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Background: Thyroid cancer is the most common endocrine malignancy worldwide.

Primary treatment with surgery and radioactive iodine is usually successful, however,

there remains a small proportion of thyroid cancers that are resistant to these treatments,

and often represent aggressive forms of the disease. Since the 1950s, in vitro thyroid

culture systems have been used in thyroid cancer research. In vitro culture models

have evolved from 2-dimensional thyrocyte monolayers into physiologically functional

3-dimensional organoids. Recently, research groups have utilized in vitro thyroid cancer

models to identify numerous genetic and epigenetic factors that are involved with

tumorigenesis as well as test the efficacy of cytotoxic drugs on thyroid cancer cells and

identify cancer stem cells within thyroid tumors.

Objective of Review: The objective of this literature review is to summarize how

thyroid in vitro culture models have evolved and highlight how in vitro models have been

fundamental to thyroid cancer research.

Type of Review: Systematic literature review.

Search Strategy: The National Institute for Health and Care Excellence (NICE)

Healthcare and Databases Advanced Search (HDAS) tool was used to search EMBASE,

Medline and PubMed databases. The following terms were included in the search:

“in vitro” AND “thyroid cancer”. The search period was confined from January 2008 until

June 2019. A manual search of the references of review articles and other key articles

was also performed using Google Scholar.

Evaluation Method: All experimental studies and review articles that explicitly

mentioned the use of in vitromodels for thyroid cancer research in the title and/or abstract

were considered. Full-text versions of all selected articles were evaluated. Experimental

studies were reviewed and grouped according to topic: genetics/epigenetics, drug

testing/cancer treatment, and side populations (SP)/tumor microenvironment (TME).

Results: Three thousand three hundred and seventy three articles were identified

through database and manual searches. One thousand two hundred and sixteen

articles remained after duplicates were removed. Five hundred and eighty nine articles

were excluded based on title and/or abstract. Of the remaining 627 full-text articles:
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24 were review articles, 332 related to genetic/epigenetics, 240 related to drug

testing/treatments, and 31 related to SP/TME.

Conclusion: In vitro cell culture models have been fundamental in thyroid cancer

research. There have been many advances in culture techniques- developing complex

cellular architecture that more closely resemble tumors in vivo. Genetic and epigenetic

factors that have been identified using in vitro culture models can be used as targets for

novel drug therapies. In the future, in vitro systems will facilitate personalized medicine,

offering bespoke treatments to patients.

Keywords: thyroid cancer, in vitro, thyrocyte, organoids, epigenetics, drugs, cancer stem cells

INTRODUCTION

Thyroid cancers are the most common endocrine malignancies
worldwide (1). In most developed countries the incidence of
thyroid cancer has been steadily rising, partially attributed to
an increased diagnosis of subclinical papillary micro-carcinomas
(2). Despite its prevalence, the overall mortality rate of thyroid
cancer has remained low (0.5 per 100,000 patients) (3). Surgery
followed by radioactive-iodine (RAI) therapy continue to be
the first line treatment modalities for thyroid cancer. Overall
survival rates following primary treatment are high (>98% 5-year
survival), however, for the 1–2% of patients with aggressive forms
of the disease or the 5–10% of patients with distant metastases,
the prognosis is far worse (4).

Thyroid cancer research is focused on improving our
understanding of the biological mechanisms that initiate and
propagate the disease in the hope of refining diagnoses and
formulating bespoke treatments to improve patient outcomes.
An essential foundation of this research is the use of in vitro
experimental models. In the simplest terms, an in vitro culture
model is comprised of a vessel (e.g., dish, plate, or well)
containing a culture medium to support and maintain cells
outside of the body for experimental purposes. Culture models
have evolved from growing homogenous cell populations in
a 2-dimensional (2D) monolayer into complex 3-dimensional
(3D) heterogeneous multicellular structures that resemble tissues
in vivo. Cells used in these models can be derived from
immortalized cell lines, pluripotent stem cells or ex-vivo
human tissue. Individual patients’ explanted thyroid tissue can
be maintained in vitro for several days using microfluidic
technology, an advancement which will open the gateway for
personalized cancer medicine (5). This review summarizes how
in vitro culture models have evolved and how they have been
applied to thyroid cancer research.

METHODS

Search Strategy
The National Institute for Health and Care Excellence (NICE)
Healthcare and Databases Advanced Search (HDAS) tool was
used to search EMBASE, Medline and PubMed databases. The
following terms were included in the search: “in vitro” and
“thyroid cancer”. The search period was confined from January

2008 until June 2019. A manual search of the references of
review articles and other key articles was also performed using
Google Scholar.

Article Selection
All experimental studies and review articles that explicitly
mentioned the use of in vitro models for thyroid cancer
research in the title and/or abstract were considered (Figure 1).
Full-text versions of all selected articles were evaluated.
Experimental studies were reviewed and grouped according
to topic: genetics/epigenetics, drug testing/cancer treatment
and side populations (SP)/tumor microenvironment (TME;
Figure 2).

THE EVOLUTION OF CELL CULTURE
MODELS

2D vs. 3D
There are two basic systems for growing cells in culture, as a
single layer of cells on an artificial substrate (adherent culture)
or free-floating in the culture medium (suspension culture).
Thyrocyte 2D monolayer culture systems have been used since
the late 1950s (6). Their main limitation is that thyrocytes are
unable to arrange themselves into their normal physiological
follicular structures when cultured on adherent plates in standard
culture medium (7). Instead, thyrocytes are arranged into a
continuous epithelial sheet, with the apical aspect of the cell
facing the culture medium above and the basal aspect facing the
surface of the dish (Figure 3).

