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ABSTRACT
Kidney renal clear cell carcinoma (KIRC) remains a significant challenge worldwide because of its
poor prognosis and high mortality rate, and accurate prognostic gene signatures are urgently
required for individual therapy. This study aimed to construct and validate a seven-gene
signature for predicting overall survival (OS) in patients with KIRC. The mRNA expression profile
and clinical data of patients with KIRC were obtained from The Cancer Genome Atlas (TCGA) and
International Cancer Genome Consortium (ICGC). Prognosis-associated genes were identified,
and a prognostic gene signature was constructed. Then, the prognostic efficiency of the gene
signature was assessed. The results obtained using data from the TCGA were validated using
those from the ICGC and other online databases. Gene set enrichment analyses (GSEA) were
performed to explore potential molecular mechanisms. A seven-gene signature (PODXL,
SLC16A12, ZIC2, ATP2B3, KRT75, C20orf141, and CHGA) was constructed, and it was found to be
effective in classifying KIRC patients into high- and low-risk groups, with significantly different
survival based on the TCGA and ICGC validation data set. Cox regression analysis revealed that
the seven-gene signature had an independent prognostic value. Then, we established a
nomogram, including the seven-gene signature, which had a significant clinical net benefit.
Interestingly, the seven-gene signature had a good performance in distinguishing KIRC from
normal tissues. GSEA revealed that several oncological signatures and GO terms were enriched.
This study developed a novel seven-gene signature and nomogram for predicting the OS of
patients with KIRC, which may be helpful for clinicians in establishing individualized treatments.
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Introduction

Kidney cancer is a complex disease that encompasses
different types of tumors. Kidney renal clear cell carci-
noma (KIRC) is the most common pathological subtype,
which accounts for about 70%–75% of kidney cancers
(Shuch et al. 2015; Hakimi et al. 2019). With the increas-
ing incidence and mortality in recent years, KIRC
remains a significant challenge worldwide (Gray and
Harris 2019). According to the recent cancer statistic
report, the number of newly diagnosed cases in the
United States has increased to 73,820 in 2019, and
nearly 14,770 deaths were recorded (Siegel et al. 2019).
In approximately 20% of KIRC patients, the condition pro-
gresses to advanced stages after diagnosis, and the 5-
year overall survival (OS) rate of patients with metastatic
cancer is less than 10% (Mitchell et al. 2018). Thus,

prognostic models, which can accurately identify high-
risk patients, are urgently needed.

Conventional models usually utilize clinicopathologi-
cal parameters, including TNM stage and nuclear grade,
in predicting the survival of patients with KIRC (Lam
et al. 2008). However, these parameters are not highly
accurate due to the significant heterogeneity of KIRC.
The predictive ability of the conventional models is far
from satisfactory. In recent years, with the rapid develop-
ment of high-throughput sequencing techniques,
several studies have shown that gene signatures at the
mRNA level have a great potential in predicting the sur-
vival of patients with KIRC (Zhan et al. 2015; Chen, Luo
et al. 2019; Hu et al. 2019; Pan et al. 2019; Wu et al.
2019; Zeng et al. 2019). Zhan et al. established a five
gene signature (CKAP4, ISPD, MAN2A2, OTOF, and
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SLC40A1) for predicting the prognosis of KIRC using data
from the Cancer Genome Atlas (TCGA) (Zhan et al. 2015).
Moreover, Hu et al. constructed a seven-gene signature
(BID, CCNF, DLX4, F AM72D, PYCR1, RUNX1, and
TRIP13) for predicting the survival of patients with KIRC
using data from the TCGA (Hu et al. 2019). However,
the gene signatures were only based on TCGA data set,
and they were not validated using other external data
in most studies. Thus, only few of these signatures are
used clinically, and more accurate and practical risk
gene models for predicting the survival of KIRC must
be developed. This study aimed to identify a prognostic
gene signature based on information from several online
databases. Further, its predictive ability was compared
with that of other gene signatures.

