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ABSTRACT
Two recent publications out of the same research laboratory report on structure-based in silico design of
antibodies against viral targets without sequence disclosure. Cross-referencing the published data to
patent databases, we established the sequence identity of said computationally designed antibodies. In
both cases, the antibodies align with high sequence identity to previously reported antibodies of the
same specificity. This clear underlying sequence relationship, which is far closer than the antibody
templates reported to seed the computational design, suggests an alternative origin of the computa-
tionally designed antibodies. The lack of both reproducible computational algorithms and of output
sequences in the initial publications obscures the relationship to previously reported antibodies, and
sows doubt as to the genesis narrative described therein.
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Introduction

Human antibodies are a major modality to treat human disease,
and therefore the focus of significant technology development.1

Historically, two main approaches have been used to discover
antibodies against targets of therapeutic interest: 1) in vivo tech-
nologies based on isolating B cell diversity from animals2-5 or
humans,6–8 following immunization or exposure to infectious
agents, respectively, and 2) in vitro technologies based on the
display of synthetic or semi-synthetic human IgG diversity on
the surface of phage or yeast.9–12

More recently, a third approach of designing human anti-
bodies in silico against specific epitopes has been fueled by
two major trends: 1) ever-increasing structural information of
antibodies and their potential targets, as well as 2) access to
more powerful computational tools. Notwithstanding the
potential impact, the general lack of published successes in
this area has highlighted the extreme challenge of designing
antibodies in silico,13,14 although progress in the area of affi-
nity maturation has been made.15,16

As such, two publications17,18 originating from the same
research lab (based on the first and corresponding author), report-
ing the in silico design of epitope-specific, broadly neutralizing,
human antibodies against two infectious disease targets, garnered
our attention. Strikingly, in both cases the extraordinary accom-
plishments were not supported by a detailed description of meth-
ods or intermediate results, nor were the end-products of these
efforts, namely the amino acid sequences of the designed anti-
bodies, disclosed, making it impossible to independently repro-
duce the reported functional characterization. To understand how
these results could have been achieved, we endeavored to better

understand the identity and, potentially, the genesis of these
antibodies. In this communication, we present evidence that in
both cases, previously published antibody sequences and struc-
tures are the basis for the in silico designed antibodies.

Results

Influenza antibody

VIS410 is described17 as a broadly neutralizing antibody generated
by a process that used “a database of nonredundant combinations
of complementary determining region (CDR) canonical structures
(antibody scaffolds), (to select) multiple antibody templates satisfy-
ing shape complementarity criteria and systematically engineered
energetically favorable, hotspot-like interactions between CDR resi-
dues and these anchor residues on hemagglutinin (HA).” The
authors then present experimental data on binding, neutraliza-
tion, and protective efficacy in influenza animalmodels. However,
the sequence of VIS410, the output of the design and engineering
process, was neither provided in the publication, nor deposited
into a public database. Using VIS410 as a search term in the
USPTO database readily leads to a US patent application19 that
also designates VIS410 as Ab044. This application further estab-
lishes that the variable heavy- and light-chain (VH and VL)
sequences correspond to sequence ID numbers 25 and 52,
which are shown in Figure 1. Searching the patent database with
the VIS410 sequences produces exact matches to an earlier US
patent publication from 2013 describing Ab044 with a similar
inventorship group.20 As shown in Figure S1, a comparison of
tables from the two sources,17,20 confirms that VIS410 and Ab044
are in fact the same antibody.
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It is interesting that searching Genbank with the VH
sequence, even today (April 2019, nearly four years after the
original publication) does not yield a 100% match. However,
the search does reveal FI6v3, a broadly neutralizing anti-
influenza antibody first described in 2011 by Corti and et al.21