When thyrocytes are suspended in non-adherent vessels
containing culture medium, they arrange themselves into a
follicular structure (Figure 4A). However, the orientation of
the cells is such that the apical aspect with microvilli are
facing outwards in contact with the culture medium (7)
(Figure 4B), thus creating an “inside-out” follicle. If these inside-
out follicles are then embedded into a 3D substrate emulating
thyroid extracellular matrix (ECM; e.g., type 1 collagen gel)
the cellular polarity inverts with the microvilli facing inwards
toward the follicular lumen, creating a true physiological thyroid
follicle (Figure 4C). This leads to the conclusion that thyroid
folliculogenesis is dependent on the presence of ECM.

Such collagen gel cultures were developed in the 1970s
to enable reconstruction of thyroid follicles in vitro (8).
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FIGURE 1 | Flowchart of article selection based on PRISMA guidelines.

These 3D culture systems have not only allowed study
of thyroid folliculogenesis but also thyroid function under
stimulation by factors such as thyroid stimulating hormone
(TSH) and iodine, as well as interactions between thyrocytes and
the ECM (9).

By replicating the in vivo thyroid cellular structure,
3D cell culture systems allow researchers to study the
complex spatial morphology that facilitates cell-cell and
cell-matrix interactions and signaling—a huge advantage
over 2D monolayer culture systems (10). Advances in
cell biology, microfabrication and tissue engineering have
facilitated development of a wide range of 3D cell culture
techniques including spheroids, organoids and microfluidic
systems (11).

Spheroids
One of the most common 3D culture models used in thyroid
cancer research today is the multicellular spheroid. Spheroids are
cellular aggregates consisting of several thousand phenotypically
distinct cells. A technique for developing spheroids was
pioneered by Sutherland et al. in the early 1970s for testing
the response of radiation exposure on tumor cell lines (12).
The resulting dose response curves were similar to those
produced when irradiating ex-vivo solid animal tumors. Since
then, several techniques to create spheroids have been established
including hanging drop plates, low-adhesion surface methods,
and suspension culture in bioreactors which drive cells to self-
aggregate under dynamic conditions (Figure 5). Spheroids can be
grown to a variety of sizes, depending on the needs of the study
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FIGURE 2 | Number of articles relating to thyroid cancer research involving in vitro culture systems published from 2008 to 2018 (as per HDAS search on 19 January

2019). SP, side populations; TME, tumor microenvironment.

FIGURE 3 | A schema of thyrocytes in a 2D monolayer culture system.

FIGURE 4 | (A) Dissociated thyrocytes placed in suspension culture, (B) “inside-out” follicles form after 2 days, (C) physiologically oriented follicles form when

embedded in ECM substrate (e.g., type 1 collagen). DMEM, Dulbecco’s modified eagle’s medium.
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FIGURE 5 | Three examples of spheroid formation techniques. (A) Cells suspended in droplets attached to hanging drop plates (B) Ultra-low attachment (ULA) plates

prevent cells from adhering to the surface of the wells forcing them to aggregate and form spheroids, (C) cells suspended in a spinner flask are stirred by an element

producing large yields of spheroids.

FIGURE 6 | Schematic of cellular strata within a spheroid.

(13). As well as thyrocytes, these models have been developed to
include co-culture with immune cells such as macrophages (14)
and neutrophils (15).

The aggregate structure of 3D spheroids supersedes 2D
monolayers in terms of their ability to reproduce the cellular
heterogeneity of tumors in vivo. Depending on the size of
the spheroid, the structure usually consists of an outer layer

of proliferating cells, a middle layer of quiescent cells and a
central core of necrotic cells caused by a nutrient and oxygen
diffusion gradient (Figure 6). This structural heterogeneity
is important to consider when spheroids are used to test
drug sensitivity.

Despite their many advantages, spheroids do present some
practical challenges. Firstly, it can be difficult establishing
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spheroids from a small seed number of cells. Also, controlling
proliferation, specific ratios of various co-cultured cell types
and maintaining spheroids of a uniform size is not always
achievable (16). This leads to issues with standardizing
culture and assay protocols as well as evaluating output
data (17). Currently there is no reliable, standardized high-
throughput assay that allows spheroid use for drug screening.
Furthermore, despite having the ability to co-culture thyroid
cancer cells with select immune cells, spheroids do not entirely
mimic the TME in terms of representing all the cell types
present in vivo.

Organoids
Organoids are 3D in vitro cellular structures derived from
either embryonic stem cells (ESC), induced pluripotent
stem cells (iPSC), organ-specific adult stem cells (ACS), or
primary cancer cells (18) (Figure 7). Organoids are defined
by three characteristics: self-organization, multicellularity, and
functionality (19). The constituent cells of an organoid are
arranged into a 3D structure characteristic of the organ in vivo.
They generally contain all the cell types found within that organ
and execute the same functions they would normally carry out.

Novel culture systems containing laminin-rich Matrigel as a
substitute for ECM and growth factors including EGF, Noggin,
Wnt, and R-spondin allow the development of organoids from
stem cells (20). The in vitro process utilizes the defining
characteristics of stem cells: namely, the clonal expansion
capacity and production of daughter cells that can differentiate
into multiple cell types (21). It then relies on cell-cell and cell-
matrix interaction and signaling to form the organoid structure.

