THE LANCET Microbe

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Chan XHS, Haeusler IL, Choy BJK, et al. Therapeutics for Nipah virus disease: a systematic review to support prioritisation of drug candidates for clinical trials. *Lancet Microbe* 2025. https://doi.org/10.1016/j.lanmic.2024.101002

SUPPLEMENTARY APPENDIX

Nipah Virus Therapeutics: A Systematic Review to Support Prioritisation for Clinical Trials

Xin Hui S Chan, Ilsa L Haeusler, Bennett J K Choy, Md Zakiul Hassan, Junko Takata,
Tara P Hurst, Luke M Jones, Shanghavie Loganathan, Elinor Harriss, Jake Dunning,
Joel Tarning, Miles W Carroll, Peter W Horby, Piero L Olliaro

Contents

Supplementary Methods	3
Search Strategies – Bibliographic Databases	3
Search Strategies – Trial Registries	4
Search Strategies – Guidelines and Reports	4
Supplementary Results	5
Additional Text – Included Studies	5
Additional Text – Small Molecules	6
Additional Tables – Included Studies	7
Risk of Bias Assessments – Additional Figures	26
PRISMA 2020 Checklist	28
Table I: Nipah & Hendra Virus Therapeutic Monoclonal Antibodies (Clinical & Animal Studies)	12 17 21
Table V: Nipah & Hendra Virus Therapeutics Animal Challenge Studies by Drug, Viral Challenge Strain Animal Model	•
Figures	
FIGURE I: RISK OF BIAS ASSESSMENT OF RANDOMISED CLINICAL TRIALS BY INDIVIDUAL STUDY	
FIGURE II: SUMMARY RISK OF BIAS ASSESSMENT OF NON-RANDOMISED CLINICAL STUDIES	
FIGURE III: RISK OF BIAS ASSESSMENT OF OBSERVATIONAL STUDIES BY INDIVIDUAL STUDY	
FIGURE IV: SUMMARY RISK OF BIAS ASSESSMENT OF ANIMAL STUDIES	
FIGURE V. DISK OF DIAS ASSESSIVENT OF ANIMAL STUDIES BY INDIVIDUAL STUDY	

SUPPLEMENTARY METHODS

Search Strategies - Bibliographic Databases

PubMed

((("Henipavirus Infections"[Mesh]) OR "Henipavirus"[Mesh]) OR (henipavir*[Text Word] OR nipah*[Text Word] OR hendra*[Text Word])) AND (("Therapeutics"[Mesh]) OR "Antibodies, Monoclonal"[Mesh] OR (treat*[Text Word] OR therap*[Text Word] OR pharmacotherap*[Text Word] OR monoclonal[Text Word]))

Ovid Embase

1974 to present

- 1 exp henipavirus/ (1983)
- 2 Nipah virus infection/ (532)
- 3 Hendra virus infection/ (155)
- 4 (henipavir* or nipah* or hendra*).ti,ab,kw. (2189)
- 5 1 or 2 or 3 or 4 (2707)
- 6 exp therapy/ (11017260)
- 7 exp monoclonal antibody/ (833266)
- 8 (treat* or therap* or pharmacotherap* or monoclonal).ti,ab,kw. (12189953)
- 9 6 or 7 or 8 (17399177)
- 10 5 and 9 (1012)

Ovid CAB Abstracts

1910 to 2024 Week 35

- 1 exp henipavirus/ (1190)
- 2 (henipavir* or nipah* or hendra*).ti,ab. (1263)
- 3 1 or 2 (1336)
- 4 exp therapy/ (321663)
- 5 exp monoclonal antibodies/ (22927)
- 6 (treat* or therap* or pharmacotherap* or monoclonal).ti,ab. (2484479)
- 7 4 or 5 or 6 (2560950)
- 8 3 and 7 (264)

Ovid Global Health

1973 to 2024 Week 35

- 1 exp henipavirus/ (1342)
- 2 (henipavir* or nipah* or hendra*).ti,ab. (1349)
- 3 1 or 2 (1427)
- 4 exp therapy/ (341142)
- 5 exp monoclonal antibodies/ (16580)
- 6 (treat* or therap* or pharmacotherap* or monoclonal).ti,ab. (1263019)
- 7 4 or 5 or 6 (1322277)
- 8 3 and 7 (298)

Scopus

(TITLE-ABS-KEY (henipavir* OR nipah* OR hendra*) AND TITLE-ABS-KEY (treat* OR therap* OR pharmacotherap* OR monoclonal))

Web of Science

henipavir* OR nipah* OR hendra* (Topic) and treat* or therap* or pharmacotherap* or monoclonal (Topic)

WHO Global Index Medicus

(tw:(henipavir* or nipah* or hendra*)) AND (tw:(treat* or therap* or pharmacotherap* or monoclonal))

Search Strategies – Trial Registries

Cochrane Central Register of Controlled Trials

Issue 8 of 12, August 2024

#1 MeSH descriptor: [Henipavirus Infections] explode all trees 6

#2 MeSH descriptor: [Henipavirus] explode all trees 3

#3 (henipavir* or nipah* or hendra*):ti,ab,kw 13

Clinicaltrials.gov

Condition or disease: henipavirus or Hendra or Nipah

WHO International Clinical Trials Registry Platform

https://trialsearch.who.int/AdvSearch.aspx

Title: Nipah or Hendra or henipavirus

Recruitment status is: ALL

Search Strategies - Guidelines and Reports

TRIP Database

https://www.tripdatabase.com/Searchresult?criteria=nipah%20OR%20hendra%20OR%20henipavirus&intervention=treat*%20OR%20therap*%20OR%20monoclonal*%20OR%20pharmacotherapy&comparison=&outcome=&search_type=pico

Population: Nipah or Hendra or henipavirus

Intervention: treat* OR therap* OR monoclonal* OR pharmacotherapy

WHO website

https://www.google.com/search?q=nipah+or+Hendra+or+henipavirus+site%3A.who.int&ei=Vt2UYq ToH5yVhbIPiKegkAs&ved=0ahUKEwik6-

<u>Xyv4f4AhWcSkEAHYgTCLIQ4dUDCA4&uact=5&oq=nipah+or+Hendra+or+henipavirus+site%3A.who.int&gs_lcp=Cgdnd3Mtd2l6EAM6BQghEKABOgQIIRAVSgQIQRgASgQIRhgAULUBWIYdYPgdaAFwAXgAgAGPAYgBjgySAQM4LjeYAQCgAQKgAQHAAQE&sclient=gws-wiz</u>

Nipah or Hendra or henipavirus site:.who.int

SUPPLEMENTARY RESULTS

Additional Text - Included Studies

Clinical

There was only one clinical trial, a first-in-human phase 1 study in healthy volunteers of m102.4¹, a mAb targeting the Hendra virus (HeV) envelope G glycoprotein, conducted in Australia. Of the eight reports of compassionate use for treatment or post-exposure prophylaxis during Hendra or Nipah virus outbreaks, seven were case series of fewer than 10 patients in Australia², India (Kerala)³⁻⁷, and Singapore⁸. The remaining outbreak report was from the two centres where 194 of the 283 cases in the 1998 Malaysia outbreak were treated, the majority with ribavirin⁹.

Two additional records of outbreaks were excluded^{10,11} as the full reports on the same outbreak populations had already been included. Ribavirin was used in six^{2-6,9} outbreak reports, m102.4 in one⁷ single-case outbreak, and empirical treatment with broad-spectrum antimicrobials for central nervous system (ceftriaxone + aciclovir) and respiratory (clarithromycin) infection in the last⁸.

Animal

Of the 26 animal studies, there were nine studies in non-human primates (African green monkeys [AGMs])¹²⁻²⁰, five in ferrets²¹⁻²⁵, and 14 in Syrian golden hamsters^{15,20,26-37}. All except one involved infectious challenge with Nipah and/or Hendra virus (Supplementary Table V). Nipah virus Malaysia (NiV-M) was the most common challenge strain used in 13 studies^{13,20,22,23,25,26,28,30-32,34-36}, followed by nine studies using Nipah virus Bangladesh (NiV-B)^{12,15-18,21,26,27,38} and five HeV^{14,19,22,29,32}.

The non-challenge study was of the pharmacokinetics of m102.4 in healthy ferrets²⁴. All nine drug studies using an NiV-B challenge strain were published in 2016 or later. Two studies had both NiV-M and HeV-infected hamster cohorts treated with the investigational drug^{22,32}. The only drug with data from both NiV-M^{13,23} and NiV-B¹² infected animal cohorts was m102.4, although these were from separate studies using different animal models and inoculation doses. NiV41 and its mature form 41-6 were tested respectively in NiV-B and NiV-M infected hamsters but with different sizes of challenge inoculum²⁶.

Viral inoculum doses were reported as plaque forming units (PFU), median tissue culture infectious dose (TCID₅₀), and median lethal dose (LD₅₀). The respiratory route of inoculation was preferred in monkeys (intratracheal^{12-14,16,17,20} +/- intranasal^{12,15-17}), and ferrets (oronasal^{23,25} or intranasal²²). Monkeys were typically challenged with 10^5 PFU^{12-14,17-19} (although one study used 10^4 PFU¹⁵ and another 10^7 PFU²⁰), and ferrets with 10^3 PFU^{21-23,25}. In hamsters, intraperitoneal^{26,28-32,34-36} (IP) inoculation was employed in addition to the respiratory (intranasal^{20,27,36,38}) route, with a wide range of doses (10^2 - 10^6 PFU) used (Supplementary Table V).

All animal challenge studies reported death, and time of death, as outcome measures. The majority also reported clinical outcomes (all: signs and symptoms; AGMs only: radiological changes, blood test abnormalities) with day of onset, and a smaller majority reported pathology and virology (detection of RNA, antigen, or live virus by culture) at necropsy. A minority assessed correlation between drug concentrations and survival.

Additional Text – Small Molecules

Others

ALS-8112, parent nucleoside of lumicitabine, had low micromolar range EC_{50} values (0.3-3.08 μ M) in CPE inhibition and viral titre reductions assays for both NiV-M and NiV-B infected human small airway cell lines (NCI-H358 & HSAEC1-KT)³³ (Supplementary Table IV).

Additional Tables – Included Studies

Table I: Nipah & Hendra Virus Therapeutic Monoclonal Antibodies (Clinical & Animal Studies)

Drug (mechanism)	Reference	Study Design	Drug Regimen & Route & Follow-up	Efficacy	Safety
m102.4	Sahay	Clinical: compassionate use post-	Not available	'Full recovery'	Not available
(anti-HeV-G)	2020 ⁷	exposure prophylaxis during Nipah			
		outbreak in Kerala, India (n=1)			
Developer:	Playford	Clinical: healthy adult volunteers	-Cohort 1: 1mg/kg IV day 1 (n=6)	-PK linear	-No SAEs
Uniformed Services	2020 ¹	(18-50 years) phase 1 dose-	-Cohort 2: 3mg/kg IV day 1 (n=6)	-Elimination kinetics of 2-dose regimen similar to 1-dose	-Similar rates of
University, USA		escalation RCT for safety,	-Cohort 3: 10mg/kg IV day 1 (n=6)	-Neutralisation activity for NiV-B and HeV present in all samples at	TEAEs between
		tolerability, and pharmacokinetics	-Cohort 4: 20mg/kg IV day 1 (n=6)	all timepoints	treatment and
Funder: USA NIH		in Brisbane, Australia (n=40)	-Cohort 5: 20mg/kg IV day 1 & 4 (n= 6)		placebo groups,
			+ placebo in each cohort (n=2)		most commonly
					headache (12/30
			113-day follow-up (cohorts 1-4) or		after m102.4 vs
			123-day follow-up (cohort 5)		3/10 after placebo)
					-No anti-m102.4
					antibodies
					detected
	Mire 2016 ¹²	Animal: AGM challenge with NiV-B	Treatment: ~15mg/kg IV post-challenge (n=9)	Treatment: all treated before day 5 survived to study endpoint	No AEs
		for efficacy and safety (n=11)	-Cohort 1: days 1 & 3 (n=3)	-Cohort 1: all survived, minimal respiratory signs, normal	
		• 2.5 x 10 ⁵ PFU intratracheal + 2.5 x 10 ⁵ PFU intranasal	-Cohort 2: days 3 & 5 (n=3)	haematology and minor biochemistry abnormalities	
		2.5 x 10 PFO intranasai	-Cohort 3: days 5 & 7 (n=3)	-Cohort 2: all survived, no clinical signs, mild changes in	
			Control: saline (n=2)	haematology and biochemistry	
			20 day fallow we then sytheses:	-Cohort 3: all died on day 8 with clinical and laboratory abnormalities similar to controls	
			28-day follow-up then euthanasia	Controls: both died on day 7 or 8	
				-Detectable neutralising antibody to study end in surviving animals	
				but not deaths	
				-NiV-related gross pathological changes present in animals which	
				died but not in surviving animals	
	Geisbert	Animal: AGM challenge with NiV-M	Treatment: ~15mg/kg IV post-challenge (n=12)	Treatment: all survived to study endpoint	No AEs
	2014 ¹³	for efficacy and safety (n=16)	-Cohort 1: days 1 & 3 (n=4)	-Cohort 1: no clinical or laboratory changes	140 / 123
		• 5 x 10 ⁵ PFU intratracheal	-Cohort 2: days 3 & 5 (n=4)	-Cohort 2: mild changes in haematology, biochemistry, coagulation	
		3 X 10 11 0 miliatracrical	-Cohort 3: days 5 & 7 (n=4)	-Cohort 3: clinical signs and abnormal haematology, biochemistry,	
			Control: saline (n=4)	coagulation results but recovered by day 17	
				Controls: all died between days 8 to 10	
			28 to 34-day follow-up then euthanasia	-Detectable neutralising antibody to end of study in surviving	
			, · · ·	animals but not in deaths	
				-NiV-related gross pathological changes present in animals which	
				died but not in surviving animals	

