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Purpose: To develop a deep learning model for objective evaluation of experimental
autoimmuneuveitis (EAU), the animalmodel of posterior uveitis that reveals its essential
pathological features via fundus photographs.

Methods: We developed a deep learning construct to identify uveitis using reference
mouse fundus images and further categorized the severity levels of disease into mild
and severe EAU. We evaluated the performance of the model using the area under
the receiver operating characteristic curve (AUC) and confusion matrices. We further
assessed the clinical relevance of the model by visualizing the principal components
of features at different layers and through the use of gradient-weighted class activa-
tionmaps, which presented retinal regions having themost significant influence on the
model.

Results:Our model was trained, validated, and tested on 1500 fundus images (training,
1200; validation, 150; testing, 150) and achieved an average AUC of 0.98 for identify-
ing the normal, trace (small and local lesions), and disease classes (large and spreading
lesions). The AUCs of the model using an independent subset with 180 images were
1.00 (95% confidence interval [CI], 0.99–1.00), 0.97 (95% CI, 0.94–0.99), and 0.96 (95% CI,
0.90–1.00) for the normal, trace and disease classes, respectively.

Conclusions: The proposed deep learningmodel is able to identify three severity levels
of EAU with high accuracy. The model also achieved high accuracy on independent
validation subsets, reflecting a substantial degree of generalizability.

Translational Relevance: The proposed model represents an important new tool for
use in animal medical research and provides a step toward clinical uveitis identification
in clinical practice.
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Introduction

Posterior uveitis represents a diverse group of
potentially sight-threatening intraocular inflammatory
diseases of infectious or autoimmune etiology that
includes, but is not limited to, Behçet’s disease, birdshot
retinochoroidopathy, Vogt–Koyanagi–Harada disease,
sympathetic ophthalmia, and ocular sarcoidosis. Poste-
rior uveitis accounts for more than 10% of severe
visual handicaps in the United States.1 Experimen-
tal autoimmune uveitis (EAU) is an animal disease
that shares essential pathological features with human
uveitis and is widely used as the animal model for
uveitis. It is a predominantly T-cell-mediated intraocu-
lar inflammatory disease induced in susceptible species
by active immunization with retinal proteins or their
peptides. EAU is a valuable model for studying the
mechanisms of human uveitis and for evaluating the
efficacy of new therapies and diagnostic methodolo-
gies.2 However, clinical assessment and evaluation of
disease severity are subject to substantial inter- and
intra-observer variability.3 For example, some mild
pathological changes are oftenmisdiagnosed by human
clinicians.4 However, accurate detection and monitor-
ing of disease severity are crucial for tailoring medical
therapy to avoid performing therapeutic interven-
tions that carry risks of significant adverse ocular
and systemic side effects. Development of automated
tools to objectively and accurately characterize uveitis-
induced pathological changes is an unmet need.

Artificial intelligence (AI) has emerged as a powerful
method to assist humans in routine and complex tasks
in science and medicine.5,6,7–10 In recent years, deep
learning, which is a subfield of AI, has been success-
fully applied to the diagnosis of human retinal diseases,
including diabetic retinopathy,11,12 glaucoma,13,14 and
age-related macular degeneration.15–17 Several deep
learning-based models have been developed to recog-
nize a variety of retinal conditions. Son et al.4 recently
reported a series of models that identify 12 types of
retina lesions based on analysis of fundus images with
accuracy comparable to that of experienced ophthal-
mologists. Thus, deep learning models such as convo-
lutional neural networks (CNNs) hold promise for
providing unbiased detection and classification systems
for retinal diseases.9

Although the CNNs that form the basis of deep
learning in human clinical settings have been well
developed, few studies have applied deep learning to
veterinary ophthalmology or laboratory research. We
hypothesize that disease features in mouse models
could also be effectively analyzed and scored automati-
cally by deep learning and could potentially be general-

ized for further implementation in animal-based clini-
cal studies and practice.