Organoids have been applied to understand stem cell biology,
organogenesis and pathogenesis of various diseases (10, 18,
20–26). Organoids have huge potential for modeling cancer
and many organoid systems such as breast (27), colorectal
(28), and prostate (29) have already been established in
experimental studies. In 2018, Saito et al., established a thyroid
organoid culture system from murine stem cells (25). These
organoids successfully functioned as thyroid tissue, producing
thyroglobulin and thyroid hormone (T3) when exposed to
thyroid stimulating hormone (TSH). After p53 knockout,
these organoids were xenografted into recipient mice which
subsequently developed poorly differentiated thyroid cancer.
Presently this is the only published study that has established a
thyroid organoid as a novel experimental model.

Although organoids closely represent the cellular
structure and function of in vivo tissues, there are still
limitations—they often only demonstrate the initial stages
of organogenesis/tumorigenesis, they lack the full range of cells
that exist in the TME, and they do not develop tissue support
structures such as a vascular or neuronal network (11).

Microfluidic Systems
Microfluidic systems (MFS) are devices that maintain and
analyze small ex-vivo tissue samples or 3D cultured cells in
a pseudo-in vivo state (30). The basic design is made up of
a “chip” which houses the tissue sample connected to inlet
and outlet tubing for circulating fluids. MFS mimic the human

body’s vasculature and lymphatics through continuous perfusion
of nutrients via micro-volumes of fluid while simultaneously
removing waste products. A significant advantage of maintaining
tissue in these devices is that the cells remain viable and
maintain tissue architecture for longer periods (3-7 days) than
conventional in vitro culture systems (31).

MFS have been used to interrogate numerous types of cancer
such as breast (32), lung (33), head, and neck squamous cell
carcinoma (31), and only very recently thyroid cancer (5). These
devices offer the ability to test drugs and RAI sensitivity of
individual thyroid tumors to potentially customize/personalize
therapeutic regimes.

RECENT APPLICATION OF IN VITRO

CULTURE SYSTEMS IN THYROID CANCER
RESEARCH

Genetics and Epigenetics
In the past ten years there have been over 300 published papers
utilizing in vitromodels to study the molecular biology of thyroid
cancer. Mutations of genes such as RET, BRAF and RAS are
widely recognized as contributing to thyroid carcinogenesis (34).
These mutations lead to uncontrolled cellular proliferation, de-
differentiation and metastasis through signaling pathways such
as mitogen-activated protein kinase (MAPK), phosphoinositide
3-kinase (PI3K)/Akt, andWnt/β-catenin (35). Epigenetic factors,
including messenger RNA (mRNA), micro RNA (miRNA)
and long non-coding RNA (lncRNA), control gene expression
through mechanisms such as DNA methylation and histone
modification. Epigenetic factors can be over-expressed or under-
expressed in thyroid cancers and activate the same signaling
pathways mentioned above (Table 1).

An important feature of these epigenetic studies is the
ability to reverse the effects on gene expression and observe
phenotypic characteristics of the cells. The general experimental
methodology described in the studies begins with collection of
human thyroid cancer specimens taken at the time of surgery and
extraction of the messenger RNA. Real-time polymerase chain
reaction (RT-PCR) is then performed on both the malignant
and adjacent healthy thyroid tissue to compare the epigenetic
profiles. Following this, established thyroid cancer cell lines
are manipulated to replicate the particular expression profile
identified in the human tissue samples. These cell lines are
then cultured in vitro as monolayers and/or spheroids to
examine phenotypic characteristics such as proliferation (e.g.,
Ki67 staining), cell viability and apoptosis (e.g., TUNEL assay),
migration and invasion (e.g., wound-closure and Transwell
chamber assays).

The study of cell migration in thyroid cancer research is
essential as metastatic dissemination is a significant prognostic
factor. For 2D monolayer culture systems, the wound-closure
and the transwell migration/invasion assays are widely used.
These assays can be applied to study the migratory ability of a
whole cell mass but also an individual cell’s morphology (122–
125). Thyroid cancers that are known to have an aggressive
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FIGURE 7 | Organoid development from stem cells, primary tissue, and cancer cell.

phenotype can be studied for morphological features such asb
invadopodia (126).

Alternatively, thyroid cancer cells can be completely
immersed into a 3D matrix—either as a single cell suspension

or more commonly as a spheroid (122, 125). This allows cells to
migrate away from the tumormass in any direction. The extent of
migration/invasion is monitored at set intervals over the course
of several days. This technique offers the benefit of performing
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TABLE 1 | Studies related to genetics and epigenetics in thyroid cancer research published from Jan 2018—Jun 2019 (as per HDAS search on 19 July 2019).

Publication title References Models used

Estrogen receptor B upregulated by IncRNA-H19 to promote cancer stem-like properties in papillary thyroid carcinoma (36) 2D, spheroids

and PDX*

MicroRNA-125b Interacts with Foxp3 to Induce Autophagy in Thyroid Cancer (37) 2D

Long non-coding RNA UCA1 promotes papillary thyroid cancer cell proliferation via miR-204-mediated BRD4 activation (38) 2D and PDX

MiR-26a inhibits thyroid cancer cell proliferation by targeting ARPP19 (39) 2D and PDX

Long Noncoding RNA LINC003121 Inhibits Proliferation and Invasion of Thyroid Cancer Cells by Suppression of the

Phosphatidylinositol-3-Kinase (PI3K)/Akt Signaling Pathway

(40) 2D

Long Non-coding Antisense RNA TNRC6C-AS1 Is Activated in Papillary Thyroid Cancer and Promotes Cancer Progression

by Suppressing TNRC6C Expression

(41) 2D

miR-214 regulates papillary thyroid carcinoma cell proliferation and metastasis by targeting PSMD10 (42) 2D