	Bossart	Animal: AGM challenge with HeV	<u>Efficacy</u>	Efficacy	No AEs
	2011 ¹⁴	for efficacy and safety (n=14)	Treatment: 100mg IV (~25mg/kg) post-challenge	Treatment: all survived to study endpoint	
		• 4 x 10 ⁵ TCID ₅₀ intratracheal	-Cohort 1: 10h & day 3 (n=4)	-Cohorts 1 & 2: mild or no clinical signs of disease, no radiological	
			-Cohort 2: 24h & day 3 (n=4)	changes, normal haematology and biochemistry	
			-Cohort 3: 72h & day 5 (n=4)	-Cohort 3: temporary moderate to severe neurological signs	
			Control: saline (n=2)	improved by day 16, one transient mild interstitial pneumonia on	
				day 6, transient fall in platelet count days 6-13	
			40-day follow-up then euthanasia except for 3	Controls: both died after average of 8 days	
			animals in cohort 1 where euthanasia was on day 88	-m102.4 concentrations on day 3 correlated with survival.	
				-HeV-related gross pathological changes present in animals which	
				died but not in surviving animals.	
		Animal: AGM pharmacokinetics	<u>Pharmacokinetics</u>	<u>Pharmacokinetics</u>	
		(n=4)	-PK 1: 10mg IV (~2.5mg/kg) (n=2)	Average distribution and elimination half-lives of ~1 day and ~11	
			-PK 2: 50mg IV (~11mg/kg) (n=2)	days respectively	
	Bossart	Animal: Ferret challenge with NiV-	Treatment: 50mg IV (n=6)	Treatment: all survived to study endpoint if treated 10h post-	Not available
	2009 ²³	M for efficacy (n=8)	-Cohort 1: 24h pre-challenge (n=3)	challenge but not 24h pre-challenge	
		• 5 x 10 ³ TCID ₅₀ oronasal	-Cohort 2: 10h post-challenge (n=3)	-Cohort 1: 2/3 died on day 13 after all developed severe disease	
			Control: PBS (n=2)	from day 7	
			-Control 1: 24h pre-challenge (n=1)	-Cohort 2: all survived but had clinical symptoms from day 8	
			-Control 2: 10h post-challenge (n=1)	Controls: both died on day 8 after becoming unwell on day 6	
				-m102.4 concentrations on day 3 correlated with survival.	
			20-day follow-up then euthanasia	-NiV-related gross pathological changes present in animals which	
				died but not in surviving animals.	
				-Neutralisation activity for NiV-B, NiV-M, and HeV present.	
	Zhu 2008 ²⁴	Animal: Ferret pharmacokinetics	-Cohort 1: 5mg IV (n=2)	-Average distribution and elimination half-lives 1.48 and 3.58 days	-No AEs
		(n=4)	-Cohort 2: 25mg IV (n=2)	respectively for both doses with small inter-individual differences	-No anti-m102.4
			42-day follow-up then euthanasia	-Neutralisation activity for NiV present for 8 days	antibodies found
1F5 (anti-NiV-F) vs	Zeitlin	Animal: AGM challenge with NiV-B	Treatment 1: IV 5 days post-challenge (n=12)	Treatments 1 & 2: 1F5 not m102.4 provided complete protection	Not available
m102.4	2024 ¹⁵	for efficacy (n=13)	-Cohort 1: 1F5 25mg/kg (n=6)	-Cohort 1: all survived to study endpoint with minimal clinical signs	
(anti-HeV-G)		• 4 x 10 ⁴ PFU intranasal	-Cohort 2: m102.4 25mg/kg (n=6)	-Cohort 2: 1/6 survived to study endpoint	
			Control 1: untreated infected (n=1)	-Cohort 3: all survived to study endpoint with minimal clinical signs	
			Treatment 2: IV 5 days post-challenge (n=3)	Controls 1 & 2: both were euthanised for disease severity on days	
			-Cohort 3: 1F5 10mg/kg (n=3)	7 and 9 respectively	
			Control 2: untreated infected (n=1)	. ,	
			35-day follow-up then euthanasia		
1F5 vs 12B2 vs 1F5 +		Animal: Hamster challenge with	Treatment 3: IP 24h post-challenge (n=15)	Treatment 3: 1F5 not 12B2 provided complete protection	_
12B2 (anti-NIV-F)		NiV-B for efficacy (n=16)	-Cohort 4: 1F5 5mg/kg (n=5)	-Cohort 4: all survived to study endpoint	
,		• 5 x 10 ⁶ PFU intranasal	-Cohort 5: 12B2 5mg/kg (n=5)	-Cohort 5: 3/5 survived to study endpoint	
Developer:		1	-Cohort 6: 1F5 2.5mg/kg + 12B2 2.5mg/kg (n=5)	-Cohort 6: 4/5 survived to study endpoint	
Uniformed Services			Control 3: PBS (n=1)	Control 3: died on day 8 post-challenge	
University, USA			28-day follow-up then euthanasia	, . , . ,	
•					
Funder: USA NIH					

h5B3.1 (anti-NiV-F)	Mire 2020 ²²	Animal: Ferret challenge with NiV-	Treatment: 20mg/kg IP post-challenge	Treatment: h5B3 conferred complete protection to study endpoint	Not available
		M or HeV for efficacy (n=11)	NiV-M	NiV-M	
Developer:		• 5 x 10 ³ PFU intranasal	-Cohort 1: days 1 & 3 (n=3)	All survived after minor clinical signs and gained weight	
Uniformed Services			-Cohort 2: days 3 & 5(n=3)	<u>HeV</u>	
University, USA			Control 1: untreated infected (n=1)	All survived after minor clinical signs and gained weight	
			<u>HeV</u>	Controls: both died on days 8-9	
Funder: USA NIH			-Cohort 3: days 3 & 5 (n=3)		
			Control 2: untreated infected (n=1)		
			34-day follow-up then euthanasia		
NiV41	Chen	Animal: Hamster challenge with	Treatment 1: 3mg/kg IP 6 hours post-challenge (n=6)	Treatment 1: NiV41 gave complete protection to study endpoint	Not available
(anti-NiV-RBP)	2024 ²⁶	NiV-B for efficacy (n=12)	Control: PBS (n=6)	Controls: all except two were euthanised for disease severity	
		• 10 ⁵ TCID ₅₀ intraperitoneal	28-day follow-up then euthanasia		
NiV41-6		Animal: Hamster challenge with	Prophylaxis: IP 24 hours pre-challenge (n=12)	Prophylaxis: NiV41-6 dose-dependent protection	-
(anti-NiV-RBP)		NiV-M for efficacy (n=48)	-Cohort 1: 10mg/kg (n=6)	-Cohort 1: all survived to study endpoint	1
(aliti-INIV-NDF)		• 1000 LD ₅₀ intraperitoneal	-Cohort 2: 3mg/kg (n=6)	-Cohort 2: 5/6 survived to study endpoint	
Developer: Wuhan			Controls 1: PBS (n=6 for each cohort volume)	Controls 1: all except one were euthanised for disease severity	
			,	,	
Institute of Virology			Treatment 2: 10mg/kg IP post-challenge (n=18)	Treatment 2: NiV41-6 administration time-dependent protection	
E . d Obi			-Cohort 3: 3 hours (n=6)	-Cohort 3: 5/6 survived to study endpoint	
Funder: Chinese			-Cohort 4: 3 hours & 3 days (n=6)	-Cohort 4: 4/6 survived to study endpoint	
Academy of			-Cohort 5: 1 day & 3 days (n=6)	-Cohort 5: 3/6 survived to study endpoint	
Sciences			Controls 2: PBS (n=6)	Controls 2: all except one were euthanised for disease severity	
			Controls 2. 1 23 (11–0)	controls 2. all except one were cutifullised for disease severity	
			28-day follow-up then euthanasia		
HENV-103, HENV-	Doyle	Animal: Hamster challenge with	Treatment 1: 10mg/kg IP 24h post-challenge (n=25)	Treatment 1: partial protection from individual mAbs	Not available
117, HENV-58,	2021 ²⁷	NiV-B for efficacy (n=46)	-Cohort 1: HENV-103 (n=5)	-Cohorts 1 & 3: 2/5 survived to study endpoint	
HENV-98, HENV-100		• 5 x 10 ⁶ PFU intranasal	-Cohort 2: HENV-117 (n=5)	-Cohort 2, 4 & 5: 3/5 survived to study endpoint	
(anti-HeV-RBP)			-Cohort 3: HENV-58 (n=5)	Control 1: died on day 3	
			-Cohort 4: HENV-98 (n=5)		
Developer:			-Cohort 5: HENV-100 (n=5)		1
Vanderbilt			Control 1: untreated infected (n=1)		
University, USA			` '		1
• •			Treatment 2: 10mg/kg IP 24h post-challenge (n=15)	Treatment 2: complete protection after mAb cocktail but partial	1
Funder: USA NIH			-Cohort 6: HENV-103 + HENV-117 5mg/kg each (n=5)	protection from bispecific mAbs	1
			-Cohort 7: HENV-117-103 DVD (n=5)	-Cohort 6: all survived to study endpoint	1
			-Cohort 8: HENV-117-103 Bis4Ab (n=5)	-Cohort 7: 4/5 survived to study endpoint	
			Control 2: PBS (n=5)	-Cohort 8: 3/5 survived to study endpoint	
			555. 2 25 (11 5)	Control 2: 4/5 died	
			28-day follow-up then euthanasia	Control 2. 4/ 5 died	
HENV-26, HENV-32	Dong	Animal: Ferret challenge with NiV-B	Treatment: 15mg/kg IP days 3 & 5 post-challenge	Treatment: HENV-26 & HENV-32 conferred complete protection	Not available
•		1	5. 5 , , ,		1
(anti-HeV-RBP)	2020 ²¹	for efficacy (n=13)	(n=10)	-Cohort 1: no clinical disease, transient haematological changes, no	