An alignment of VIS410 and FI6v3 is shown in Figure 1. The
overall percent identity values are 87% and 81%, respectively,
for the VH and VL domains. This is achieved with no gaps in
the alignment, indicating that all the corresponding CDR
lengths are identical; this result is particularly significant for
the CDRH3 and for the CDRL1, with the latter showing
a relatively rare two amino acid deletion relative to the
human germline of origin, as presented in the original pub-
lication by Corti et al.21 Including conservative substitutions
(“positives” as in the default settings for BLAST22) reveals an
even closer relationship with a similarity of 96% and 88%,
respectively, for VH and VL. The VIS410 publication includes
in supplementary material a list of accession numbers to
antibody variable regions as “top ranking templates” used
for the design of anti-influenza antibodies.17 In Figure 2 we
present the corresponding VH sequences, retrieved from the
NCBI database using those accession numbers, and aligned
with both VIS410 and FI6v3. Focusing on the CDRs, the
portion of the antibody sequence expected to be most impor-
tant to determine specificity and govern binding to antigen,23–
25 the closest template CDRH3 to the output VIS410 CDRH3
is 10% identical, while the FI6v3 CDRH3 to VIS410 CDRH3 is
85% identical. Given the remarkable diversity of CDRH3
sequences, it is hard to conceive how a computational method
could have credibly and independently converged near the
FI6v3 sequence. Further comparison of the other CDRs

between VIS410 and FI6v3, shows just two non-conservative
substitutions in VH CDRs, and three in CDRL2. According to
the crystal structure, CDRL2 was deemed non-essential for
antigen binding by FI6v3 and therefore an attractive location
to introduce sequence alterations that are unlikely to compro-
mise binding.21 Based on the structure of FI6v3 in complex
with influenza HA, we mapped those differences, as shown in
Figure 3. Only one of the non-conservatively substituted
amino acid positions appears to be directly involved in anti-
gen contact; this would be position 54 of the VH, which is Ala
in FI6v3, but Gly in VIS410. As detailed in the original
publication,21 the precursor of FI6v3, called FI6, does have
Gly at the same position, and this change is among a few
others demonstrated to have no impact on functionality.
Given the remarkable degree of similarity, it is important to
remember that FI6v3, including its sequence and structure,
was described almost a year before the submission date of the
first patent application describing the discovery of VIS410
(Figure S2)

Zika antibody

More recently, the same research group with new collabora-
tors reported to have “applied computational methods to engi-
neer an antibody, ZAb_FLEP,” with broadly neutralizing
activity against Zika virus.18 As in the earlier17 publication,
no sequence information was provided for ZAb_FLEP.
Following the same approach as in the previous section, we
initially searched the patent literature with the term
“ZAb_FLEP,” which proved unproductive. However, search-
ing Zika together with some of the author’s names in a patent

Figure 1. VH and VL alignment of FI6v3 (PDB file 3ZTJ) and VIS410 (Ab 044) FI6. Non-conservative substitutions depicted in red font. CDRs are highlighted in gray
according to Kabat’s23 definition.

Figure 2. Design process for VH of VIS410: alignment of VH template sequences listed in table S1 of original publication17 with VIS410 and FI6v3. CDRs as defined in
Kabat are highlighted in gray.
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database led us to a published patent application26 titled
“Antibodies that bind Zika virus envelope protein and uses
thereof”. All six named inventors are also authors of the
publication describing ZAb_FLEP.18

Comparison of figures in the publication and patent appli-
cation leaves little doubt that ZAb_FLEP corresponds to mAb
8; see Figure S3.18,26 The sequences of mAb 8 are presented in
the patent application26 (sequence IDs 6 and 15), and are
shown in Figure 4.

As in the influenza case, a Genbank search with mAb 8
sequences fails to retrieve an exact match, but results in
sequence hits to EDE1 C8,27–30 a previously reported den-
gue/Zika cross-reactive antibody first described in 2015 by
Dejnirattisai et al.29 An alignment of EDE1 C8 and mAb 8
is shown in Figure 4.

As in the influenza example, the similarity is remarkable, with
89% and 90% identity, for VH and VL, respectively. This is
obtained without any gaps in the alignment, and thus all CDR
lengths are identical between ZAb_FLEP and EDE1 C8.
Considering conservative substitutions, as before, yields simila-
rities of 95% and 98%, respectively, for VH and VL. Within
the CDRs of the VH, there is a single V to A non-conservative
substitution (as defined by BLAST default settings). There
are only three conservative substitutions in VL CDRs; in fact,
one in each CDR, all involving S/T exchanges. The non-
conservative substitutions in the context of the known EDE1
C8 complex with Zika protein27 are depicted in Figure 5. Once
again, given the remarkable sequence similarity, it is important
to emphasize the prior publication of the EDE1 C8 sequences, in
the context of both dengue and Zika (Figure S2).27,30