DNA copy number gain-mediated lncRNA LINC01061 upregulation predicts poor prognosis and promotes papillary thyroid

cancer progression

(43) 2D and PDX

Upregulated hsa_circ_0004458 Contributes to Progression of Papillary Thyroid Carcinoma by Inhibition of miR-885-5p and

Activation of RAC1

(44) 2D and PDX

UHRF1 suppression promotes cell differentiation and reduces inflammatory reaction in anaplastic thyroid cancer (45) 2D, spheroids

and PDX

Long noncoding RNA UCA1 promotes anaplastic thyroid cancer cell proliferation via miR-135a-mediated c-myc activation (46) 2D and PDX

miR-329 inhibits papillary thyroid cancer progression via direct targeting WNT1 (47) 2D and PDX

miR-129 regulates growth and invasion by targeting MAL2 in papillary thyroid carcinoma (48) 2D and PDX

miR-218 overexpression suppresses tumorigenesis of papillary thyroid cancer via inactivation of PTEN/PI3K/AKT pathway

by targeting Runx2

(49) 2D and PDX

UCA1 promotes papillary thyroid carcinoma development by stimulating cell proliferation via Wnt pathway (50) 2D

SDC4 Gene Silencing Favors Human Papillary Thyroid Carcinoma Cell Apoptosis and Inhibits Epithelial Mesenchymal

Transition via Wnt/β-Catenin Pathway

(51) 2D

c-Myc Is a Major Determinant for Antitumor Activity of Aurora A Kinase Inhibitor MLN8237 in Thyroid Cancer (52) 2D

CircNUP214 sponges miR-145 to promote the expression of ZEB2 in thyroid cancer cells (53) 2D and PDX

CLDN10 is Associated with Papillary Thyroid Cancer Progression (54) 2D

LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT

signaling

(55) 2D and PDX

CITED1 promotes proliferation of papillary thyroid cancer cells via the regulation of p21 and p27 (56) 2D and PDX

Long Noncoding RNA HOXA-AS2 Promotes Papillary Thyroid Cancer Progression by Regulating miR-520c-3p/S100A4

Pathway

(57) 2D and PDX

KLF5 promotes the tumorigenesis and metastatic potential of thyroid cancer cells through the NF-κB signaling pathway (58) 2D and PDX

TEKT4 Promotes Papillary Thyroid Cancer Cell Proliferation, Colony Formation, and Metastasis through Activating PI3K/Akt

Pathway

(59) 2D

Downregulation of MiR-431 expression associated with lymph node metastasis and promotes cell invasion in papillary

thyroid carcinoma

(60) 2D

Long noncoding RNA LINC00313 modulates papillary thyroid cancer tumorigenesis via sponging miR-4429 (61) 2D

Long non-coding RNA BANCR regulates cancer stem cell markers in papillary thyroid cancer via the RAF/MEK/ERK

signaling pathway

(62) 2D, spheroids

and PDX

LRP4 promotes proliferation, migration, and invasion in papillary thyroid cancer (63) 2D

MicroRNA-222 Promotes Invasion and Metastasis of Papillary Thyroid Cancer Through Targeting Protein Phosphatase 2

Regulatory Subunit B Alpha Expression

(64) 2D and PDX

Circular RNA circZFR contributes to papillary thyroid cancer cell proliferation and invasion by sponging miR-1261 and

facilitating C8orf4 expression

(65) 2D

Long noncoding RNA PVT1 enhances the viability and invasion of papillary thyroid carcinoma cells by functioning as ceRNA

of microRNA-30a through mediating expression of insulin like growth factor 1 receptor

(66) 2D

Inhibitory roles of miR-9 on papillary thyroid cancer through targeting BRAF (67) 2D and PDX

Steroid receptor coactivator-1 interacts with NF-κB to increase VEGFC levels in human thyroid cancer (68) 2D and PDX

MicroRNA-361-5p inhibits papillary thyroid carcinoma progression by targeting ROCK1 (69) 2D and PDX

INAVA promotes aggressiveness of papillary thyroid cancer by upregulating MMP9 expression (70) 2D and PDX

LncRNA SNHG12 promotes the proliferation and metastasis of papillary thyroid carcinoma cells through regulating

wnt/β-catenin signaling pathway

(71) 2D and PDX

LARP7 in papillary thyroid carcinoma induces NIS expression through suppression of the SHH signaling pathway (72) 2D

(Continued)
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TABLE 1 | Continued

Publication title References Models used

miR-622 suppresses tumor formation by directly targeting VEGFA in papillary thyroid carcinoma (73) 2D and PDX

Epigenetic Modifications in Thyroid Cancer Cells Restore NIS and Radio-Iodine Uptake and Promote Cell Death (74) 2D

NEAT1_2 functions as a competing endogenous RNA to regulate ATAD2 expression by sponging microRNA-106b-5p in

papillary thyroid cancer

(75) 2D

Histone methyltransferase KMT5A gene modulates oncogenesis and lipid metabolism of papillary thyroid cancer in vitro (76) 2D

TBX3 promotes proliferation of papillary thyroid carcinoma cells through facilitating PRC2-mediated p57KIP2 repression (77) 2D and PDX

Effects of miR-144 on the sensitivity of human anaplastic thyroid carcinoma cells to cisplatin by autophagy regulation (78) 2D and PDX

Src-mediated regulation of the PI3K pathway in advanced papillary and anaplastic thyroid cancer (79) 2D

Long non-coding RNA CCAL promotes papillary thyroid cancer progression by activation of NOTCH1 pathway (80) 2D and PDX