Developer:			-Cohort 2: HENV-32 (n=5)	-Cohort 2: 4/5 developed clinical disease with respiratory signs, viral	
Vanderbilt			Control: untreated infected (n=3)	genomes detected in blood on day 5 (3/5) and day 14 (1/5)	
University, USA				Controls: all died between days 7-8	
			28-day follow-up then euthanasia	-NiV-related gross pathological changes present in animals which	
Funder: USA NIH				died but not in surviving animals	
NipGIP1.7 &	Guillaume	Animal: Hamster challenge with	Protection	Protection	Not available
Nip3B10	2006 ²⁸	NiV-M for efficacy, dose titration,	Treatment 1: 24h pre- & 1h post-challenge IP (n=32)	Treatment 1: 30/32 treated survived to study endpoint	
(anti-NiV-G),		and therapeutic time window	-Cohort 1: NipGIP1.7 112μg (n=8)	-Cohorts 1-3: all survived to study endpoint	
NipGIP35 & NipGIP3		(n=124)	-Cohort 2: Nip3B10 100μg (n=8)	-Cohort 4: 6/8 survived to study endpoint	
(anti-NiV-F)		• 7.5 x 10 ² PFU (100 LD ₅₀)	-Cohort 3: NipGIP35 180μg (n=8)	Controls 1: all died	
		intraperitoneal	-Cohort 4: NipGIP3 520μg (n=8)		
Developer:			Control 1: no mAb (n=8)		
INSERM, France			65-day follow-up		
Funders:			<u>Dose Titration</u>	Dose Titration	
Aventis Pharma,			Treatment 2: 24h pre- & 1h post-challenge IP (n=40)	Treatment 2: survival is mAb dose-dependent	
Bayer Pharma,			-Cohort 5: NipGIP1.7 112μg (n=4)	-Cohorts 5 & 6: all survived to study endpoint	
INSERM & Institut			-Cohort 6: NipGIP1.7 1.12μg (n=4)	-Cohorts 7-9: 1/4 survived to study endpoint	
Pasteur			-Cohort 7: NipGIP1.7 0.12μg (n=4)	-Cohort 10: all survived to study endpoint	
			-Cohort 8: NipGIP1.7 0.012μg (n=4)	-Cohort 11: 2/4 survived to study endpoint	
			-Cohort 9: NipGIP1.7 0.0012μg (n=4)	-Cohorts 12-14 & control 2: all died	
			-Cohort 10: NipGIP35 180μg (n=4)		
			-Cohort 11: NipGIP35 1.8μg (n=4)		
			-Cohort 12: NipGIP35 0.18µg (n=4)		
			-Cohort 13: NipGIP35 0.018μg (n=4)		
			-Cohort 14: NipGIP35 0.0018μg (n=4)		
			Control 2: no mAb (n=4)		
			36-day follow-up then euthanasia		
			Therapeutic Time Window	Therapeutic Time Window	
			Treatment 3: NipGIP1.7 112µg IP (n=20)	Treatment 3: survival is mAb administration time-dependent	
			-Cohort 15: 1h post-challenge (n=4)	-Cohort 15: 3/4 survived to study endpoint	
			-Cohort 16: 24h post-challenge (n=4)	-Cohort 16: 2/4 survived to study endpoint	
			-Cohort 17: 48h post-challenge (n=4)	-Cohorts 17-19: all died to study endpoint	
			-Cohort 18: 72h post-challenge (n=4)	-Cohort 20: all survived to study endpoint	
			-Cohort 19: 96h post-challenge (n=4)	-Cohorts 21-22: 2/4 survived to study endpoint	
			Treatment 4: NipGIP35 180µg IP (n=20)	-Cohort 23: 1/4 survived to study endpoint	
			-Cohort 20: 1h post-challenge (n=4)	-Cohort 24: 2/4 survived to study endpoint	
			-Cohort 21: 24h post-challenge (n=4)		
			-Cohort 22: 48h post-challenge (n=4)		
			-Cohort 23: 72h post-challenge (n=4)		
			-Cohort 24: 96h post-challenge (n=4)		
			86-day follow-up		

NipGIP35, NipGIP3,	Guillaume	Animal: Hamster challenge with	<u>Protection</u>	Protection	Not available
NipGIP21, NipGIP7	2009 ²⁹	HeV for efficacy and dose titration	Treatment 1: 24h pre- & 1h post-challenge IP (n=24)	Treatment 1: all treated survived to study endpoint	
(anti-NiV-F)		(n=54)	-Cohort 1: 2.5mg/kg NipGIP35 (n=6)	Controls 1: all died within 7 days	
		• 10 ³ PFU (100 LD ₅₀)	-Cohort 2: 6mg/kg NipGIP3 (n=6)		
Institution:		intraperitoneal	-Cohort 3: 2.7mg/kg NipGIP7 (n=6)		
INSERM, France			-Cohort 4: 4.2mg/kg NipGIP21 (n=6)		
			Control 1: PBS (n=6)		
Funders:			30-day follow-up		
Aventis Pharma,					
Bayer Pharma,			<u>Dose Titration</u>	<u>Dose Titration</u>	
INSERM & Institut			Treatment 2: 1h pre-challenge IP (n=18)	Treatment 2: survival is mAb dose-dependent	
Pasteur			-Cohort 5: 3mg/kg NipGIP21 (n=6)	-Cohort 5: 5/6 survived to study endpoint	
			-Cohort 6: 0.3mg/kg NipGIP21 (n=6)	-Cohort 6: 3/6 survived to study endpoint	
			-Cohort 7: 0.03mg/kg NipGIP21 (n=6)	-Cohort 7: 2/6 survived to study endpoint	
			Control 2: PBS (n=6)	Controls 2: 5/6 died	
			14-day follow-up		

AE = adverse event; AGM = African Green monkey; DVD = dual variable domain; HeV = Hendra virus; INSERM = Institut National de la Santé et de la Recherche Médicale; IP = intraperitoneal; IV = intravenous; LD₅₀ = median lethal dose; mAb = monoclonal antibody; NIH = National Institutes of Health; NiV-B = Nipah virus Bangladesh; NiV-M = Nipah virus Malaysia; PBS = phosphate-buffered saline; PFU = plaque-forming units; PK = pharmacokinetics; RBP = receptor binding protein; RCT = randomised controlled trial; SAE = serious adverse event; TCID₅₀ = median tissue culture infectious dose; TEAE = treatment emergent adverse event; USA = United States of America

Table II: Nipah & Hendra Virus Therapeutic Small Molecules (Clinical & Animal Studies)

Drug (mechanism)	Reference	Study Design	Drug Regimen & Route & Follow-up	Efficacy	Safety
Ribavirin (nucleoside	Warrier 2020 ⁶		Not available Also treated with immunoglobulins	Survived and recovered fully from encephalitis after 51 days	Not available
analogue prodrug)	Radhakrish- nan 2020 ⁵	1 1	2g IV loading followed by 1g IV QDS for 4 days then 500mg PO QDS for 6 days	Treated group: 4/6 died Untreated group: 6/6 died	Not available
	Banerjee 2019 ³	Clinical: compassionate use for post- exposure prophylaxis of healthcare workers during Nipah outbreak in Kerala, India, 2018 (n=8)		None developed Nipah infection	None completed course -6/8 had transient increase in bilirubin and/or fall in haemoglobin levels -6/8 experienced symptoms of fatigue, headache, nausea, dry mouth, and palpitations
	Kumar 2019⁴	Clinical: compassionate use for treatment in Nipah outbreak in Kerala, India, 2018 (n=5)	Not available	All died	Not available
	Playford 2010 ²	Clinical: compassionate use during Hendra outbreak in Australia, 2008 for treatment (n=2) and post-exposure prophylaxis (n=1)	Treatment: -Patient 1: 30mg/kg IV loading, then 15mg/kg IV QDS for 4 days, then 8mg/kg IV TDS for 12 days -Patient 2: 30mg/kg IV loading, then 15mg/kg IV QDS for 32 days, then 600mg PO TDS for until month 8 Prophylaxis: 30mg/kg IV loading, then 15mg/kg IV QDS for 5 days within 4 hours from exposure	-Patient 1 died while patient 2 made a full recovery from encephalitis -Contact did not seroconvert	-Ribavirin stopped in patient 1 after 12 days due to development of anaemia (Hb 76 g/L) -Well-tolerated by other recipients
	Chong 2001	140 treated, 54 untreated)	30mg/kg loading, then 16mg/kg QDS for 4 days, then 8 mg/kg TDS for 3 days PO (n=12): 2g on day 1, 1.2g TDS on days 2-4, 1.2g BD on days 5-6, 0.6g BD for another 1 to 4 days		No statistically significant difference in incidence of anaemia and bilirubinaemia in both groups
	Rockx 2010 ¹⁹	Animal: AGM challenge with HeV (n=12) • 4 x 10 ⁵ TCID ₅₀ intratracheal for efficacy	Treatment: 50mg/kg SC loading, then 10mg/kg SC TDS for 14 days (n=9) -Cohort 1: 24 hours pre-challenge (n=3) -Cohort 2: 12 hours post-challenge (n=3) -Cohort 3: 48 hours post-challenge (n=3) Control: PBS (n=3) 14-day follow up	Cohorts 1 & 2: symptom onset on days 5-9, time to death 8.5-10.5 days, shift from primarily respiratory to neurological signs Cohort 3 & control: symptom onset on days 5-6, time to death 7-9 days -NiV-related radiological and gross pathological changes more severe in cohort 3 & controls than cohorts 1 & 2 -Reduction in infectious virus titres in cohort 1 but not controls number of virus-positive tissues in cohort 1 but not controls	Not available

Ribavirin	Georges-	Experiment 1	Experiment 1	Experiment 1	Not available
(nucleoside	Courbot	Animal: Hamster challenge with NiV-M for	Treatment 1: SC continuous infusion via osmotic pump from	All died but ribavirin and 6-aza-uridine delayed mean time	
analogue prodrug)	2006 ³¹	efficacy (n=18)	immediately prior to challenge for 14 days	to death	
& 6-azauridine		• 350 x LD ₅₀ intraperitoneal	-Cohort 1: ribavirin 50mg/kg/day (n=6)	-Cohort 1: 6.8 ± 0.7 days (p<0.01)	
(OMP			-Cohort 2: 6-aza-uridine 175mg/kg/day (n=6)	-Cohort 2: 6.1 ± 0.7 days (p<0.05)	
decarboxylase			Control 1: PBS (n=6)	Control 1: 5.1 ± 0.7 days	
inhibitor) &					
Rintatolimod (TLR-			14-day follow up	-Viral RNA detected in all tissues from all groups tested	
3 agonist					
interferon inducer)		Experiment 2	Experiment 2	Experiment 2	
		Animal: Hamster challenge with NiV-M for	Treatment 2: IP from 2 hours post challenge for 10 days	Partial protection from rintatolimod	
		efficacy (n=18)	-Cohort 3: ribavirin 25mg/kg BD (n=6)	-Cohort 3: 1/6 survived	
		• 35 x LD ₅₀ intraperitoneal	-Cohort 4: rintatolimod 3mg/kg OD (n=6)	-Cohort 4: 5/6 survived, no infectious virus detected in	
			Control 2: PBS (n=6)	surviving animals, infectious virus and viral RNA detected in	
				brain of animal which died	
			30-day follow up then euthanasia	Control 2: 1/6 survived	
Ribavirin	Freiberg	Animal: Hamster challenge with NiV-M	Experiment 1	Experiment 1	Not available
(nucleoside	2010 ³²	(n=41) and HeV (n=20) for efficacy (n=85)	Treatment 1: IP from 6 hours post-challenge with NiV-M	Ribavirin alone delayed death from NiV-M	
analogue prodrug)		• 10 ⁴ TCID ₅₀ intraperitoneal	(n=15) or HeV (n=15) for 21 days	-Cohorts 1 & 4: Died 5 days later (NIV-M, 2 survived) or at	
& chloroquine			-Cohort 1 & 4: ribavirin 30mg/kg BD (n=5)	the same time after challenge (HeV) as untreated controls	
(lysosome			-Cohort 2 & 5: chloroquine 50mg/kg alternate days (n=5)	-Cohort 2 & 5: All died 3 days (NIV-M) or 2 days (HeV) earlier	
alkalinisation)			-Cohort 3 & 6: ribavirin 30mg/kg BD + chloroquine 50mg/kg	than untreated controls	
,			alternate days (n=5)	-Cohort 3 & 6: As untreated controls	
Funder: USA NIH			Controls 1: (n=16)	Controls: All untreated died on days 5-8 (NiV-M; 1 survived)	
			-Untreated: vehicle solution (n=5 for each virus)	and day 4 (HeV; 1 survived to day 14), all uninfected lived	
			-Uninfected: drugs only (n=2 per drug regimen)		
			21-day follow up		
			Experiment 2	Experiment 2	Higher treatment doses
			Treatment 2: IP from 6 hours post-challenge with NiV-M	Ribavirin delayed mean time to death after NiV-M but was	caused severe toxicity
			only for 9 days (n=18)	toxic at higher doses	-After ribavirin at 100mg/kg
			-Cohort 7: ribavirin 50mg/kg BD (n=3)	-Cohort 7: All died 2-3 days later than infected controls	BD, all animals lost weight
			-Cohort 8: ribavirin 75mg/kg BD (n=3)	-Cohort 8: All died 1 day later than infected controls	from days 3-4, 2/3 became
			-Cohort 9: ribavirin 100mg/kg BD (n=3)	-Cohort 9: 2/3 euthanised for drug toxicity	unwell on day 6 requiring
			-Cohort 10: chloroquine 50mg/kg OD (n=3)	Chloroquine was lethal at higher doses	euthanasia
			-Cohort 11: chloroquine 100mg/kg OD (n=3)	-Cohort 10: Course as infected controls	-After chloroguine at 100 or
			-Cohort 12: chloroquine 150mg/kg OD (n=3)	-Cohort 11 & 12: Died after 1-2 days from drug toxicity	150 mg/kg OD, all animals
			Controls 2: (n=21)	Controls: All untreated died after 5 days	died on days 1-2 with and
	1		-Untreated: vehicle solution (n=3)	and and and area area of any	on day 2 without challenge
			` '		
			-Uninfected: drug only (n=3 per drug regimen)		
Chloroquine	Pallister	Animal: Ferret challenge with NiV-M (n=8)	` '	All animals became febrile with neurological symptoms and	Not available