In this study, we developed a CNNmodel to provide
unbiased characterization of uveitis in mice based on
analysis of mouse fundus images. We first employed
transfer learning techniques to reuse pretrainedmodels
in recognizing general features in images, and then
we adapted the construct to specifically learn EAU-
induced signs in fundus images. Our results demon-
strated remarkable accuracy in both testing and
independent validation subsets.

Methods

Dataset of Experimental Autoimmune Uveitis

EAU was induced by active immunization with
150 μg bovine interphotoreceptor retinoid-binding
protein (IRBP) and 300 μg human IRBP peptide,
amino acid residues 1 to 20 (IRBP1–20) in a 0.2-mL
emulsion 1:1 v/v with Complete Freund’s Adjuvant
containing Mycobacterium tuberculosis strain H37Ra
(2.5mg/mL). Mice also received Bordetella pertussis
toxin (1 μg/mouse) concurrent with immunization.
Mice were matched by age and sex, and for most
experiments 6- to 8-week-old mice were used (14 mice
per group). Clinical disease was established and scored
by fundoscopy as described previously. Mice were
maintained and used in accordance with National Eye
Institute, National Institutes of Health Animal Care
andUse Committee (ACUC) guidelines (Animal Study
Proposals EY000262-19 and EY000372-14) and the
study protocol was approved by the ACUC. The study
relied on three images datasets to build the classifiers:
in-house dataset, independent dataset, and external
dataset (Fig. 1; Supplementary Table S1).

The in-house dataset included 1500 color fundus
images captured by Micron III fundoscopy (Phoenix
Technology Group, Pleasanton, CA). Two animal
experimentalists independently labeled each fundus
image, and disagreements were resolved through
discussion and input from the third animal experimen-
talist. Several sample images are shown in Figure 2. The
normal class refers to images with no obvious lesion,
whereas the trace class corresponds to images with
optic disc edema and/or vasculitis. The disease class
includes optic disc edema and vasculitis plus retina
folds. The disease class was essentially assigned based
on lesion size and location (Fig. 2).

The independent dataset included 180 fundus
images that were annotated similarly to the in-house
dataset but was kept aside for independent valida-
tion. The original resolution of images in these two
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Figure 1. Workflow of our experimental design.

Figure2. In-housedatasets forC57B6micewereused for the study.
Fundus images were collected 14 days after immunization. Images
were labeled as normal, trace, or disease. We selected 1500 images
for model training, validation, and testing. An independent dataset
of 180 images and an external dataset of 33 images were used
for additional testing. White arrow, optic disc edema; black arrow,
vasculitis; yellow arrow, retina folds.

datasets was 1024 × 768 pixels. Finally, the external
dataset contained 33 color fundus images obtained
from published EAU-related18–21 research papers by
scanning or copying and digitizing images. Supple-

mentary Figure S1 shows retesting (validation) in the
independent subset, and Supplementary Figure S2
demonstrates retesting (validation) of the model using
the external dataset. Some of the fundus images will be
available upon request (dlvision4us@gmail.com).

Overall Model

We first established a data analytics workflow before
applying the CNNs in order to automatically perform
an end-to-end process (Fig. 1). The data analytics
workflow was comprised of the following tasks:

1. Data preprocessing
2. Model building and training
3. Model evaluations and interpretation

Unlike conventional machine learning models, CNNs
do not require any human feature engineering efforts
or intervention, as they take advantage of the hierar-
chical pattern in images and automatically assemble
more complex patterns using smaller and simpler visual
patterns. This independence from prior knowledge of
the disease visual patterns is a major advantage that is
key to eliminating the need for human effort and exper-
tise to describe the disease in terms of its visual features.
More details on the CNNs are provided in the next
section.

mailto:dlvision4us@gmail.com
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Data Preprocessing

Because the original resolution of these images
varied, all images were preprocessed and resized to
a fixed resolution of 224 × 224 pixels. The in-house
dataset (1500 images) was split into training, valida-
tion, and testing datasets at the ratio of 8:1:1 to
build the model; the independent and external datasets
were used only for testing. To make the model robust
to withstand any spatial variation in fundus images
and to reduce the likelihood of overfitting while
making the model more generalizable to new samples,
we performed data augmentation, which substantially
increased the size of the training dataset, as well.
Specifically, randomized horizontal flip, vertical flip,
180° rotation, left skew, right skew, and zoom (1.5, 1.5)
were applied to images (Supplementary Fig. S3). The
new augmented subset included 1800 images, 600 per
class.