Long glucocorticoid-induced leucine zipper regulates human thyroid cancer cell proliferation (81) 2D and PDX

A dual mechanism of activation of the Sonic Hedgehog pathway in anaplastic thyroid cancer: crosstalk with

RAS-BRAF-MEK pathway and ligand secretion by tumor stroma

(82) 2D and

spheroids

Downregulation of CSN6 attenuates papillary thyroid carcinoma progression by reducing Wnt/β-catenin signaling and

sensitizes cancer cells to FH535 therapy

(83) 2D and PDX

Long noncoding RNA NEAT1 regulate papillary thyroid cancer progression by modulating miR-129-5p/KLK7 expression (84) 2D and PDX

VASN promotes YAP/TAZ and EMT pathway in thyroid carcinogenesis in vitro (85) 2D

Knockdown of KDM1A suppresses tumor migration and invasion by epigenetically regulating the TIMP1/MMP9 pathway in

papillary thyroid cancer

(86) 2D and PDX

Knockdown of long noncoding RNA SNHG7 inhibits the proliferation and promotes apoptosis of thyroid cancer cells by

downregulating BDNF

(87) 2D

IGFBP7 inhibits cell proliferation by suppressing AKT activity and cell cycle progression in thyroid carcinoma (88) 2D and PDX

AXL Is a Novel Predictive Factor and Therapeutic Target for Radioactive Iodine Refractory Thyroid Cancer (89) 2D

Methylglyoxal Acts as a Tumor-Promoting Factor in Anaplastic Thyroid Cancer (90) 2D

Functional analysis and clinical significance of the isocitrate dehydrogenase 2 gene in papillary thyroid carcinoma (91) 2D

NECTIN4 promotes papillary thyroid cancer cell proliferation, migration, and invasion and triggers EMT by activating AKT (92) 2D

TFAP2B overexpression contributes to tumor growth and progression of thyroid cancer through the COX-2 signaling

pathway

(93) 2D and PDX

Down-regulated HSDL2 expression suppresses cell proliferation and promotes apoptosis in papillary thyroid carcinoma (94) 2D and PDX

Mortalin (GRP75/HSPA9) Promotes Survival and Proliferation of Thyroid Carcinoma Cells (95) 2D

LncRNA FOXD2-AS1 Functions as a Competing Endogenous RNA to Regulate TERT Expression by Sponging miR-7-5p in

Thyroid Cancer

(96) 2D, spheroids

and PDX

Interaction of BRAF-induced ETS factors with mutant TERT promoter in papillary thyroid cancer (97) 2D and

spheroids

Role of phospho–ezrin in differentiating thyroid carcinoma (98) 2D

Low metallothionein 1M (MT1M) is associated with thyroid cancer cell lines progression (99) 2D

MiR-758-3p regulates papillary thyroid cancer cell proliferation and migration by targeting TAB1 (100) 2D

RET Kinase-Regulated MicroRNA-153-3p Improves Therapeutic Efficacy in Medullary Thyroid Carcinoma (101) 2D and PDX

Identification and characterization of two novel oncogenic mTOR mutations (102) 2D and PDX

The Highly Expressed FAM83F Protein in Papillary Thyroid Cancer Exerts a Pro-Oncogenic Role in Thyroid Follicular Cells (103) 2D and PDX

High expression of NUCB2 promotes papillary thyroid cancer cells proliferation and invasion (104) 2D and PDX

miR-215 suppresses papillary thyroid cancer proliferation, migration, and invasion through the AKT/GSK-3β/Snail signaling

by targeting ARFGEF1

(105) 2D and PDX

circRAPGEF5 Contributes to Papillary Thyroid Proliferation and Metastatis by Regulation miR-198/FGFR1 (106) 2D and PDX

Loss of MADD expression inhibits cellular growth and metastasis in anaplastic thyroid cancer (107) 2D and PDX

Dual Oncogenic/Anti-Oncogenic Role of PATZ1 in FRTL5 Rat Thyroid Cells Transformed by the Ha-RasV12 Oncogene (108) 2D, spheroids

and PDX

STAT3-induced upregulation of lncRNA ABHD11-AS1 promotes tumor progression in papillary thyroid carcinoma by

regulating miR-1301-3p/STAT3 axis and PI3K/AKT signaling pathway

(109) 2D and PDX

SNHG15 functions as a tumor suppressor in thyroid cancer (110) 2D

A Toxicogenomic Approach Reveals a Novel Gene Regulatory Network Active in in vitro and in vivo Models of Thyroid

Carcinogenesis

(111) 2D and PDX

Downregulation of NEAT1 reverses the radioactive iodine resistance of papillary thyroid carcinoma cell via

miR-101-3p/FN1/PI3K-AKT signaling pathway

(112) 2D and PDX

(Continued)

Frontiers in Surgery | www.frontiersin.org 9 July 2020 | Volume 7 | Article 43

https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org
https://www.frontiersin.org/journals/surgery#articles


Chew et al. Thyroid Cancer in vitro Models

TABLE 1 | Continued

Publication title References Models used

Silencing of lncRNA LINC00514 inhibits the malignant behaviors of papillary thyroid cancer through miR-204-3p/CDC23

axis

(113) 2D and PDX

MicroRNA-1270 modulates papillary thyroid cancer cell development by regulating SCAI (114) 2D and PDX

TBX1 Functions as a Tumor Suppressor in Thyroid Cancer Through Inhibiting the Activities of the PI3K/AKT and MAPK/ERK

Pathways

(115) 2D and PDX

MicroRNA-146b-5p as an oncomiR promotes papillary thyroid carcinoma development by targeting CCDC6 (116) 2D and PDX