alkalinisation)		• 5 x 10 ³ TCID ₅₀ oronasal	-Cohort 2: 10 hours post-challenge (n=3)	differences between treatment and control animals.	
Funder: USA NIH		-	Controls: 20% sucrose (n=1 per cohort)		
	de Wit 2023 ¹⁶	Animal: AGM challenge with NIV-B for efficacy (n=18) • 10 ⁵ TCID ₅₀ intranasal + 10 ⁵ TCID ₅₀ intratracheal	Controls: vehicle (n=3 for each of the two cohort volumes) 42-day follow up then euthanasia	Cohort 1: 4/6 survived, 2 euthanised between days 6-8 after developing neurological signs Cohort 2: 2/6 survived, 4 euthanised between days 7-9 after developing neurological and respiratory signs Controls: all euthanised between days 7-9 after all developing severe respiratory disease	
	Lo 2019 ¹⁷	Animal: AGM challenge with NiV-B for efficacy (n=8) ■ 10 ⁵ TCID ₅₀ intranasal + 10 ⁵ TCID ₅₀ intratracheal	92-day follow up then euthanasia	Treatment: all survived, 2/4 developed mild respiratory signs which resolved by days 12-14, none viraemic but 1/4 had detectable viral RNA in brain tissue with focal meningoencephalitis on histology and high virus neutralising antibody titres Controls: all died by day 8 after developing respiratory signs from days 3-4, all viraemic with high virus titres in all tissues	Not available
	Jordan 2017 ¹⁸	Animal: AGM challenge with NiV-B for efficacy Lethal dose (unspecified)	Treatment: 10mg/kg IV OD from 1 day post-challenge 35-day follow up (n=unspecified)	All animals survived with no major respiratory or CNS symptoms	Not available
Favipiravir (nucleoside analogue prodrug) Developer: Toyama Funder: USA NIH	Dawes 2018 ³⁰	Animal: Hamster challenge with NiV-M for efficacy (n=18) • 10 ⁴ PFU intraperitoneal	maintenance for 13 days -Cohort 1: 300mg/kg PO BD (n=5) -Cohort 2: 300mg/kg SC OD (n=5) Control: vehicle solution (n=4 per cohort)	Treatment: all animals survived without clinical signs and gained weight Controls: all died by days 5-6 after developing respiratory and neurological symptoms with severe weight loss -NiV-related pathological changes and viral antigen present in animals which died but not in surviving animals	Not available
Griffithsin (GRFT) (fusion and cell entry inhibitor) Funder: USA NIH & USA CDC	Lo 2020 ³⁸	Animals: Hamster challenge with NiV-B for efficacy (n=65) • 10 ⁷ TCID ₅₀ intranasal		Treatment 1 (Q-GRFT): -Cohorts 1 & 2: 7/20 survived with no clear difference between cohorts, 70% of survivors had no clinical signs Treatment 2 (3-mG): -Cohorts 3 & 4: 3/20 survived with no clear difference between cohorts, 33% survivors had no clinical signs Controls: -Infected untreated: all died -Uninfected treated: all survived -Uninfected untreated: all survived -NiV RNA detected in most tissues from dead/euthanised animals but only in eyes and brains of surviving treated animals	Not available
	Mathieu 2015 ³⁴	Animal: Hamster challenge with NiV-M for efficacy (n=15)	Treatment: 10mg/kg SC OD for 12 days from challenge (n=5) Controls:	Treatment: 1/5 survived to day 21 -Untreated: all died by day 6	Not available

inhibitor of <i>trans</i> -		• 500 x LD ₅₀ intraperitoneal	-Untreated: challenge only (n=5)	-Uninfected: all survived	
infection)			-Uninfected: drug only (n=5)		
Funder: INSERM			21-day follow up		
Fusion inhibitory	Mathieu	Animal: Hamster challenge with NiV-M for	<u>Hamster</u>	<u>Hamster</u>	<u>Monkey</u>
lipopeptides	2018 ²⁰	efficacy (n=38)	Treatment 1: 10mg/kg intranasal OD day -1 to 1 post-	Treatment 1:	VIKI-dPEG4-Toco well-
(fusion and cell		 10⁶ PFU (100 x LD₅₀) intranasal 	challenge	-Cohort 1: 5/12 survived to day 21	tolerated with no
entry inhibitors):			-Cohort 1: VIKI-dPEG4-Chol (n=12)	-Cohort 2: 3/6 survived to day 21	significant adverse effects
		Animal: AGM challenge with NiV-M for	-Cohort 2: VIKI-dPEG4-Toco (n=6)	Controls 1:	
VIKI-dPEG4-Chol,		efficacy (n=10)	Controls 1:	-Untreated: all died by day 13	
VIKI-dPEG4-Toco		 2 x 10⁷ PFU intratracheal 	-Untreated: vehicle control (n=12)	-Uninfected: all survived to day 21	
			-Uninfected: drug only (n=8)		
		Animal: AGM biodistribution (n=4)	21-day follow up	<u>Monkey</u>	
				Treatment 2:	
			<u>Monkey</u>	-Cohort 3: 1/3 survived	
			Treatment 2: VIKI-dPEG4-Toco OD	-Cohort 4: 1/3 survived	
			-Cohort 3: 10mg/kg intratracheal days -1 to 5 post-challenge	Controls 2:	
			(n=3)	-Untreated: all died by day 13	
			-Cohort 4: 10mg/kg intratracheal days -1 to 5 + 2mg/kg SC	-Uninfected: all survived	
			days -1 to 10 post-challenge (n=3)		
			Controls 2:	Biodistribution:	
			-Untreated: vehicle control (n=3)	-Intratracheal only: serum levels peaked at 200nM 4 hours	
			-Uninfected: drug intratracheal + SC only (n=1)	after administration, undetectable at 24 hours	
			28-day follow up	-Intratracheal + SC: serum detection at 8 hours, peaking at	
				500nM, <300nM at 24 hours; organ detection in brain	
			Biodistribution: VIKI-dPEG4-Toco days 0 & 14	(10nM) and lung (30-200nM) at 24 hours	
			-Cohort 5: 10mg/kg intratracheal (n=2)		
			-Cohort 6: 10mg/kg intratracheal + 2mg/kg SC (n=2)		
VG-PEG24-Chol	Mathieu	Animal: Hamster challenge with NiV-M for	Treatment: 2mg/kg IP OD days -1 to 10 (n=6)	Treatment: 5/6 survived	Not available
	2017 ³⁵	efficacy (n=13)	Controls:	Controls: untreated all died by day 8, uninfected survived	
		• 100 x LD ₅₀ intraperitoneal	-Untreated: vehicle control (n=6)		
			-Uninfected: peptide only (n=1)	Hamster biodistribution: free peptide in serum at 8 hours,	
			21-day follow up	peaking at 120nM, dropping after 24h, with peptide	
				detection at 24h in organs including brain	
		Animal: Hamster biodistribution (n=6)	Hamster biodistribution: 2mg/kg IP		
VIKI-PEG4-chol	Porotto	Animal: Hamster challenge with NiV (strain	Treatment: 2mg/kg IP OD for 14 days starting on different	Treatment:	Not available
	2010 ³⁷	unspecified) for efficacy (n=35)	days relative to challenge	-Cohort 1: 4/5 survived	
Funder: USA NIH &		• 100 x LD ₅₀ intraperitoneal	-Cohort 1: day -2 (n=5)	-Cohort 2: 3/5 survived	
INSERM		30 11 p - 11	-Cohort 2: day -1 (n=5)	-Cohort 3: 4/5 survived	
			-Cohort 3: day 0 (n=5)	-Cohort 4: all died	
			-Cohort 4: day 1 (n=5)	-Cohort 5: 2/5 survived	
			-Cohort 5: day 2 (n=5)	-Cohort 6: 1/5 survived	
			-Cohort 6: day 4 (n=5)	Control: all died by day 7	

			Control: vehicle solution (n=5)		
			30-day follow up		
		Animal: Hamster challenge with NiV-M for	Experiment 1 (n=99)	Experiment 1	Not available
interfering	2022 ³⁶	efficacy (n=153)	Treatment 1: 2 x 10 ⁹ TIPs IP with challenge	-Cohort 1: 11/39 survived, 17/39 had no clinical signs,	
particles (virus-like		 Experiment 1: 10⁴ TCID₅₀ intraperitoneal 	-Cohort 1: active TIPs (n=39 in total)	surviving animals had 4.8 days of clinical signs	
particles		 Experiment 2: 10⁶ TCID₅₀ intranasal 	DI-07, DI-10, DI-35 (n=10 each); DI-14 (n=9)	-Cohort 2: 12/40 survived, disease course similar to controls,	
containing			-Cohort 2: inactive TIPs (n=40 in total)	surviving animals had 7.7 days of clinical signs	
defective			DI-07, DI-10, DI-35, DI-14 (n=10 each)	Controls 1: 18/20 died, surviving animals had 14 days of	
interfering			Controls 1: vehicle solution (n=20)	clinical signs	
genomes which					
inhibit replication):			Experiment 2 (n=54)	Experiment 2	
DI-07, DI-10,			Treatment 2: 1 x 10 ⁸ active TIPs intranasal with challenge	-Cohort 3: 14/34 survived following 6.1 days of clinical signs	
DI-14, DI-35			-Cohort 3: active TIPs (n=34 in total)	Controls 2: 5/20 survived following 13.4 days of clinical signs	
			DI-07 (n=10); DI-10, DI-14, DI-35 (n=8 each)		
Funder: USA CDC			Controls 2: vehicle solution (n=20)		
Ceftriaxone	Paton 1999 ⁸	Clinical: empirical syndromic treatment	Ceftriaxone + aciclovir IV (n=9 encephalitis)	Ceftriaxone + aciclovir: 8/9 survived, 4/9 had persistent	Not available
(bacterial cell wall		during outbreak in Singapore, 1999 (n=11)	Clarithromycin (n=2 atypical pneumonia)	neurological deficits	
synthesis				Clarithromycin: 2/2 survived	
inhibitor),					
clarithromycin					
(bacterial protein					
synthesis					
inhibitor), aciclovir					
(nucleoside					
analogue)					

AGM = African Green monkey; CDC = Centres for Disease Control; CSF = cerebrospinal fluid; HeV = Hendra virus; dPEG = discrete Polyethylene Glycol; INSERM = Institut National de la Santé et de la Recherche Médicale; IP = intraperitoneal; IV = intravenous; LD_{50} = median lethal dose; NIH = National Institutes of Health; NiV-B = Nipah virus Bangladesh; NiV-M = Nipah virus Malaysia; nM = nanomoles; OMP = orotidine monophosphate; PBS = phosphate-buffered saline; PFU = plaque-forming units; PO = orally (per os); RNA = ribonucleic acid; SC = subcutaneous; $TCID_{50}$ = median tissue culture infectious dose; TIP = therapeutic infectious particle; TLR-3 = toll-like receptor 3; USA = United States of America