CNNModel for Disease Classification

CNNs have been commonly applied to image classi-
fication problems. It has been demonstrated that CNNs
are powerful machine learning models that can extract
a pool of features from images at different resolu-
tions and perform successful classification tasks.22 A
number of state-of-the-art CNN architectures have
been published in the past decade, such as VGG,23
Inception,24 and MobileNet,23,25,26 and have been
successfully adapted to medical analysis and appli-
cations.27 While developing effective CNN architec-
tures to handle small subsets, we utilized appropriate
numbers of samples to train the CNN model. We used
a deep CNN architecture based on VGG-16,23 and we
then adapted the VGG-16 pretrained model to solve
our classification problem. The VGG-16, a state-of-
the-art deep neural network, has achieved 92.7% top-
five test accuracy in the ImageNet28 dataset of over
14 million images. In the VGG-16, images have been
downsampled to a fixed resolution of 224 × 224 pixels
and mapped to 1000 classes.

Supplementary Figure S4 depicts the proposed
CNN. The inputs to the CNN model are fundus
images; the output layer contains neurons with a
Softmax activation function to produce a probabil-
ity distribution for three classes of normal, trace, and
disease. The deep convolutional layers of the pretrained
VGG-16 model were used as powerful feature extrac-
tors, and the dense and Softmax layers that gave rise
to the three classes were added and retrained using our
EAU fundus images (Supplementary Fig. S4).

Model Training and Prediction

Multiple versions of the CNN model were gener-
ated by fine tuning and adjusting various hyperparam-
eters. More specifically, batch normalization was used
with batch sizes set as 10. The model was trained on
a graphics processing unit for 50 epochs, and the best
model (monitored based on accuracy) was selected.
Adam optimization was used, and the initial learn-
ing rate was set at 0.001 (Supplementary Fig. S5).
Weights of the deep convolutional layer of the VGG-16
pretrained model were frozen, and the weights in dense
layers were updated during the training process.

The categorical cross entropy is used as a loss
function for the multiclassification and is expressed as

L (y, ŷ) = −ylogŷ − (1 − y) log (1 − ŷ) (1)

The cost function of the total training images is
expressed as

J (w, b) = − 1
m

∑m

i=1

[
(y(i)logŷ(i)

+ (
1 − y(i)

)
log

(
1 − logŷ(i)

) ]
(2)

where y is the true label of the image, and ŷ is the model
predicted label.

Confusionmatrices andAUCswere used to evaluate
the models. We also computed the specificity and sensi-
tivity of the models with regard to detecting normal
and EAU. Specificity and sensitivity are defined as

Speci f icity = TP
TP + FP

(3)

Sensitivity = TN
TN + FN

(4)

Each image from the test set was resized to 3 × 224
× 224 pixels and then reshaped to a one-dimensional
vector of size (1, 3 × 224 × 224). The whole test set
was transformed to a matrix of size (150, 3 × 224 ×
224), and the pixel values were rescaled to the range
of (0, 1). Principal components analysis (PCA) and
t-distributed stochastic neighbor embedding (t-SNE)
were performed on the whole test set, and three major
components were used to visualize the distribution in
three dimensions.
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Figure 3. Visualization of the in-house testing dataset in a three-dimensional space. (A) Visualization by PCA, and (B) visualization by t-SNE.
Each circle represents a fundus image.

Figure 4. Evaluation of the CNNmodel. (A) The model was evaluated on the in-house testing dataset (150 images). (B) AUCs and 95% CIs
were calculated for each class. (C) Confusion matrix for the in-house test dataset; numbers represent percentages.