Materials and methods

Data extraction

We downloaded the level 3 mRNA expression profiles
and clinical data of 538 KIRC patients and 72 normal
patients from the TCGA database (https://portal.gdc.
cancer.gov/) and 91 KIRC patients from The International
Cancer Genome Consortium (ICGC) database (https://
icgc.org/).

Identification of differentially expressed genes in
KIRC

Normalization, log2 transformation, and differentially
expressed gene (DEG) analysis was conducted using
the R package DESeq2 (Love et al. 2014). Genes with a
P value < 0.05 and |log2 fold change (FC)| > 1 were con-
sidered as DEGs.

Construction of the prognostic gene signature

Univariate Cox regression analysis was performed to
identify prognostic genes, and a P value < 0.001 was con-
sidered statistically significant. Then, the patients with a
follow-up period longer than 1 month were randomly
divided into training set and testing set. Lasso penalized
Cox regression analysis was conducted to construct a
prognostic gene signature, shown as risk score =
(coefficientgene1 × expression level of gene1) +
(coefficientgene2 × expression level of gene2) +⋯ +
(coefficientgenen × expression level of genen) (Tibshirani
1997). The R package survival and survminer were used
to investigate the optimal cutoff value of the risk score
and establish the Kaplan–Meier survival curve (Diboun
et al. 2006). The patients were classified into high- and
low-risk groups based on the cutoff value. The R

package survivalROC was used to investigate the prog-
nostic value of the gene signature (Heagerty et al. 2000).

External validation of the prognostic gene
signature and gene change

The risk score of each patient in the ICGC cohort was cal-
culated with the same prognostic gene signature. Then,
ROC and Kaplan–Meier analyses were performed to vali-
date the predictive ability of the gene signature. The
expression of the genes in the gene signature was also
further validated using information from the TIMER data-
base (https://cistrome.shinyapps.io/timer/) and Onco-
mine database (https://www.oncomine.org/). In
addition, the genetic alterations were investigated in
the cBioportal for Cancer Genomics (https://www.
cbioportal.org/).

Independent prognostic role of the gene
signature

Univariate and multivariate Cox regression and stratified
analyses were performed to explore the independent
prognostic role of the gene signature.

Establishing and validating a predictive
nomogram

All independent prognostic factors identified in the
multivariate Cox regression analysis were used to con-
struct a nomogram. Calibration and discrimination
were performed to assess the nomogram with the cali-
bration plot and concordance index (C-index), respect-
ively. Subsequently, the models that included only one
independent prognostic factor were compared with
the combined model with all independent prognostic
factors using the ROC curve, C-index and decision
curve analyses (DCA) (Vickers and Elkin 2006).

Differentiating capacity of the prognostic gene
signature

We explored the capacity of the prognostic gene signa-
ture in distinguishing KIRC from normal tissues using
boxplot and ROC curve.

Gene set enrichment analyses

To further explore the underlying molecular mechan-
isms, gene set enrichment analyses (GSEA) were per-
formed in H (Hallmark gene sets), C2 (KEGG), C5
(biological process, cellular component, and molecular
function), and C6 (oncological signature) (Subramanian
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et al. 2005). A p value < 0.05 was considered statistically
significant, and q < 0.25 was the false discovery rate.

Statistical analysis

R software v3.6.1 (R Foundation for Statistical Computing,
Vienna, Austria), SPSS version 25 (SPSS Inc.), and Graph-
Pad Prism v8.0 (GraphPad Software Inc., the USA) were
used for statistical analysis. The Fisher’s exact test or
Pearson χ2 test was used to assess for qualitative vari-
ables and t-test for quantitative variables. A p value <
0.05 was considered statistically significant.

Results

Identification of DEGs

The flow diagram used in this study is presented in
Figure 1. We identified 5916 DEGs when comparing the
KIRC samples (n = 538) and normal tissues (n = 72),
including 3865 up-regulated genes and 2051 down-
regulated genes (Supplementary File 1: Fig. S1).