KAT5 promotes invasion and metastasis through C-MYC stabilization in ATC (117) 2D and PDX

MicroRNA-766 inhibits papillary thyroid cancer progression by directly targeting insulin receptor substrate 2 and regulating

the PI3K/Akt pathway

(118) 2D and PDX

HOXD-AS1 is a predictor of clinical progression and functions as an oncogenic lncRNAs in papillary thyroid cancer (119) 2D

MiR-141-3p Suppresses Tumor Growth and Metastasis in Papillary Thyroid Cancer via Targeting Yin Yang 1 (120) 2D and PDX

Long non-coding RNA LINC00152 promotes cell growth and invasion of papillary thyroid carcinoma by regulating the

miR-497/BDNF axis

(121) 2D and PDX

*PDX, patient derived xenografts, in vivo models implanting human cancer cells into immunodeficient mice.

the assay without having to re-plate the cells, as well as more
closely simulating cell migration from a tumor mass in vivo. The
oxygen and nutrient diffusion gradient present within a spheroid
structure can promote migration and invasion through changes
in gene expression—not present in 2D culture models. The
effect of co-cultured cells such as macrophages on migration and
invasion of thyroid cancer cells has also been explored as these
immune cells have roles in epithelial-mesenchymal transition
and subsequent tumor progression (14, 15). These assays are
also applied in research studies testing the cytotoxic effects of
chemotherapy agents.

Although no single genetic/epigenetic change has been
reported, in all cases of thyroid cancer there are common
signaling pathways which are affected. The epigenetic factors
examined in the studies listed in Table 1 were shown to have
either tumor suppressive or oncogenic effects via these pathways.
Suppression of the PI3K/Akt pathway through silencing of
TEKT4 (59), lncRNA XIST (55), miRNA-222 (64), LRP4 (63),
and NECTIN 4 (92) led to reduced cellular proliferation and
migration. Similarly, PI3K/Akt suppression and subsequent
reduced tumorigenesis was achieved by up-regulating LncRNA-
LINC003121 (40), miRNA-218 (49), miRNA-34a (55), and
IGFBP7 (88). Up-regulation of miRNA-153-3p (101) and
silencing of lncRNA-BANCR (62), TERT (97), and FAM83F
(103) led to suppression of the MAPK/ERK pathway resulting
in reduced cell proliferation and increased apoptosis. Silencing
oncogenes SDC4 (51), lncRNA-UCA1 (46), lncRNA-SNHG12
(71), CSN6 (83) led to decreased proliferation and invasion,
and increased apoptosis through inhibition of Wnt/b-catenin
pathway, whereas up-regulating miRNA-329 (47) demonstrated
the same effect.

The conclusion is that epigenetic molecules have the potential
to be used as biomarkers as well as targets for drug therapy. The
observation that thyroid cancer progression is associated with an
accumulation of epigenetic changes has led to the development
of drug treatments targeting these pathways such as multi-
targeted tyrosine kinase inhibitors (TKIs), demethylating agents
and histone deacetylase inhibitors (HDACi).

Drug Testing
Drug attrition rates for cancer are much higher than in other
therapeutic areas. Only 5% of agents that have anticancer
activity in preclinical development demonstrate a sufficient
efficacy in phase III testing (127). Although surgery and RAI
therapy are primary therapeutic modalities for all subtypes of
thyroid cancer, targeted drug therapies such as the tyrosine
kinase inhibitors (TKIs) vemurafenib, sunitinib and lenvatinib
are available for those patients with either rapidly progressing,
recurrent or RAI-resistant thyroid cancers (128). Recent studies
using in vitromodels have focused on testing drug combinations
to enhance tumor sensitivity to established chemotherapy agents,
as well as testing novel anticancer agents and drug delivery
systems (Table 2).

Nanontechnology, and more specifically manufacture of
nanoparticles for drug formulation and delivery has been a
promising area of research. Drug products that contain proteins
or nucleic acids are susceptible to pharmacokinetic degradation.
Nanoparticles can be customized for targeted delivery of drugs
to improve bioavailability and provide controlled release of
medication (167). For thyroid cancers, nanoparticles have been
used to deliver sorafenib (149), anti-hTERT siRNA (150),
capsacin for use in photothermal therapy (156), and I131

labeled anti-VEGFR2 antibodies for targeted drug delivery and
have shown promising results in both in vitro and in vivo
cancer models.

As with the epigenetic studies, most drug studies utilize
a combination of primary human thyroid cancer cells and
established cell lines. Cells are cultured in monolayers and
spheroids and exposed to incremental drug levels to observe cell
survival and apoptosis. Thyroid cancer cells are also injected into
animal models (patient derived xenografts—PDX) and treated
with drugs to validate in vitro findings.

3D culture models are emerging as improved experimental
models for preclinical target identification. Although spheroids
more closely resemble the tumor in vivo, there is currently no
commercially available standardized high-throughput assay for
drug screening. Earlier studies by Li et al. (168), Guiffrida et al.
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TABLE 2 | Studies related to targeted drug testing in thyroid cancer research published from Jan 2018 to Jun 2019 (as per HDAS search on 19 July 2019).

Publication title References Models used

Precision Targeted Therapy with BLU-667 for RET -Driven Cancers (129) 2D and PDX

The mTOR Kinase Inhibitor CZ415 Inhibits Human Papillary Thyroid Carcinoma Cell Growth (130) 2D and PDX

Triple action Pt(iv) derivatives of cisplatin: a new class of potent anticancer agents that overcome resistance (131) 2D, spheroids

and PDX

Targeting of the Cholecystokinin-2 Receptor with the Minigastrin Analog 177Lu-DOTA-PP-F11N: Does the Use of Protease Inhibitors

Further Improve in vivo Distribution?