Table III: Nipah & Hendra Virus Therapeutic Small Molecules (In Vitro Studies)

Reference	Drug (Other Names)	Drug Type (Target)	Assays	Cells	Drug Sub-type	Viruses	EC ₅₀	EC ₉₀	IC ₅₀	Drug Dose	Reduction in Virus Yield	Reduction in Viral RNA					
			Danastanasa	U.S. 9 U.S. 2027/47	N1/A	rNiV-M-Rluc	0.045μM	0.126μΜ	ND		ND	ND					
			Reporter assays	Hela & HEK293T/17	N/A	rNiV-M-ZsG	0.029μΜ	0.053μΜ	ND		ND	ND					
						NiV-B 2004	0.032μΜ	0.106μΜ	ND		ND	ND					
		Nucleoside	Virus titre reduction	Hela	N/A	NiV-M 1999	0.047μΜ	0.083μΜ	ND		ND	ND					
Lo 2017 ³⁹	Remdesivir (GS5734)	analogue (viral	reduction			HeV 1996	0.055μΜ	0.117μΜ	ND		ND	ND					
	(GS5/34)	replication)	005 1 11	Hela		NiV-M 1999	0.0655 ± 0.016μM	ND	ND		100%	ND					
			CPE reduction assays	Hela & NCI-H358	N/A	NiV-B 2004	0.0324 ± 0.0027μM	ND	ND	0.1μΜ	90%	ND					
			assays	Hela		HeV 1996	0.0548 ± 0.0013μM	ND	ND		90%	ND					
			Minigenome assay	Hela	N/A	NiV-M	0.049µM	ND	ND	10μΜ	100%	ND					
						rNiV-M-ZsG	0.19 ± 0.01μM	$0.30 \pm 0.04 \mu M$	ND	0.8μΜ	100%	ND					
				Vero E6	N/A	NiV-B	0.17 ± 0.01μM	$0.38 \pm 0.04 \mu M$	ND	0.8μΜ	100%	ND					
		analogue (viral				HeV	0.37 ± 0.04μM	3.93 ± 1.98μM	ND	0.8μΜ	75%	ND					
			CPE reduction	NCI-H358	N/A	NiV-B	0.82 ± 0.053μM	1.38 ± 0.05μM	ND	ЗμМ	100%	ND					
			assays	NCI-H336	18/75	HeV	0.95 ± 0.12μM	1.42 ± 0.03μM	ND	ЗμМ	100%	ND					
				HSAEC1-KT	N/A	rNiV-M-ZsG	0.90 ± 0.07μM	$10.22 \pm 4.99 \mu M$	ND	8μΜ	80%	ND					
Lo 2021 ⁴⁰	Remdesivir					NiV-B	0.41 ± 0.039μM	1.71 ± 0.66μM	ND	ЗμМ	90%	ND					
20 2021	(ODBG-P-RVn)					HeV	0.42 ± 0.023μM	$1.19 \pm 0.061 \mu M$	ND	ЗμМ	90%	ND					
			, ,	Poportor assays		Vero E6	N/A	rNiV-M-ZsG	0.31 ± 0.04μM	0.78 ± 0.28μM	ND	0-10μΜ	100%	ND			
			Reporter assays		NCI-H358	N/A	rNiV-M-ZsG	0.50 ± 0.06μM	2.83 ± 1.39μM	ND	8μΜ	100%	ND				
				HSAEC1-KT	N/A	rNiV-M-ZsG	0.57 ± 0.013μM	$0.97 \pm 0.21 \mu M$	ND	ЗμМ	100%	ND					
						TIME	N/A	rNiV-M-ZsG	0.75 ± 0.05μM	$2.01 \pm 0.30 \mu M$	ND	8μΜ	100%	ND			
			Virus titre reduction	HSAEC1-KT	N/A	rNiV-M-ZsG	0.47μΜ	0.77μΜ	ND	20μΜ	3 log	ND					
						NiV-M	44.24μM	123.8μΜ	ND		100%	ND					
	Favipiravir	No also at de	Virus yield	Vero	N/A	NiV-B	14.82μΜ	15.87μΜ	ND	100µM	100%	ND					
Dawes	(T705; 6-fluor- 3-hydroxy-2-	Nucleoside analogue (viral	reduction assays	Velo	N/A	rNiV-Gluc-eGFP	14.57μM	16.25μΜ	ND	Ιουμίνι	100%	ND					
2018 ³⁰	pyrazinecarbox	• ,				HeV	11.71μΜ	16.49μΜ	ND		100%	ND					
	amine)		. ,	' '	. ,	. ,		Delayed treatment assay	Vero	N/A	rNiV-Gluc-eGFP	ND	ND	ND	250μΜ	10 fold	ND
Wright 2005 ⁴¹	Ribavirin	Nucleoside analogue (viral replication)	Virus yield reduction assays	Vero	N/A	HeV	ND	ND	ND	50μΜ	58 fold	9 fold					

	Ribavirin				Ribavirin	NiV-M	ND	ND	ND	100μg/ml 409μM	100%	ND								
	KIDAVITIII	Nucleoside analogue (viral	CPE reduction	Vero	EICAR	NiV-M	ND	ND	ND	1μg/ml 4.09μM	100%	ND								
Georges- Courbot 2006 ³¹	6-azauridine	replication)	assays	vero	N/A	NiV-M	ND	ND	ND	0.25μg/ml 1.02μM	100%	ND								
2000	Pyrazofurin				N/A	NiV-M	ND	ND	ND	0.125μg/ml 0.48μM	100%	ND								
	Rintatolimod (poly I:C12U)	TLR3 agonist (host response)		Hela	N/A	NiV-M	ND	ND	ND	6.25μg/ml 6.28μM	100%	ND								
		Nucleoside	Virus titre		N/A	NiV-M	ND	ND	4.18μM		ND	ND								
Freiberg	Ribavirin	analogue (viral replication)	reduction (dose response)	Hela	N/A	HeV	ND	ND	4.96μM	100μΜ	100%	ND								
2010 ³²		Quinoline	Virus titre		N/A	NiV-M	ND	ND	0.62μΜ		ND	ND								
	Chloroquine	(lysosome alkalinisation)	reduction (dose response)	Hela	N/A	HeV	ND	ND	0.71μΜ	20μΜ	100%	ND								
Porotto		Quinoline (lysosome alkalinisation)	=	-	-	-	=	-	-	=	Multicycle assay	HEK293T co- expressing HeV G/F and venus-YFP	N/A	HeV G/F pseudotyped VSV- deltaG–RFP	ND	ND	2μΜ	1μΜ	ND	ND
2009 ⁴²	Chloroquine		Virus titre	s titre		NiV-M	ND	ND	ND	10.11	0%	30%								
			reduction	Vero	N/A	HeV	ND	ND	ND	10μΜ	0%	75%								
										Reporter assays		GRFT	rNiV-M-rLuc	49.6 ± 19.9nM	ND	ND	10μg/mL 400nM	100%	ND	
			Reporter assays	neporter assays	3mG	rNiV-M-rLuc	8.4 ± 2.0nM	ND	ND	1μg/mL 40nM	100%	ND								
						GRFT	NiV-M	55.4nM	ND	ND	6.25μg/mL 250nM	100%	ND							
Lo 2020 ³⁸	Griffithsin	Lectin (virus			3mG	NiV-M	34.8nM	ND	ND	2.5μg/mL 100nM	100%	ND								
10 2020	(GRFT)	entry)	CPE reduction	Vore	GRFT	NiV-B	41.8nM	ND	ND	6.25µg/mL 250nМ	100%	ND								
			assays	·· Vero	3mG	NiV-B	20.1nM	ND	ND	3.75μg/mL 150nM	100%	ND								
					GRFT	HeV 1996	55.1nM	ND	ND	3.75μg/mL 150nM	100%	ND								
						3mG	HeV 1996	15.8nM	ND	ND	1μg/mL 40nM	100%	ND							

					GRFT	rNiV-M-ZsG	138.4nM	ND	ND		2 log	ND					
				Vero	3mG	rNiV-M-ZsG	32.1nM	ND	ND		3 log	ND					
			Virus yield reduction assays	HT-1080 & Vero	GRFT	NiV-M	42.8nM	ND	ND	100μg/mL	4 log	ND					
					GRFT	NiV-B	116.5nM	ND	ND	4μΜ	2 log	ND					
				Vero	3mG	NiV-B	30.6nM	ND	ND		3 log	ND					
		Glycosamino-	Inhibition of trans-	Peripheral blood leukocytes & Vero	N/A	NiV	ND	ND	ND	0-0.5mg/mL	80%	ND					
Mathieu	Heparin	glycan (virus	infection	CHO-K1 & Vero	N/A	NiV	ND	ND	ND	0-33.3nM	90%	99%					
2015 ³⁴		attachment)	Inhibition of	.,		NiV	ND	ND	ND	0.5mg/mL	70%	ND					
			infection	Vero	N/A	HeV	ND	ND	ND	33.3nM	60%	ND					
Mathieu					VIKI-dPEG4-Chol	N/A	ND	ND	1nM	0.40.14	ND	ND					
2018 ²⁰	Fusion	Lipopeptide	Inhibition of cell-	LIEKAOAT	VIKI-dPEG4-Toco	N/A	ND	ND	7nM	0-10μΜ	ND	ND					
Porotto 2010 ³⁷	inhibitory lipopeptides	(virus entry)	to-cell fusion	HEK293T	VIKI-PEG4-Chol	NiV G/F protein co- expressing cells	ND	ND	5nM	1μΜ	ND	ND					
						rNiV-M/ZsG	ND	ND	ND							100 fold	ND
					DI-01	NiV-M	ND	ND	ND		90 fold	ND					
						NiV-B	ND	ND	ND		30 fold	ND					
					DI-03	rNiV-M/ZsG	ND	ND	ND		100 fold	ND					
						NiV-M	ND	ND	ND		90 fold	ND					
						NiV-B	ND	ND	ND		20 fold	ND					
						rNiV-M/ZsG	ND	ND	ND		900 fold	ND					
						NiV-M	ND	ND	ND		500 fold	ND					
						NiV-B	ND	ND	ND		80 fold	ND					
	Defective	Virus-like				rNiV-M/ZsG	ND	ND	ND		1000 fold	ND					
Welch 2020 ⁴³	interfering	particles (viral	Virus yield reduction assays	Vero	DI-10	NiV-M	ND	ND	ND	5000:1 DIP to NiV genome ratio	700 fold	ND					
2020	particles	replication)	reduction assays			NiV-B	ND	ND	ND	viv genome ratio	500 fold	ND					
						rNiV-M/ZsG	ND	ND	ND		1000 fold	ND					
					DI-14	NiV-M	ND	ND	ND		1000 fold	ND					
						NiV-B	ND	ND	ND		600 fold	ND					
						rNiV-M/ZsG	ND	ND	ND		1000 fold	ND					
					DI-15	NiV-M	ND	ND	ND		800 fold	ND					
						NiV-B	ND	ND	ND		100 fold	ND					
						rNiV-M/ZsG	ND	ND	ND		900 fold	ND					
					DI-16	NiV-M	ND	ND	ND		800 fold	ND					
						NiV-B	ND	ND	ND	1	90 fold	ND					

			rNiV-M/ZsG	ND	ND	ND	1000 fold	ND
		DI-35	NiV-M	ND	ND	ND	900 fold	ND
			NiV-B	ND	ND	ND	400 fold	ND
			rNiV-M/ZsG	ND	ND	ND	80 fold	ND
		DI-dTom	NiV-M	ND	ND	ND	80 fold	ND
			NiV-B	ND	ND	ND	80 fold	ND

CHO = Chinese hamster ovary; CPE = cytopathic effect; DIP = defective interfering particles; $EC_{50} = 50\%$ maximal effective concentration; $EC_{90} = 90\%$ maximal effective concentration; eGFP = enhanced Green Fluorescent Protein; EICAR = 5-Ethynyl-1-beta-D-ribofuranosyllmidazole-4-CARboxamide; Gluc = *Gaussia* luciferase; GRFT = griffithsin; HEK = human embryonic kidney; HeV = Hendra virus; HSAEC1 = human small airway epithelial cells; hTERT = human telomerase reverse transcriptase; $IC_{50} = 50\%$ maximal inhibitory concentration; N/A = not applicable; NCI = National Cancer Institute; ND = not done; NiV-B = Nipah virus Bangladesh; NiV-M = Nipah virus Malaysia; Rluc = *Renilla* luciferase; rNIV = recombinant Nipah virus; RFP = red fluorescent protein; TIME = hTERT immortalised microvascular endothelial cells; TLR3 = toll-like receptor 3; 3mG = trimeric monomeric griffithsin; VSV = vesicular stomatitis virus; YFP = yellow fluorescent protein; ZsG = *Zoanthus* sp. green fluorescent protein.