Figure 3. Depiction of non-conservative substitutions (red for the VH and magenta for the VL) in the context of the structure of FI6v3 complexed with influenza H1
(gray, glycans shown as teal sticks). VH and VL are shown in orange and purple, respectively. PDB file 3ZTN.
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EDE1 C8
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mAb8
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EDE1 C8
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Figure 4. VH and VL alignment of VH alignment of EDE1 C8 (PDB files 4UTA or 5LBS) and mAb 8 (likely ZAb_FLEP). Non-conservative substitutions depicted in red
font. CDRs highlighted in gray according to Kabat’s definition.
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It is interesting that EDE1 C8 is mentioned, among other
antibodies, as a potential template for the design of
ZAb_FLEP, as indicated in the supplementary material:18

“Multiple antibody scaffolds (including mouse-derived pan-
flavivirus 4G2, anti-EDE1 Dengue mAbs C8, C10 and anti-
EDE2 Dengue mAb A11, anti-TDRD3 antibody and anti-HIV
antibody PGT124) were used as starting templates for antibody
engineering.”18 The lack of sequence disclosure for ZAb_FLEP
and any direct data comparisons to EDE1 C8, however,
obscures from readers, as well as peer reviewers, the remark-
able similarity of ZAb_FLEP and EDE1 C8. Given the appar-
ent origin of ZAb_FLEP from EDE1 C8, we wonder why
a direct comparison between the two was not reported, espe-
cially in light of the authors’ statement:18 “The in vitro neu-
tralization potential of ZAb_FLEP approaches the potency of
select Zika antibodies” (emphasis added).

The narrative in the patent application,26 which is intended
to teach the skilled artisan how to practice the invention, only
provides sequences from an anti-TDRD3 antibody as input
template, and it makes no explicit mention of EDE1 C8 as
input. Moreover, sequences identical to EDE1 C8, represented
as mAb 3 in the patent document, are said to have been
“designed by computing the epitope-paratope connectivity net-
work,” whereby “variable regions and CDRs (are) generated
(and) shown in (…) Figure 1(a,b)” (see Figure S426). However,
the designed mAb 3 has a non-traditional two amino acid
addition (Arg-Ser) at the VL N-terminus. This sequence
matches a non-coding cloning site present in the original
EDE1 C8 VL expression vector.29 It is inconceivable that an
unsupervised algorithm would produce vestigial vector
sequence unrelated to antigen recognition.

Discussion

In this report, we examine two instances in which the same
research group has made representations of structure-based
computational design of anti-viral antibodies with exceptional

neutralization breadth and potency.17,18 In neither case were
the sequences of the designed antibodies disclosed, leading us
to question the enforcement of editorial policies regarding
reproducibility. Perhaps more concerning is the potential for
contamination of the scientific literature with claims by inno-
cent third parties. For example, in a commentary article31

about the clinical evaluation of VIS410,32 it is said that
“VIS410, however, is not just another HA-stem specific
human monoclonal antibody. This human IgG1 monoclonal
antibody is the result of man-made design and protein engi-
neering and so is not derived from a natural source.” Clearly,
the author of this comment was not in possession of the
comparison presented in Figure 1.

We present with a high degree of confidence the actual
sequence identity of the designed antibodies, and a more
plausible genesis narrative. Comparisons of these sequences
to those of previously described human B cell-derived anti-
bodies to the same targets show striking similarities. By con-
trast, those designed sequences appear very dissimilar from
the templates said to have been used to start the design
process (Figure 2 and S4); we leave it to the reader to judge
the likelihood of these highly homologous sequences being re-
discovered coincidentally, or simply derived from existing
antibodies targeting the same epitopes as those of the compu-
tationally designed antibodies.

In conclusion, the presented fact pattern calls into question
the publications’ claimed genesis of VIS410 and ZAb_FLEP.
Furthermore, the lack of sequence disclosure exposes a serious
weakness in the peer review process in the emerging field of
computational antibody design.13–16 (It is instructive to com-
pare the level of transparency provided by some16 to the
opaque disclosures in the publications examined here.17,18)
Such obfuscation prevents independent confirmation, and is
contrary to basic scientific norms. We find it difficult to view
these authors’ approach17,18 in any light other than an intent
to mislead as to the level of originality and significance of the
published work.

Figure 5. Depiction of non-conservative substitutions (red for the VH and magenta for the VL) in the context of the structure of EDE1 C8 complexed with ZIKV
E (gray). VH and VL are shown in orange and purple, respectively. PDB 5LBS, chains AHL.
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