Model Evaluation Results

Classification of EAU Severity Based on
Fundus Images

In reference to the workflow illustrated in Figure
1 and the data preprocessing section, the in-house
dataset included 1500 mouse fundus images captured
from naive mice or EAU disease mice (Fig. 2) and
equally distributed into 500 images in each class:
normal, trace, or disease. To identify the degree of

overlap of fundus images in the original space, we first
applied PCA and t-SNE to visualize the images in
the testing dataset. We found a significant degree of
overlap among images from the three groups (Fig. 3).
This demonstrated that features from original fundus
images without CNNs were not successfully captured
by linear PCA or nonlinear t-SNE.We then trained the
CNN models to learn the underlying features of those
images to identify EAU.

Figure 4 shows the receiver operating curve (ROC)
of the in-house testing dataset. The AUCs were 1.00
(95% confidence interval [CI], 0.99–1.00), 0.97 (95%
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Table 1. Model Evaluation Metrics on the In-House
Testing Dataset

Class Sensitivity Specificity

Normal 0.98 1.00
Trace 0.92 0.91
Disease 0.84 0.96

A total of 150 testing images (50 per class) were used for
the model evaluation. See Figure 4.

Table 2. Model Evaluation Metrics on the Indepen-
dent Testing Dataset

Class AUC 95% CI

Normal 1.00 0.99–1.00
Trace 0.97 0.94–1.00
Disease 0.96 0.90–1.00

A total of 180 testing images (60 per class) were used for
the model evaluation.

CI, 0.94–1.00), and 0.96 (95% CI, 0.92–0.99) for the
normal, trace, and disease classes, respectively (Fig. 4).
Sensitivity values were 0.98, 0.92, and 0.84 for
the normal, trace, and disease classes, respectively,
and specificity values were 1.00, 0.91, and 0.96 for
the normal, trace, and disease classes, respectively
(Table 1). We examined the images that were misclassi-
fied and observed that the highest confusion occurred
between normal and trace or between trace and disease
(Fig. 4C); however, the model was able to classify all
normal occurrences correctly. Therefore, the late stage
of EAU can be successfully and accurately detected by
the proposed model.

To ensure the generalizability and robustness of the
model for detecting EAU, out of the initial training,
testing, and validation data we retested the model on
a subset of images collected separately after devel-
oping the model. This independent testing dataset
included a total of 180 images with 60 images from
each group. The weighted AUC of the model on this
subset initially indicated a high degree of generaliz-
ability for the independent data. To further assess the
developed model on a dataset that was not collected
in our laboratory, we collected an external dataset
comprised of images published in the literature on the
same subject. The external dataset included 33 EAU
images with average resolution significantly lower than
our in-house and independent datasets (Supplemen-
tary Fig. S6). Nevertheless, the AUC of the model
using this subset was approximately 0.90. The detailed
statistics of the model performance are summarized
in Tables 2 and 3.

Table 3. Model Evaluation Metrics on the External
Testing Dataset

Class AUC 95% CI

Normal 0.99 0.95–1.00
Trace 0.88 0.74–1.00
Disease 0.90 0.76–1.00

A total of 33 testing images (11 per class) were used for the
model evaluation.

We compared the performance of our CNN model
with that of human experts. Two human experts in
EAU had annotated our independent testing dataset
with 180 images into the three classes of normal, trace,
or disease. Their overall accuracy rates were 0.93 and
0.94, respectively. The kappa score was 0.86 (95% CI,
0.81–0.91) (Supplementary Table S2).

Interpretability of the CNNModel

To illuminate the black-box nature of the deep
learning models and explain findings, we implemented
two approaches. To directly analyze image features
transformed by our model, we used PCA to visual-
ize the output feature representations of each layer.
The single dense layer clearly separated our testing
dataset into three distinct groups, and the pattern was
consistent with outcome of the deep learning model
(Fig. 5A); in contrast, convolution layers do not have
obvious capacity of class separation (Fig. 5B). To
understand which parts of the retina (area on the
fundus images) contributes the most to the deep learn-
ing class assignment (output probability distributions),
we generated gradient-weighted class activation maps
(Grad-CAMs) corresponding to different convolution
layers.29 The feature map generated by the last convo-
lutional layer was directly used to calculate the proba-
bility distribution. By overlaying Grad-CAMs with the
original images, we found that the last convolution
layer was primarily looking at three retinal regions
(areas on the fundus image): optic disc, blood vessels,
and periphery fundus areas (Fig. 5C). This is quite
similar to the clinical manifestation of EAU and in line
with the grading process executed by human experts.
Therefore, ourmodel not only achieved a high accuracy
in identifying EAU but also provided outcome with
clinical relevance.