Construction of the seven-gene prognostic
signature

In total, 475 patients with a follow-up period longer than
1 month were randomly divided into training set (n =
238) and testing set (n = 237). There was not significant
difference in the clinical characteristic between the
groups (Table 1). Moreover, 966 genes significantly

correlated to the OS of KIRC were identified via a univari-
ate Cox regression analysis. Subsequently, lasso pena-
lized Cox regression analysis was conducted using the
training set (Supplementary File 2: Fig. S2). Seven
genes were identified and used to establish a prognostic
gene signature. The genes were podocalyxin-like
(PODXL), solute carrier family 16 member 12
(SLC16A12), Zic family member 2 (ZIC2), ATPase plasma
membrane Ca2+ transporting 3 (ATP2B3), keratin 75
(KRT75), chromosome 20 open reading frame 141
(C20orf141), and chromogranin A (CHGA). The risk
score =−0.1696 * ExpressionPODXL −0.0104 *
ExpressionSLC16A12 + 0.0398 * ExpressionZIC2 + 0.0057 *
ExpressionATP2B3 + 0.0035 * ExpressionKRT75 + 0.0186 *
ExpressionC20orf141 + 0.0045 * ExpressionCHGA. According
to the optimal cutoff value of the risk score, the patients
were classified into the high- and low-risk groups. The
areas under the receiver operating characteristic curve
(AUCs) for the 3- and 5-year OS were 0.740, 0.782;
0.692, 0.715; and 0.717, 0.749 for the training set,
testing set, and whole set, respectively. The Kaplan–
Meier curve showed that the patients in the high-risk
group presented with a significantly poorer OS than
the patients in the low-risk group (all p < 0.001)
(Figure 2a–c). In addition, our seven-gene signature
had a better C-index and AUC for 3- and 5-year OS pre-
diction compared with the other five reported gene sig-
natures (Supplementary File 3: Fig. S3, Supplementary
File 4: Table S1). The results indicated that our seven-
gene signature had a good performance in predicting
the survival of patients with KIRC.

External validation of the prognostic gene
signature and gene change

External validation was conducted in the ICGC cohort
with the same method mentioned above. In total, 90

Figure 1. Study flow.

Table 1. Clinical features of KIRC patients in training set, testing
set and whole set
Clinical features Whole set Training set Testing set p

Total n = 475 n = 238 n = 237
Dead (%) 152 (32.0) 70 (29.4) 82 (34.6) 0.226
Mean age (SD), years 60.4 (12.0) 60.9 (12.3) 59.9 (11.9) 0.377
Female (%) 161 (33.9) 84 (35.3) 77 (32.5) 0.518
Tumor grade 0.982
G1 8 (1.7) 4 (1.7) 4 (1.7)
G2 200 (42.1) 98 (41.2) 102 (43.0)
G3 196 (41.3) 100 (42.0) 96 (40.5)
G4 71 (14.9) 36 (15.1) 35 (14.8)

TNM stage 0.965
Stage I 235 (49.5) 117 (49.2) 118 (49.8)
Stage II 50 (10.5) 26 (10.9) 24 (10.1)
Stage III 109 (22.9) 56 (23.5) 53 (22.4)
Stage IV 81 (17.1) 39 (16.4) 42 (17.7)

Abbreviations: KIRC: kidney renal clear cell carcinoma; TNM: tumor-node-
metastasis.
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patients with a follow-up period longer than 1 month
were divided into the high- and low-risk groups with
the same cutoff value. The AUC for the 3- and 5-year
OS were 0.647 and 0.670, respectively. The OS was sig-
nificantly poorer in the high-risk group than in the low-
risk group (p = 0.027) (Figure 2d).