Table IV: Nipah & Hendra Virus Therapeutic Small Molecules (Exploratory *In Vitro* Studies)

Reference	Small Molecule (Mechanism)	Efficacy (Assay)	Safety (Assay)	Suitability for Animal Studies
Aljofan	Calcium flux modulators (viral replication	IC ₅₀ values:	CC ₅₀ values:	Potentially. A number are known
2010 ⁴⁴	inhibitors): 41 repurposed compounds	Micromolar to millimolar concentrations	Micromolar to millimolar concentrations	toxins, while others are licensed
		(High throughput screening immunolabelling assay with	(CellTiter-Glo assay on Vero cells)	drugs in widespread use.
		NiV-M and HeV on Vero cells)		
Aljofan	Brilliant green, gentian violet, gliotoxin	IC ₅₀ values:	CC ₅₀ values:	No. Dyes too toxic for systemic
2009 ⁴⁵	(mechanism unknown)	Brilliant green = 218nM (NiV-M), 778nM (HeV)	Brilliant green = 4672nM (293T), 861nM (Vero)	use which could instead be
		Gentian violet = 525nM (NiV-M), 2679nM (HeV)	Gentian violet = 5865nM (293T), 2828nM (Vero)	considered for topical use or
		Gliotoxin = 149nM (NiV-M), 579nM (HeV)	Gliotoxin = 4896nM (293T), 1609nM (Vero)	decontamination of surfaces.
		(High throughput screening immunolabelling assay with	(CellTiter-Glo assay in 293T cells and alamarBlue in	
		NiV-M and HeV on Vero cells)	Vero cells)	
Elshabrawy 2014 ⁴⁶	Cathepsin L inhibitors (viral entry	EC ₅₀ /IC ₅₀ values not given	CC ₅₀ values:	Potentially. Novel compounds
2014	inhibitors): 5705213, 7402683	5705213 and 7402683 inhibited NiV and HeV pseudovirus	5705213 = 400μM	identified through a high-
		entry by ~80% and ~90% at 100μM respectively	7402683 = 350μM	throughput screening assay.
		(Viral entry assays with NiV and HeV pseudoviruses on	(MTT assay in 293FT cells)	Need further testing with live
Hotord	R1479 (nucleoside analogue)	293FT cells)	CC ₅₀ value:	viruses. No. R1479 is metabolite of
Hotard 2017 ⁴⁷	R1479 (nucleoside analogue)	EC ₅₀ values (varying by assay and cell line):	CC ₅₀ value. R1479 >100μM	
2017		R1479 = 1.53-13.55μM (Reporter rNiV assays, CPE and titre reduction assays using	(CellTiter-Glo assay in NCI-H358 cells)	balapiravir which is inhibited by cytokines produced in dengue
		NiV-M and HeV, all in NCI-H358 and HeLa cells)	(CellTitel-Glo assay III NCI-H338 cells)	infection ⁴⁸ and is associated with
		Niv-ivi and riev, an in iver-11338 and riela cells)		dose-dependent lymphopenia.
Janardhana	Recombinant bat interferon-gamma (host	EC ₅₀ /IC ₅₀ values not given	Not tested	Potentially. First evidence of
2012 ⁴⁹	immunomodulator)	Bat IFN-γ significantly reduced number of HeV positive cells	Not tested	antiviral role of bat IFN-y.
2012		(Immunolabelling assay in bat kidney cells using HeV)		antivitatione of backing y.
Liu 2013 ⁵⁰	25-hydroxycholesterol (viral replication	EC ₅₀ /IC ₅₀ values not given	Lactate dehydrogenase level increased only after 30-	Potentially. Reduced HIV
	and fusion inhibitor)	25HC 5μM reduced viral titres by ~2 log at 72HPI	40h of treatment at 40μM of 25HC	infection in humanised mice in
	,	25HC 2μM reduced fusion by ~50% and 10μM by ~60%	(Adenosine triphosphate and lactate dehydrogenase	separate experiment in same
		(Titre reduction assay using NIV-B in HeLa cells & fusion	assays on HEK293 cells)	publication.
		assay using rNiV in Vero cells)		
Lo 2020 ³³	ALS-8112 (nucleoside analogue)	EC ₅₀ values (varying by assay and cell line):	CC ₅₀ values:	Potentially. ALS-8112 is parent
		ALS-8112 = 0.30-3.08μM	ALS-8112 >50μM	drug of lumicitabine which was
		(Reporter rNiV assays, CPE and titre reduction assays using	(CellTiterGlo assay in NCI-H358 and HSAEC1-KT cells)	withdrawn from development for
		NiV-M and NiV-B, all in NCI-H358 and HSAEC1-KT cells)		RSV due to paediatric
				neutropenia ⁵¹ .
Lo 2018 ⁵²	R1479 with 2'-monofluoro- or 2'-difluoro-	EC ₅₀ values (varying by assay and cell line):	CC ₅₀ values:	No. Greater potency with 2'-
	modifications (nucleoside analogues)	R1479 = 1.5-3.1μM	R1479 >100μM	fluoro-modified analogues than
		2'-monofluoro-R1479 = 0.14-0.37μM	2'-monofluoro-R1479 >100μM	R1479 but variable incorporation
		2'-difluoro-R1479 = 0.15-0.57μM	2'-difluoro-R1479 >100μM	of all by host mitochondrial RNA
		(Reporter rNIV assays, CPE and titre reduction assays using	(CellTiter-Glo assay on NCI-H358 cells)	and DNA polymerases limits
		NiV-M and HeV, all in NCI-H358 and HeLa cells)		viability.

McCaskill	Polyinosinic:polycytidylic acid (TLR3	EC ₅₀ /IC ₅₀ values not given	Not tested	No. Poly I:C toxicity along siRNA
2013 ⁵³	agonist) + small interfering ribonucleic	Poly I:C 1μg/ml + siRNA 1nM induced >98% (~1.5 log)		specificity, stability, and delivery
	acids (RNA interference)	reduction in HeV titre		challenges are limiting factors.
		(Titre reduction assay using HeV on HeLa cells)		
Mohr	OSU-03012 (host cell kinase inhibitor)	EC ₅₀ value:	CC ₅₀ value:	Potentially. Celecoxib oral
2015 ⁵⁴		OSU-03012 = 0.4μM	OSU-03012 = 8.2μM	derivative discontinued from
		(Reporter assay using rNiV-luciferase on HEK293 cells)	(CellTiter-Glo assay on HEK293 cells)	development for poor absorption
				and bioavailability.
Mungall	Small interfering ribonucleic acids (RNA	EC ₅₀ /IC ₅₀ values not given	Not tested	No. Challenges with specificity,
2008 ⁵⁵	interference)	Three siRNAs each at 50nM reduced replication by >60%		stability, and delivery.
		(Immunolabelling assay of NiV-M on BHK-21 cells)		
Niedemeier	Hydroxyquinoline compounds (viral fusion	EC ₅₀ value:	CC ₅₀ value:	Potentially. Small molecule
2009 ⁵⁶	inhibitors): compound 19	Compound 19 = 1.5μM	Compound 19 >20μM	inhibitor identified through in
		(Cell fusion assay with NiV-M in Vero cells)	(MTT assay on Vero cells)	silico screen. Compound 19 most
				active inhibitor of nine.
Pattabhi	Hydroxyquinoline compounds (interferon	EC ₅₀ /IC ₅₀ values not given	CC ₅₀ value:	Potentially. Derivative of
2016 ⁵⁷	regulatory factor 3 activation): KIN1408	KIN1408 5μM caused 1.5 log unit decrease in infectious NiV	KIN1408 >50μM	hydroxyquinoline compound
		(Treated HUVECs infected with NiV-M then cell culture	(CellTiter 96 Aqueous cell proliferation assay with	KIN1400 identified from a cell-
		supernatant analysed by plaque assay on Vero cells)	HEK293 or HuH7 cells)	based screen.
Porotto	Synthetic protocells (viral fusion	EC ₅₀ /IC ₅₀ values not given	Not tested	No. Artificial cell-like particles.
2011 ⁵⁸	inhibitors)	(Infection assay using NiV and HeV pseudovirus)		Unclear if sufficiently stable for in
				vivo testing.
Pu 2022 ⁵⁹	Furanyl methylidene rhodanine analogues	IC ₅₀ values:	CC ₅₀ values:	Potentially. Synthesised novel
	(viral fusion inhibitors): FD001, FD012	FD001 = 0.41±0.07μM	FD001 >50μM	compounds. Need further testing
		$FD0012 = 0.07 \pm 0.01 \mu M$	FD0012 41.69μM	with live virus.
		(Inhibition assay using NiV pseudovirus in U87 cells)	(Cell Counting Kit-8 on U87 cells)	
Shrestha	Saturated fused thiazole derivative	IC ₅₀ value:	CC ₅₀ value:	Potentially. Optimised novel
2021 ⁶⁰	compounds (viral replication inhibitors):	ZHAWOC21026 = 0.08μM	ZHAWOC21026 = 80μM	compound identified through a
	ZHAWOC21026	(Reporter assay using rNiV-eGFP in CHO pgsA-745 cells	(RealTime-Glo MT assay on CHO pgsA-745 cells	high-throughput screening assay.
		transfected with human ephrin-B2)	transfected with human ephrin-B2)	
Tigabu	Sulfonamide compounds (mechanism	EC ₅₀ values:	CC ₅₀ /EC ₅₀ selectivity indices:	Potentially. Novel compounds
2014 ⁶¹	unknown): AB00991123, AB00992391,	AB00991123 = 3.9μM	AB00991123 >40	identified through a high-
	AB003210	AB00992391 = 11.7μM	AB00992391 >12	throughput screening assay.
		AB003210 = 7.8μM	AB003210 >18	
		(Titre reduction assays using NiV-M on Vero cells)	(Viral ToxGlo assay on Vero cells)	
Wang	Bortezomib & MG132	IC ₅₀ values:	CC ₅₀ values:	Potentially. Bortezomib is USA
2010 ⁶²	(host cell proteasome inhibitors)	Bortezomib = 2.7nM	Bortezomib >2.5μM	FDA-approved for mantle cell
		MG132 = 0.47nM	MG132 >2.5μM	lymphoma. MG132 has limited in
		(Dose-response inhibition assays using NiV-M on HeLa cells)	(ToxiLight BioAssay kit on HeLa cells)	vivo utility due to configurational
				instability.
Wolf	LJ001 (viral entry inhibitor)	IC ₅₀ values:	In vitro:	No. Poor physiological stability.
2010 ⁶³		LJ001 = 0.5-1μM	Not toxic at effective antiviral concentrations.	Requires light for antiviral

(Titre reduction assay using NiV-M on Vero cells)	(Adenylate kinase, lactate dehydrogenase, and alamarBlue assays on Vero cells)	mechanism.
	In vivo:	
	No toxicity observed in female BALB/c mice dosed	
	PO or IP with 20mg/kg or 50mg/kg of compound,	
	other than slight elevation of serum cholesterol	
	levels.	

25HC = 25-hydroxycholesterol; BHK = baby hamster kidney; CC_{50} = 50% cytotoxicity concentration; CHO = Chinese Hamster Ovary; CPE = cytopathic effect; DNA = deoxyribonucleic acid; EC_{50} = 50% maximal effective concentration; eGFP = enhanced Green Fluorescent Protein; FDA = Food and Drug Administration; GFP = green fluorescent protein; HEK = human embryonic kidney; HeV = Hendra virus; HIV = human immunodeficiency virus; HPI = hours post infection; HSAEC = human small airway epithelial cells; HuH = human hepatoma; HUVEC = human umbilical vein endothelial cell; IC_{50} = 50% maximal inhibitory concentration; IFN- γ = interferon gamma; IP = intraperitoneal; MTT = 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NCI = National Cancer Institute; NiV = Nipah virus; NiV-B = Nipah virus Bangladesh; NiV-M = Nipah virus Malaysia; PFU = plaque forming units; PO = orally (per os); RNA = ribonucleic acid; rNiV = recombinant Nipah virus; RSV = respiratory syncytial virus; siRNA = small interfering ribonucleic acid; TLR3 = toll-like receptor 3; USA = United States of America.