Discussions

In this study, we proposed a deep learning model to
automatically detect disease features in mouse retina.
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Figure 5. Interpretability of the CNN model based on the in-house testing dataset. (A) PCA visualization of feature representations from
the output of the first dense layer. (B) PCA visualization of feature representations from the output of the last convolution layer. Each circle
represents a fundus image. (C) Class activation map for the output of the last convolution layer.

We have used the mouse EAU model to demonstrate
that a well-designed deep learning models can assist
clinicians and other experts in consistently making
accurate and unbiased diagnoses of the severity of
uveitis. Our CNN model achieved an average AUC
of 0.98 using 1200 fundus images for training. To
ensure generalizability, we retested the model on an
independent subset of images that were collected
after we developed the model, and we achieved a
similar AUC of 0.98. More strikingly, our model
was able to classify images used in EAU publica-
tions with an AUC of over 0.90.18–21 In our analy-
sis, we built numerous AI models, including VGG-
16, Inception-v3, and MobileNetV2, but we achieved
the best accuracy by using a VGG-16-based trans-
fer learning model. To our knowledge, this is the
first model developed for studying EAU. Our model
achieved slightly better performance than human
experts, and eliminated inter- and intra-observer
variations.

A number of deep-learning-based image classifi-
cation models have been developed for clinical use
on human patients,30 because deep learning models
have shown substantial advantages in at least three

aspects: (1) consistency in eliminating inter- and intra-
observer variations; (2) accuracy in successfully learn-
ing complex features and patterns at various resolu-
tions to achieve a high rate of accuracy, whereas human
experts rely on experience and extensive training; and
(3) cost-effectiveness in reducing the tedious and costly
process of annotations by human experts. Although
they typically apply to clinical research and practice,
the same justifications can be applied to experimen-
tal animal research, as well. The application of deep
learning to experimental animal research can lead to
standardization in the interpretation of results across
different laboratories, allowing for more accurate
comparisons and collaborations. This is important, as
it is currently quite challenging to compare the results
of the various research facilities that have performed
testing and interpretation under a multitude of condi-
tions with variable levels of skill in categorizing uveitis.
Therefore, deep learning is a plausible technique
for promoting the reproducibility and standardiza-
tion of animal research; however, deep-learning-
based tools are not yet readily accessible to animal
researchers. Our current work is an effort to fill this
gap.
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Data Collection for Transfer Learning and
Training the CNNModel

The training of initial deep learning models
normally requires thousands to millions of labeled
images.31 The quality of such datasets is critical and
significantly determines the outcome of the trained
model; however, transfer learning can keep millions
of parameters intact for different deep learning appli-
cations. As such, in a new application, only a subset
of those previously identified parameters along with
hyperparameters can be fine tuned, which requires
significantly smaller datasets. Based on these advan-
tages, we chose to take advantage of transfer learning
applied to subsets of mouse model to optimize our
procedure.

Data Collection for Validating the CNNModel

Although the overall aim is to collect themost repre-
sentative images and minimize the effect of various
background noise, such as light reflection artifacts,
achieving this goal is challenging in real-world appli-
cations. As such, we investigated the accuracy of
the proposed models that were trained with in-house
datasets (generated in our lab) with external datasets
that were collected from other facilities across the
world. This subset had significantly lower quality and
differing focusing planes, fields of view, angles of view,
background colors, and image contrasts compared to
our in-house dataset. This diverse external dataset with
diverse image quality proved to be critical for the train-
ing process in order to achieve high accuracy and gener-
alizability. This approach is not practical for image
collection on human subjects, as most human images
are retrospectively collected fromhospital or healthcare
databases. From this perspective, implementation of
deep learningmodels in animal research offers a unique
advantage in terms of data collection.

