT3FLS is examined. For each input,
11 MFs are considered. The centers of inputs are located in 0, 0.1, 0.2, . . . , 1. It should be
noted that the input signals of NT3FLS are normalized between 0 and 1 by dividing the
input signals by their upper bounds. The trajectory of the estimated peak of consumption
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and the actual peak of consumption are shown in Figure 11. We observe that the estimated
peak tracks the actual signal with reasonable accuracy. The zoomed view is depicted in
Figure 12. The modeling performance of consumption for Line 1 and its zoomed view are
depicted in Figures 13 and 14. Similarly, for lines 2–3, the modeling performance zoomed
views are depicted in Figures 15–18. The simulations show that the suggested approach is
effective, and the estimated signal is well converged to the real signal under a high level of
uncertainties and measurement errors.

0 0.5 1 1.5 2 2.5 3
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Figure 11. Modeling peak of consumption in per hour.
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Figure 12. Modeling peak of consumption in per hour: Zoomed view.
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Figure 13. Modeling of consumption for line 1.
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Figure 14. Modeling of consumption for line 1: Zoomed view.
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Figure 15. Modeling of consumption for line 2.
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Figure 16. Modeling of consumption for line 2: Zoomed view.
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Figure 17. Modeling of consumption for line 3.

750 800 850 900 950
Sample (per day)

0

1

2

3

4

5

6

m
3

105

Real
Estimated

Figure 18. Modeling of consumption for line 3: Zoomed view.
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7.2. Fault Detection

Four types of errors are considered, and their effects are examined. First error is
named the bias error. A bias error is a constant that is added to the signal. This type of error
can be simply detected by a comparison of the signal with other sensor’s measurement.
The second type of error is the hard error. In hard error, the sensor result in a constant
instead of real value. The third type is the scale error. In the scale error, a constant or a
time-varying value is multiplied with the signal. The scale error is more difficult than the
bias error. The fourth error is the noise error. In noise error, the actual signal is measured
with lower or higher values. To detect this type of error, previous samples of the measured
signal are required.

All four described errors are applied on the measured data, and the accuracy of the
designed scheme is examined. To see the superiority of designed algorithm better, it is
compared with a recurrent fuzzy neural network (RFNN) [36], SVM-NN [37] and neuro-
fuzzy (NFLS) [38]. The accuracy of different methods has been shown in Table 1. We see
that the suggested method can detect the bias error about 97%, the scaling about 98%,
the high noise about 89% and the hard error about 88%. Table 1 verifies that the error
detection of the suggested approach is better than other methods. It should be noted that
the program is executed 10 times, and the average values are presented.

The detection of four types of errors for total consumption are shown in Figures 19–22.
We see that the suggested approach detects all type of errors well. Furthermore, it should
be noted that the suggested approach estimates the actual signal well. Similarly, the four
types of errors are examined on the peak of consumption data. The results are shown
in Figures 23–26. It is seen that, in spite of high variation of the actual signal, it is well
estimated and predicted. All type of errors are detected with the desired accuracy.
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Figure 19. Detection fault 1: Total consumption.
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Figure 20. Detection fault 2: Total consumption.
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Figure 21. Detection fault 3: Total consumption.
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Figure 22. Detection fault 4: Total consumption.
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Figure 23. Detection fault 1: Peak of consumption.
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Figure 24. Detection fault 2: Peak of consumption.
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Figure 25. Detection fault 3: Peak of consumption.
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Figure 26. Detection fault 4: Peak of consumption.

Table 1. Comparison results.

Method

Error Type NT3FLS RFNN [36] SVM-NN [37] NFLS [38]

Bias 97 90 84 91
Scaling 98 88 85 92

High noise 89 81 80 85
Hard error 88 77 81 80

To better show the superiority of non-singleton fuzzification and high-order FLS,
a numerical comparison is given. A Gaussian noise is added to the inputs with various
variances. The values of the root-mean-square of modeling errors are compared in Table 2.
The mean of the results for 10 epoches are given in Table 2. As seen from Table 2, the type-3
FLS by the non-singleton fuzzification results in better accuracy, particularly in the higher
noisy condition. It should be noted that all methods are compared in the same condition
and same data set.

Table 2. Comparison the effect various FLSs.

FLS

Noise Variance Type-1 Type-2 Singleton
Type-3

Non-Singleton
Type-3

- 0.2208 0.1365 0.0124 0.0117
0.01 0.3481 0.2470 0.1029 0.0921
0.1 0.8427 0.4578 0.3547 0.1804

Remark 2. It should be noted that the suggested scheme models the output signal, and then based
on the a comparison between the model out and the measured signal, it detects the faults. Then,
the training data sets should contain no fault. One way to ensure this is measuring of the training
data set by multiple sensors. Furthermore, before starting the training process, the abnormal data
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sets should be filtered and not used in training. Furthermore, it is emphasized that the measurement
errors of output signals are handled by the non-singleton fuzzification. In other words, it is assumed
that the input data set is not accurate in terms of measuring error. If the training data set includes
fault, it is possible that the system could not detect the actual fault.

Remark 3. The training process is done in an off-line scheme. Then, the sampling time does not
impact the computation cost. Furthermore, in the our-case study system, the speed of changes of gas
flow is low, and a fast sampling time is not required. It is obvious that, for fast changing signals, the
sampling time should be small enough for better modeling of the signal behavior.

Remark 4. The results in Figures 23–26 show that the suggested FD scheme gives a good detection
performance versus various faults. Furthermore, Table 2 shows a good robustness against distur-
bances that have been considered as external noises. In Figures 19–22, the fault is detected in the
total consumption, and we see that the changing of load does not effect the FD performance. We see
that increasing the trajectories due to the increasing consumption are not detected as faults, and the
suggested FLS learns the consumption pattern well.

8. Conclusions

This paper introduces a new approach for flowmeter fault detection in an experimental
project. The actual signals are modeled by the suggested NT3FLS, and the measurement
error is well detected, as shown by the comparsion between the predicted signal and
measured signal. Four types of errors, such as bias error, scaling error, hard error and
noisy measurement error, are considered, and the performance of the suggested scheme is
evaluated. First, the data of the case-study system are described, and the modeling accuracy
of the suggested approach is examined. It is seen that, in spite of high variation of the actual
signals and various errors, the real signals, such as the consumption of three lines and the
peak of consumptions, are well estimated by the designed NT3FLS. Second, the accuracy
of error detection is examined. The four errors are applied on the total consumption signal
and the peak of the consumption signal, and it is shown that the suggested approach
detects the error with the desired accuracy. It is shown that the suggested method can
detect the bias error about 97%, the scaling about 98%, the high noise about 89% and the
hard error about 88%. Comparing the obtained results with some other similar approaches
show the superiority of the suggested approach. The main advantages of the suggested
approach are: (1) The measurement errors of the recorded historical data are handled by
the proposed non-singleton fuzzification. (2) The non-Gaussian noise, which is a prevalent
issue in industrial applications, is supported in the suggested scheme. (3) The proposed
NT3FLS results in better accuracy in an uncertain environment.
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