Table V: Nipah & Hendra Virus Therapeutics Animal Challenge Studies by Drug, Viral Challenge Strain, and Animal Model

Drug	Nipah Virus Malaysia (NiV-M)	Nipah Virus Bangladesh (NiV-B)	Hendra Virus (HeV)
Monoclonal Antibodies	•		
m102.4	African green monkeys ¹³	African green monkeys ¹²	African green monkeys ¹⁴
	• 5 x 10 ⁵ PFU intratracheal	• 2.5 x 10 ⁵ PFU intratracheal + 2.5 x 10 ⁵ PFU intranasal	• 4 x 10 ⁵ TCID ₅₀ intratracheal
	Ferrets ²³		
	• 5 x 10 ³ TCID ₅₀ oronasal		
1F5 vs m102.4		African green monkeys ¹⁵	
		• 4 x 10 ⁴ PFU intranasal	
1F5 vs 12B2 vs 1F5 + 12B2		Syrian golden hamsters ¹⁵	
		• 5 x 10 ⁶ PFU intranasal	
h5B3.1	Ferrets ²²		Ferrets ²²
	• 5 x 10 ³ PFU intranasal		• 5 x 10 ³ PFU intranasal
NiV41		Syrian golden hamsters ²⁶	
		• 10 ⁵ TCID ₅₀ intraperitoneal	
NiV41-6	Syrian golden hamsters ²⁶		
	• 1000 LD ₅₀ intraperitoneal		
HENV-103, HENV-117, HENV-58,		Syrian golden hamsters ²⁷	
HENV-98, HENV-100		• 5 x 10 ⁶ PFU intranasal	
HENV-26, HENV-32		Ferrets ²¹	
		• 5 x 10 ³ PFU intranasal	
NipGIP1.7, Nip3B10, NipGIP35, NipGIP3	Syrian golden hamsters ²⁸		
	• 7.5 x 10 ² PFU (100 LD ₅₀) intraperitoneal		
NipGIP35, NipGIP3, NipGIP21, NipGIP7			Syrian golden hamsters ²⁹
			• 10 ³ PFU (100 LD ₅₀) intraperitoneal
Small Molecules			
Remdesivir		African green monkeys ¹⁶⁻¹⁸	
		• 10 ⁵ TCID ₅₀ intratracheal +	
		10 ⁵ TCID ₅₀ intranasal	
Favipiravir	Syrian golden hamsters ³⁰		
	 10⁴ PFU intraperitoneal 		

Ribavirin			African green monkeys ¹⁹
			• 4 x 10 ⁵ TCID ₅₀ intratracheal
Ribavirin vs 6-azauridine vs Rintatolimod	Syrian golden hamsters ³¹		
	• Experiment 1: 350 LD ₅₀ intraperitoneal		
	• Experiment 2: 35 LD ₅₀ intraperitoneal		
Ribavirin vs Chloroquine vs	Syrian golden hamsters ³²		Syrian golden hamsters ³²
Ribavirin + Chloroquine	• 10 ⁴ TCID ₅₀ intraperitoneal		• 10 ⁴ TCID ₅₀ intraperitoneal
Chloroquine	Ferrets ²⁵		
	• 5 x 10 ³ TCID ₅₀ (10 LD ₅₀) oronasal		
Griffithsin		Syrian golden hamsters ³⁸	
		• 10 ⁷ TCID ₅₀ intranasal	
Periodate heparin	Syrian golden hamsters ³⁴		
	• 500 LD ₅₀ intraperitoneal		
Fusion inhibitory lipopeptides	African green monkeys ²⁰		
	• 2 x 10 ⁷ PFU intratracheal		
	Syrian golden hamsters ^{20,35}		
	• 10 ⁶ PFU (100 LD ₅₀) intranasal ²⁰		
	• 100 LD ₅₀ intraperitoneal ³⁵		
Defective interfering particles	Syrian golden hamsters ³⁶		
	• 10 ⁴ TCID ₅₀ intraperitoneal or		
	10 ⁶ TCID ₅₀ intranasal		

 LD_{50} = median lethal dose, PFU = plaque forming units, $TCID_{50}$ = median tissue culture infectious dose.

One study of lipopeptides in Syrian golden hamsters³⁷ did not specify the Nipah virus strain used.

Risk of Bias Assessments - Additional Figures

Figure I: Risk of Bias Assessment of Randomised Clinical Trials by Individual Study

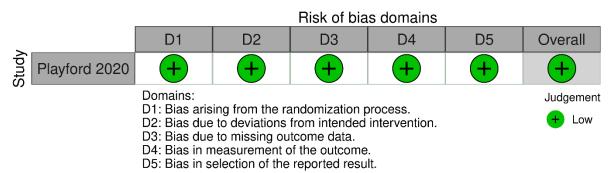


Figure II: Summary Risk of Bias Assessment of Non-randomised Clinical Studies

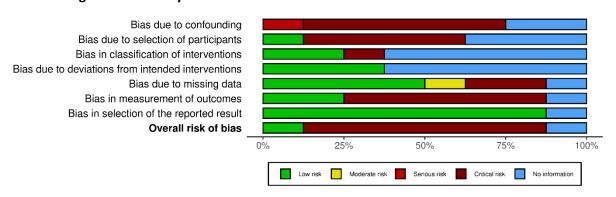


Figure III: Risk of Bias Assessment of Observational Studies by Individual Study

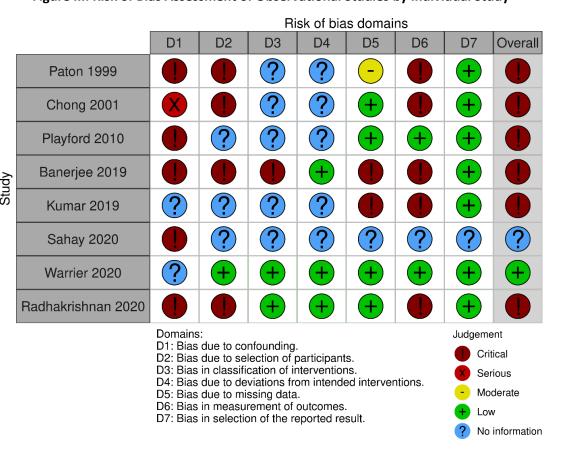


Figure IV: Summary Risk of Bias Assessment of Animal Studies

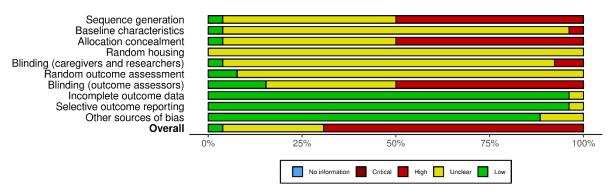
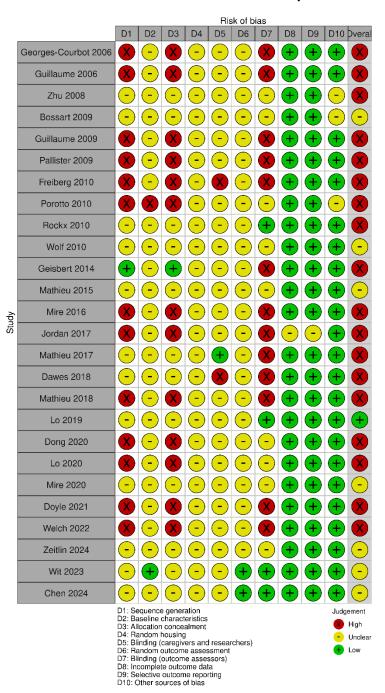



Figure V: Risk of Bias Assessment of Animal Studies by Individual Study

PRISMA 2020 CHECKLIST

Section and Topic	Item #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	Title
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Abstract
INTRODUCTION	ON		
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Introduction
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Introduction
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Methods – Eligibility Criteria Methods – Data Analysis
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Methods – Search Strategy
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used. Solution in the full search strategies for all databases, registers and websites, including any filters and limits used.	
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Methods – Review Team & Tools
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Methods – Data Extraction Methods – Review Team & Tools
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Methods – Data Extraction
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Methods – Data Extraction
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Methods – Quality Assessment Methods – Review Team & Tools

Section and Topic	Item #	Checklist item	Location where item is reported
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Methods – Data Analysis
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Methods – Data Analysis
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	N/A
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Methods – Data Analysis
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Methods – Data Analysis
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	N/A
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	N/A
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Methods – Quality Assessment
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	N/A
RESULTS	<u> </u>		
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Figure 1
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Results – Included Studies Supplementary Results – Included Studies
Study characteristi cs	17	Cite each included study and present its characteristics.	Tables 1-2, Supplementary Tables I-V
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Supplementary Figures I-V
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	N/A

Section and Topic	Item #	Checklist item	Location where item is reported
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	N/A
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	N/A
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	N/A
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	N/A
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	N/A
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Discussion
	23b	Discuss any limitations of the evidence included in the review.	Discussion
	23c	Discuss any limitations of the review processes used.	Discussion
	23d	Discuss implications of the results for practice, policy, and future research.	Discussion
OTHER INFO	RMATIO	V	
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	Methods
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Methods
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	N/A
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Methods – Role of the Funding Source Acknowledgements
Competing interests	26	Declare any competing interests of review authors.	N/A
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	Methods – Data Extraction & Data Analysis

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

For more information, visit: http://www.prisma-statement.org/

References

- 1. Playford EG, Munro T, Mahler SM, et al. Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the g glycoprotein of henipaviruses in healthy adults: a first-in-human, randomised, controlled, phase 1 study. *Lancet Infectious Diseases* 2020; **20**(4): 445-54.
- 2. Playford EG, McCall B, Smith G, et al. Human Hendra virus encephalitis associated with equine outbreak, Australia, 2008. *Emerging Infectious Diseases* 2010; **16(2)**: 219-23.
- 3. Banerjee S, Niyas VKM, Soneja M, et al. First experience of ribavirin postexposure prophylaxis for Nipah virus, tried during the 2018 outbreak in Kerala, India. *Journal of Infection* 2019; **78(6)**: 491-503.
- 4. Kumar ASA, Sohanlal T, Prasad G, Gupta M, Gopal A. Single-center experience and lessons learnt from management of NIPAH virus outbreak in India. *Open Forum Infectious Diseases* 2019; **6(Supplement 2)**: S659-S60.
- 5. Radhakrishnan C, Renjith TP, Arshad F, et al. Clinical manifestations of Nipah virus-infected patients who presented to the emergency department during an outbreak in Kerala state in India, May 2018. *Clinical Infectious Diseases* 2020; **71**(1): 152-7.
- 6. Warrier A. A single case outbreak of Nipah Encephalitis from India in May-June 2019. *International Journal of Infectious Diseases* 2020; **101(Supplement 1)**: 247.
- 7. Sahay RR, Yadav PD, Gupta N, et al. Experiential learnings from the Nipah virus outbreaks in Kerala towards containment of infectious public health emergencies in India. *Epidemiol Infect* 2020; **148**: e90.
- 8. Paton NI, Leo Y, Zaki SR, et al. Outbreak of Nipah-virus infection among abattoir workers in Singapore. *Lancet* 1999; **354**(9186): 1253-6.
- 9. Chong HT, Kamarulzaman A, Tan CT, et al. Treatment of acute Nipah encephalitis with ribavirin. *Annals of Neurology* 2001; **49(6)**: 810-3.
- 10. Tan CT, Wong KT. Nipah encephalitis outbreak in Malaysia. *Annals of the Academy of Medicine Singapore* 2003; **32(1)**: 112-7.
- 11. Gayathri K. An observational study in the setting of Nipah virus outbreak Kerala 2018. *Lung India* 2019; **36(9 Supplement)**: S172-S3.
- 12. Mire CE, Satterfield BA, Geisbert JB, et al. Pathogenic Differences between Nipah Virus Bangladesh and Malaysia Strains in Primates: Implications for Antibody Therapy. *Scientific Reports* 2016; **6**.
- 13. Geisbert TW, Mire CE, Geisbert JB, et al. Therapeutic treatment of Nipah virus infection in nonhuman primates with a neutralizing human monoclonal antibody. *Science Translational Medicine* 2014; **6(242) (no pagination)**.
- 14. Bossart KN, Geisbert TW, Feldmann H, et al. A Neutralizing Human Monoclonal Antibody Protects African Green Monkeys from Hendra Virus Challenge. *Science Translational Medicine* 2011; **3**(105).
- 15. Zeitlin L, Cross RW, Woolsey C, et al. Therapeutic administration of a cross-reactive mAb targeting the fusion glycoprotein of Nipah virus protects nonhuman primates. *Sci Transl Med* 2024; **16**(741): eadl2055.
- 16. de Wit E, Williamson BN, Feldmann F, et al. Late remdesivir treatment initiation partially protects African green monkeys from lethal Nipah virus infection. *Antiviral Res* 2023; **216**: 105658.
- 17. Lo MK, Feldmann F, Gary JM, et al. Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. *Sci Transl Med* 2019; **11**(494).
- 18. Jordan R, Hogg A, Warren T, et al. Broad-spectrum investigational agent GS-5734 for the treatment of ebola, mers coronavirus and other pathogenic viral infections with high outbreak potential. *Open Forum Infectious Diseases* 2017; **4(Supplement 1)**: S737.