Accuracy

The accuracy of our model based on the indepen-
dent dataset that was collected after developing the
model was on par with the accuracy based on the in-
house dataset. It is worth noting that the accuracy
of the model based on the external dataset was lower
than the accuracy of the model based on the in-
house or independent datasets. This could be for a
variety reasons. First, the external dataset included
images with significantly different machine and camera
settings; for example, artifacts such as light reflection
introduced during imaging could easily confuse the
model. Second, the external dataset was collected by

cropping and pasting images from published papers in
the literature with different resolutions ranging from
100 × 97 pixels to 219 × 219 pixels, which is signifi-
cantly lower than in-house datasets. For some of the
external images the resolution was even lower than
the input image resolution required for deep learn-
ing. Based on the confidence level of our model for
each image, we determined that the resolution signifi-
cantly impacted the accuracy. Even taking into account
the effects of varying resolution, the proposed model
overall provides high accuracy and offers generalizabil-
ity on new images captured under varying conditions.
Such robustness is highly important for integrating AI
models into vision research and eventually into clinical
practice.

Interpretability

Although deep learningmodels have received signif-
icant interest over the past few years, their black-
box nature limits interpretation, particularly in health-
care applications. Essentially, interpretability is one of
major technical obstacles in the implementation of
deep learning. We utilized two different approaches to
illuminate this black box to enhance the interpretabil-
ity of the proposed AI models. First, PCA analysis
revealed that without deep learning the model would
not reach the high level of accuracy we obtained, due
to the high overlap between samples from different
classes. Supplemental PCA also revealed that the single
dense layer was sufficient to achieve high accuracy
in recognizing different features within the dataset.
Second, and clinically more important, by using Grad-
CAMs we found that deep convolution layers are able
to extract hidden retinal features that significantly drive
deep learning prediction. More specifically, we deter-
mined that the most important retinal regions for deep
learning identification/classification of EAU included
blood vessels, the optic disc, and retinal periphery
regions, all of which correspond to the regions used by
human experts to identify and classify EAU.Thus, deep
learning results, rather than representing a black box
result, may reveal important links underlying disease,
which suggests further potential for clinical relevance.

Limitations of the Present Study

Our current model classifies the state of disease
based on the whole fundus image. It would be desir-
able to train the model to recognize individual disease
features and give an overall score by considering
individual features. However, this is a limiting factor for
all AI models and not limited to our study. The major
misclassification error of our model was observed
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in the uncertainty between trace and disease classes;
however, this is a major problem for human experts,
too. In fact, disease is a continuum, and distinguishing
a threshold to separate different severity levels is very
challenging even for highly trained and skilled human
experts. Therefore, the role of high-quality ground-
truth labels is critical for the model performance, which
is reasonable given the nature of supervised learn-
ing. Follow-up studies with greater numbers of images
and greater numbers of human experts annotating the
images are desirable to reduce the effect of this limita-
tion.

Our current model classifies only three categories,
but classification into three categories provides a better
means to reach a consensus among human graders
compared to classification into only two (normal vs.
abnormal) classes, thus offering better potential for
being integrated into real-world applications. Never-
theless, in animal models we usually need more
categories corresponding to different severity levels and
clinical scores; therefore, datasets with larger numbers
of severity levels are desirable for developing models
with better real-world applications.

In the past few years, the generative adversarial
network has emerged as a powerful method for gener-
atingmore training data.32,33 This alternative approach
to generating data could address the issue of the
limited number of training samples in most applica-
tions. Although a larger training dataset may result
in a better classification performance in general, our
study demonstrates that high accuracy of deep learning
models can also be achieved using transfer learning and
a mid-size training dataset. As a next step, models such
as ours will require independent and external valida-
tions to ensure their generalizability.
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