(132) 2D

Recombinant oncolytic Newcastle disease virus displays antitumor activities in anaplastic thyroid cancer cells (133) 2D, spheroid

and PDX

The Synergistic Effects of Celecoxib and Sodium Valproate on Apoptosis and Invasiveness Behavior of Papillary Thyroid Cancer Cell

Line in-vitro

(134) 2D

Metformin Targets Mitochondrial Glycerophosphate Dehydrogenase to Control Rate of Oxidative Phosphorylation and Growth of

Thyroid Cancer in vitro and in vivo

(135) 2D and PDX

Selective RET kinase inhibition for patients with RET-altered cancers (136) 2D and PDX

Potential of the dual mTOR kinase inhibitor AZD2014 to overcome paclitaxel resistance in anaplastic thyroid carcinoma (137) 2D, spheroid

and PDX

Heme Oxygenase-1 Inhibitors Induce Cell Cycle Arrest and Suppress Tumor Growth in Thyroid Cancer Cells (138) 2D and PDX

Combined effects of octreotide and cisplatin on the proliferation of side population cells from anaplastic thyroid cancer cell lines (139) 2D and PDX

The LAT1 inhibitor JPH203 reduces growth of thyroid carcinoma in a fully immunocompetent mouse model (140) 2D and PDX

Synergistic effects of BET and MEK inhibitors promote regression of anaplastic thyroid tumors (141) 2D and PDX

Apatinib-induced protective autophagy and apoptosis through the AKT–mTOR pathway in anaplastic thyroid cancer (142) 2D and PDX

SoLAT (Sorafenib Lenvatinib alternating treatment): a new treatment protocol with alternating Sorafenib and Lenvatinib for refractory

thyroid Cancer

(143) 2D and PDX

S100A4 Knockout Sensitizes Anaplastic Thyroid Carcinoma Cells Harboring BRAF V600E/Mt to Vemurafenib (144) 2D and PDX

Lestaurtinib is a potent inhibitor of anaplastic thyroid cancer cell line models (145) 2D and PDX

Computational modeling reveals MAP3K8 as mediator of resistance to vemurafenib in thyroid cancer stem cells (146) 2D and

spheroids

Emodin suppresses angiogenesis and metastasis in anaplastic thyroid cancer by affecting TRAF6-mediated pathways in vivo and

in vitro

(147) 2D and PDX

PI3K blockage synergizes with PLK1 inhibition preventing endoreduplication and enhancing apoptosis in anaplastic thyroid cancer (148) 2D and PDX

Transferrin receptor-targeted HMSN for sorafenib delivery in refractory differentiated thyroid cancer therapy (149) 2D and PDX

Anti-hTERT siRNA-Loaded Nanoparticles Block the Growth of Anaplastic Thyroid Cancer Xenograft (150) 2D and PDX

Melatonin suppresses thyroid cancer growth and overcomes radioresistance via inhibition of p65 phosphorylation and induction of

ROS

(151) 2D and PDX

Vandetanib has antineoplastic activity in anaplastic thyroid cancer, in vitro and in vivo (152) 2D and PDX

Lenvatinib exhibits antineoplastic activity in anaplastic thyroid cancer in vitro and in vivo (153) 2D and PDX

Dual effects for lovastatin in anaplastic thyroid cancer: the pivotal effect of transketolase (TKT) on lovastatin and tumor proliferation (154) 2D

In vitro Antitumor Activity of Aloperine on Human Thyroid Cancer Cells through Caspase-Dependent Apoptosis (155) 2D

Epigenetic Modifications in Thyroid Cancer Cells Restore NIS and Radio-Iodine Uptake and Promote Cell Death (74) 2D

Novel design of NIR-triggered plasmonic nanodots capped mesoporous silica nanoparticles loaded with natural capsaicin to

inhibition of metastasis of human papillary thyroid carcinoma B-CPAP cells in thyroid cancer chemo-photothermal therapy

(156) 2D

Inhibition of mitochondrial respiration by tigecycline selectively targets thyroid carcinoma and increases chemosensitivity (157) 2D and PDX

Targeting PLKs as a therapeutic approach to well-differentiated thyroid cancer (158) 2D and PDX

Transcript-level regulation of MALAT1-mediated cell cycle and apoptosis genes using dual MEK/Aurora kinase inhibitor “BI-847325”

on anaplastic thyroid carcinoma

(159) 2D and

spheroid

Effect of Nifuroxazide on Proliferation, Migration, and Invasion of Thyroid Papillary Carcinoma Cells (160) 2D

Antitumor Effect of 131 I-Labeled Anti-VEGFR2 Targeted Mesoporous Silica Nanoparticles in Anaplastic Thyroid Cancer (161) 2D and PDX

MAPK Inhibitors Enhance HDAC Inhibitor-Induced Redifferentiation in Papillary Thyroid Cancer Cells Harboring BRAF V600E: An

in vitro Study

(162) 2D

Evaluation of preclinical efficacy of everolimus and pasireotide in thyroid cancer cell lines and xenograft models (163) 2D and PDX

Propofol suppresses proliferation and migration of papillary thyroid cancer cells by down-regulation of lncRNA ANRIL (164) 2D

Discovery of Potent, Selective, and Orally Bioavailable Estrogen-Related Receptor-γ Inverse Agonists To Restore the Sodium Iodide

Symporter Function in Anaplastic Thyroid Cancer

(165) 2D

Antitumor effects of anlotinib in thyroid cancer (166) 2D and PDX
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(169), Hardin et al. (170) compared drug sensitivities on various
types of thyroid cancer grown in 2D and 3D culture systems.
They all observed that drug resistance was much higher in cells
that formed spheroids than in monolayers. These findings have
been attributed to the diffusion dynamics seen in spheroids as
well as the discovery of side populations of cells within tumors
that demonstrate stem cell-like properties.