- 19. Rockx B, Bossart KN, Feldmann F, et al. A novel model of lethal Hendra virus infection in African green monkeys and the effectiveness of ribavirin treatment. *Journal of Virology* 2010; **84(19)**: 9831-9.
- 20. Mathieu C, Porotto M, Figueira TN, Horvat B, Moscona A. Fusion Inhibitory Lipopeptides Engineered for Prophylaxis of Nipah Virus in Primates. *J Infect Dis* 2018; **218**(2): 218-27.
- 21. Dong J, Cross RW, Doyle MP, et al. Potent Henipavirus Neutralization by Antibodies Recognizing Diverse Sites on Hendra and Nipah Virus Receptor Binding Protein. *Cell* 2020; **183**(6): 1536-50.e17.
- 22. Mire CE, Chan Y-P, Borisevich V, et al. A Cross-Reactive Humanized Monoclonal Antibody Targeting Fusion Glycoprotein Function Protects Ferrets Against Lethal Nipah Virus and Hendra Virus Infection. *Journal of Infectious Diseases* 2020; **221**: S471-S9.
- 23. Bossart KN, Zhu Z, Middleton D, et al. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute Nipah virus infection. *PLoS Pathogens* 2009; **5(10)** (no pagination).
- 24. Zhu Z, Bossart KN, Bishop KA, et al. Exceptionally potent cross-reactive neutralization of Nipah and Hendra viruses by a human monoclonal antibody. *Journal of Infectious Diseases* 2008; **197(6)**: 846-53.
- 25. Pallister J, Middleton D, Crameri G, et al. Chloroquine administration does not prevent Nipah virus infection and disease in ferrets. *Journal of Virology* 2009; **83(22)**: 11979-82.
- 26. Chen L, Sun M, Zhang H, et al. Potent human neutralizing antibodies against Nipah virus derived from two ancestral antibody heavy chains. *Nat Commun* 2024; **15**(1): 2987.
- 27. Doyle MP, Kose N, Borisevich V, et al. Cooperativity mediated by rationally selected combinations of human monoclonal antibodies targeting the henipavirus receptor binding protein. *Cell Reports* 2021; **36(9) (no pagination)**.
- 28. Guillaume V, Contamin H, Loth P, et al. Antibody prophylaxis and therapy against Nipah virus infection in hamsters. *Journal of Virology* 2006; **80(4)**: 1972-8.
- 29. Guillaume V, Wong KT, Looi RY, et al. Acute Hendra virus infection: Analysis of the pathogenesis and passive antibody protection in the hamster model. *Virology* 2009; **387**(2): 459-65.
- 30. Dawes BE, Kalveram B, Ikegami T, et al. Favipiravir (T-705) protects against Nipah virus infection in the hamster model. *Scientific Reports* 2018; **8**(1).
- 31. Georges-Courbot MC, Contamin H, Faure C, et al. Poly(I)-poly(C12U) but not ribavirin prevents death in a hamster model of Nipah virus infection. *Antimicrob Agents Chemother* 2006; **50**(5): 1768-72.
- 32. Freiberg AN, Worthy MN, Lee B, Holbrook MR. Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection. *Journal of General Virology* 2010; **91(3)**: 765-72.
- 33. Lo MK, Amblard F, Flint M, et al. Potent in vitro activity of β -D-4'-chloromethyl-2'-deoxy-2'-fluorocytidine against Nipah virus. *Antiviral Research* 2020; **175**.
- 34. Mathieu C, Dhondt KP, Chalons M, et al. Heparan sulfate-dependent enhancement of henipavirus infection. *Mbio* 2015; **6(2) (no pagination)**.
- 35. Mathieu C, Augusto MT, Niewiesk S, et al. Broad spectrum antiviral activity for paramyxoviruses is modulated by biophysical properties of fusion inhibitory peptides. *Scientific Reports* 2017; **7**.
- 36. Welch SR, Spengler JR, Harmon JR, et al. Defective Interfering Viral Particle Treatment Reduces Clinical Signs and Protects Hamsters from Lethal Nipah Virus Disease. *Mbio* 2022; **13**(2): e0329421.
- 37. Porotto M, Rockx B, Yokoyama CC, et al. Inhibition of Nipah Virus Infection In Vivo: Targeting an early stage of paramyxovirus fusion activation during viral entry. *PLoS Pathogens* 2010; **6(10)** (no pagination).

- 38. Lo MK, Spengler JR, Krumpe LRH, et al. Griffithsin inhibits Nipah virus entry and fusion and can protect Syrian golden hamsters from lethal Nipah virus challenge. (Special Issue: Twenty years of Nipah virus research.). *Journal of Infectious Diseases* 2020; **221**(Suppl. 4): S480-S92.
- 39. Lo MK, Jordan R, Arvey A, et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. *Scientific Reports* 2017; **7**.
- 40. Lo MK, Shrivastava-Ranjan P, Chatterjee P, et al. Broad-Spectrum In Vitro Antiviral Activity of ODBG-P-RVn: An Orally-Available, Lipid-Modified Monophosphate Prodrug of Remdesivir Parent Nucleoside (GS-441524). *Microbiology Spectrum* 2021; **9(3) (no pagination)**.
- 41. Wright PJ, Crameri G, Eaton BT. RNA synthesis during infection by Hendra virus: an examination by quantitative real-time PCR of RNA accumulation, the effect of ribavirin and the attenuation of transcription. *Archives of Virology* 2005; **150**(3): 521-32.
- 42. Porotto M, Orefice G, Yokoyama CC, et al. Simulating henipavirus multicycle replication in a screening assay leads to identification of a promising candidate for therapy. *Journal of Virology* 2009; **83(10)**: 5148-55.
- 43. Welch SR, Tilston NL, Lo MK, et al. Inhibition of Nipah virus by defective interfering particles. (Special Issue: Twenty years of Nipah virus research.). *Journal of Infectious Diseases* 2020; **221**(Suppl. 4): S460-S70.
- 44. Aljofan M, Lo MK, Rota PA, Michalski WP, Mungall BA. Off Label Antiviral Therapeutics for Henipaviruses: New Light Through Old Windows. *J Antivir Antiretrovir* 2010; **2**(1): 1-10.
- 45. Aljofan M, Sganga ML, Lo MK, et al. Antiviral activity of gliotoxin, gentian violet and brilliant green against Nipah and Hendra virus in vitro. *Virology Journal* 2009; **6 (no pagination)**.
- 46. Elshabrawy HA, Fan J, Haddad CS, et al. Identification of a Broad-Spectrum Antiviral Small Molecule against Severe Acute Respiratory Syndrome Coronavirus and Ebola, Hendra, and Nipah Viruses by Using a Novel High-Throughput Screening Assay. *Journal of Virology* 2014; **88**(8): 4353-65.
- 47. Hotard AL, He B, Nichol ST, Spiropoulou CF, Lo MK. 4'-Azidocytidine (R1479) inhibits henipaviruses and other paramyxoviruses with high potency. *Antiviral Research* 2017; **144**: 147-52.
- 48. Nguyen NM, Tran CN, Phung LK, et al. A randomized, double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in adult dengue patients. *J Infect Dis* 2013; **207**(9): 1442-50.
- 49. Janardhana V, Tachedjian M, Crameri G, Cowled C, Wang LF, Baker ML. Cloning, expression and antiviral activity of IFNgamma from the Australian fruit bat, Pteropus alecto. *Developmental and Comparative Immunology* 2012; **36(3)**: 610-8.
- 50. Liu SY, Aliyari R, Chikere K, et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. *Immunity* 2013; **38**(1): 92-105.
- 51. Oey A, McClure M, Symons JA, et al. Lumicitabine, an orally administered nucleoside analog, in infants hospitalized with respiratory syncytial virus (RSV) infection: Safety, efficacy, and pharmacokinetic results. *PLoS One* 2023; **18**(7): e0288271.
- 52. Lo MK, Jordan PC, Stevens S, et al. Susceptibility of paramyxoviruses and filoviruses to inhibition by 2'-monofluoro- and 2'-difluoro-4'-azidocytidine analogs. *Antiviral Research* 2018; **153**: 101-13.
- 53. McCaskill JL, Marsh GA, Monaghan P, Wang LF, Doran T, McMillan NAJ. Potent Inhibition of Hendra Virus Infection via RNA Interference and Poly I: C Immune Activation. *PLoS ONE* 2013; **8(5)** (no pagination).
- 54. Mohr EL, McMullan LK, Lo MK, et al. Inhibitors of cellular kinases with broad-spectrum antiviral activity for hemorrhagic fever viruses. *Antiviral Research* 2015; **120**: 40-7.
- 55. Mungall BA, Schopman NCT, Lambeth LS, Doran TJ. Inhibition of Henipavirus infection by RNA interference. *Antiviral Research* 2008; **80(3)**: 324-31.
- 56. Niedermeier S, Singethan K, Rohrer SG, et al. A Small-Molecule Inhibitor of Nipah Virus Envelope Protein-Mediated Membrane Fusion. *Journal of Medicinal Chemistry* 2009; **52**(14): 4257-65.
- 57. Pattabhi S, Wilkins CR, Dong R, et al. Targeting innate immunity for antiviral therapy through small molecule agonists of the RLR pathway. *Journal of Virology* 2016; **90(5)**: 2372-87.

- 58. Porotto M, Yi F, Moscona A, LaVan DA. Synthetic Protocells Interact with Viral Nanomachinery and Inactivate Pathogenic Human Virus. *PLoS ONE* 2011; **6**(3).
- 59. Pu J, He X, Xu W, et al. The Analogs of Furanyl Methylidene Rhodanine Exhibit Broad-Spectrum Inhibitory and Inactivating Activities against Enveloped Viruses, including SARS-CoV-2 and Its Variants. *Viruses* 2022; **14**(3).
- 60. Shrestha N, Gall FM, Mathieu C, et al. Highly Potent Host-Specific Small-Molecule Inhibitor of Paramyxovirus and Pneumovirus Replication with High Resistance Barrier. *Mbio* 2021; **12(6)** (no pagination).
- 61. Tigabu B, Rasmussen L, White EL, et al. A BSL-4 high-throughput screen identifies sulfonamide inhibitors of Nipah virus. *Assay and Drug Development Technologies* 2014; **12(3)**: 155-61.
- 62. Wang YE, Park A, Lake M, et al. Ubiquitin-regulated nuclear-cytoplasmic trafficking of the Nipah virus matrix protein is important for viral budding. *PLoS Pathogens* 2010; **6(11) (no pagination)**.
- 63. Wolf MC, Freiberg AN, Zhang T, et al. A broad-spectrum antiviral targeting entry of enveloped viruses. *Proceedings of the National Academy of Sciences of the United States of America* 2010; **107(7)**: 3157-62.