Cancer Stem Cells
Cancer stem cell (CSC) theory challenges the classical model of
carcinogenesis (where any cell in an organ has the potential to
transform through gene mutations) following the discovery of
distinct populations of pluripotent tumor stem-like cells within
solid tumors (171). In thyroid cancer, small populations of cells
within a tumor have displayed distinct CD surface antigens and
gene expression (e.g., Oct 3 and 4, Nanog) that are known to
be associated with stem cells identified in other forms of cancer
(172) (Table 3).

Generally, the studies have used in vitro sphere formation
assays and PDX (using immunedeficient murine models) to
confirm the existence of CSC. In 2007, Mitsutake et al.,
were the first group to identify and characterize a very small
side population of putative thyroid cancer stem cells (CSC;
0.02–0.25% of total number of cells) from thyroid cancer
cell lines (187). The highest percentage of CSC was seen in
anaplastic thyroid cancer cell lines (ATC). The CSC in this
study demonstrated stem-like properties of self-renewal and

differentiation potential as well as altered gene expression profiles
compared with non-CSC cells.

Since then more researchers have used in vitro models
to identify specific tumor markers in thyroid CSC previously
validated in other types of cancer. High levels of Oct-4, SOX-
2, NANOG, and CD44 have been associated with thyroid
CSC (53, 168, 170, 177). Conversely, the cells isolated in
these studies expressed low or completely absent levels of
thyroid-specific differentiation markers such as TTF1, PAX8,
and TSH-R.

When proliferation, migration, and cell survival assays have
been applied to CSC in vitro they have demonstrated increased
metastatic potential and reduced apoptosis (170, 172, 182, 188).
Additionally, they are largely quiescent which allows them to
escape chemotherapy agents that normally target rapidly dividing
cells (169).

CONCLUDING STATEMENT AND FUTURE
PERSPECTIVE

In this review we have established that in vitro cell culture
models have been the workhorse in thyroid cancer research for
decades. There have been many advances in culture techniques-
developing complex cellular architecture that more closely
resemble tumors in vivo.

In vitro culture models have provided researchers with
a reliable platform to study the molecular and cellular

TABLE 3 | Studies related to thyroid cancer stem cells published from 2008 to 2019 (as per HDAS search on 19 July 2019).

Publication title References Models used

In vitro identification and characterization of CD133(pos) cancer stem-like cells in anaplastic thyroid carcinoma cell lines (173) 2D

Medullary Thyroid Carcinoma Cell Lines Contain a Self-Renewing CD133 Population that Is Dependent on Ret Proto-Oncogene

Activity

(174) 2D and spheroids

Tumorigenic and Metastatic Activity of Human Thyroid Cancer Stem Cells (175) 2D, spheroid and PDX

Doxorubicin fails to eradicate cancer stem cells derived from anaplastic thyroid carcinoma cells: characterization of resistant cells (176) 2D and spheroids

Insulin receptor isoforms and insulin-like growth factor receptor in human follicular cell precursors from papillary thyroid cancer

and normal thyroid

(177) 2D and spheroids

Phenotypic Characterization of Metastatic Anaplastic Thyroid Cancer Stem Cells (168) 2D, spheroid and PDX

Detection of Thyroid Cancer Stem Cells in Papillary Thyroid Carcinoma (53) 2D, spheroid and PDX

SNAIL induces epithelial-to-mesenchymal transition and cancer stem cell-like properties in aldehyde dehydroghenase-negative

thyroid cancer cells

(178) 2D, spheroid and PDX

Analysis of multiple markers for cancer stem-like cells in human thyroid carcinoma cell lines (179) 2D and spheroids

Stemness in Human Thyroid Cancers and Derived Cell Lines: The Role of Asymmetrically Dividing Cancer Stem Cells Resistant

to Chemotherapy

(180) 2D and PDX

Thyrospheres From Normal or Malignant Thyroid Tissue Have Different Biological, Functional, and Genetic Features (181) Spheroids

Molecular profiles of cancer stem-like cell populations in aggressive thyroid cancers (182) 2D and spheroids

Resistance of papillary thyroid cancer stem cells to chemotherapy (169) Spheroids

Generation of Novel Thyroid Cancer Stem-Like Cell Clones (170) 2D, spheroid and PDX

Intracellular redox status controls spherogenicity, an in vitro cancer stem cell marker, in thyroid cancer cell lines (183) 2D and spheroids

Thyroid Cancer Stem-Like Cell Exosomes: Regulation of EMT via Transfer of LncRNAs (184) 2D and spheroids

β-catenin nuclear translocation represses thyroid cancer stem cells differentiating into cells with sodium-iodine symporter

functional expression

(185) 2D and PDX

Effect of low-dose tungsten on human thyroid stem/precursor cells and their progeny (186) 2D and spheroid
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biology of thyroid cancer, as well as for testing drugs
prior to human trials. In the future, the promising field
of personalized cancer medicine will establish effective
treatment strategies based on an individual tumor’s genetic
profile and predicted drug response through in vitro
culture techniques.
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