Furthermore, we validated the expression of the
seven genes in the prognostic signature using data
from several online databases. Consistent with the
result in our study, PODXL, ATP2B3, and CHGA were sig-
nificantly underexpressed. Meanwhile, KRT75 was signifi-
cantly overexpressed in KIRC using information from

Figure 2. Time-dependent ROC analysis, risk score analysis (risk score and heatmap of mRNA expression), and Kaplan–Meier analysis for
the seven-gene signature in the training set of the TCGA cohort (a), the testing set of the TCGA cohort (b), the whole set of the TCGA
cohort (c), and the set of the ICGC cohort (d). ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas; ICGC, International
Cancer Genome Consortium.
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both the Oncomine and TIMER databases (Figure 3a, b).
Although the data in the Oncomine database were
lacking, SLC16A12 was significantly underexpressed,

whereas ZIC2 and C20orf141 were significantly overex-
pressed in KIRC based on data from the TIMER database.
The cBioportal for Cancer Genomics database was

Figure 3. Expression and genetic alterations of the seven-gene signature. (a) The expression of the seven genes using data from the
Oncomine database (https://www.oncomine.org/). The database had missing data of SLC16A12, ZIC2, and C20orf141 in KIRC. (b) The
expression of the seven genes using data from the TIMER database (https://cistrome.shinyapps.io/timer/). (c) Genetic alterations of the
seven genes based on data from the TCGA (http://www.cbioportal.org/).
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assessed, and it showed that 5.2% of 488 patients had
genetic alterations in the seven genes. Amplification
was the most commonly observed change (Figure 3c).
Thus, the aberrant expression of the seven genes in the
prognostic signature was validated, which could be
partly explained by the genetic alteration.

Independent prognostic role of the gene
signature

Univariate and multivariate Cox regression analyses
were performed in 475 patients with complete clinical
data, including age, gender, TNM stage, and grade. Sub-
sequently, age, TNM stage, and risk score were con-
sidered as independent prognosis factors of OS (Figure
4). Moreover, stratified analysis was performed accord-
ing to age and TNM stage. The OS was significantly
poorer in the high-risk group than in the low-risk
group both in age < 60 and≥ 60 years (Figure 5a, b).
However, the survival between the high- and low-risk
groups significantly differed only in stage III/IV, but not
in stage I/II (Figure 5c, d).

Establishing and validating a predictive
nomogram

A nomogram was established, and three independent
prognostic factors (age, stage, and risk score) were
included (Figure 6a). The calibration plot showed that
the nomogram is effective in predicting the 3- and 5-

year OS (Figure 6b). The C-index values were 0.60, 0.74,
0.70, and 0.78 for the age, stage, prognostic, and com-
bined models, respectively. The AUCs were 0.80 for 3-
year OS and 0.79 for 5-year OS (Table 2). When combin-
ing our prognostic model with age and stage, the AUC
increased both for the 3- and 5-year OS, and the net
benefit also improved for patients with KIRC (Figure 7).

Identifying the capacity of the prognostic gene
signature

We explored the capacity of the gene signature to dis-
tinguish KIRC from normal tissues, and results showed
that the risk score was significantly higher in KIRC
tissues than in normal tissues. In addition, the risk
score significantly increased with stage progression
(Figure 8a). The AUC indicated a modest diagnostic
ability for KIRC (Figure 8b). These results showed a poten-
tial function of the gene signature in the differential diag-
nosis of KIRC.

Gene set enrichment analyses

GSEA were performed on 475 patients from the TCGA
cohort. In total, 3 hallmark gene sets, 2 KEGG pathways,
79 GO terms, and 2 oncological signatures were
enriched. Both oncological signatures (Rb-P107 and
CSR-LATE) were enriched in the high-risk group and
none in the low-risk group (Supplementary File 5:
Table S2).

Figure 4. Forrest plot of the univariate and multivariate Cox regression analyses of KIRC.
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Figure 5. Kaplan–Meier survival analysis of the seven-gene signature using the TCGA cohort according to age and TNM stage stratifica-
tion. (a) Age < 60 years; (b) age≥ 60 years; (c) stage I + II; (d) stage III + IV.

Figure 6. Nomogram for predicting the overall survival of KIRC patients. (a) The nomogram plot was based on three independent prog-
nostic factors of KIRC. (b) Calibration plot for the internal validation of the nomogram.
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Discussion

In recent years, the incidence and mortality of kidney
cancer has been increasing, and the treatment of
kidney cancer remains a significant challenge worldwide
because of its poor prognosis (Gray and Harris 2019;
Siegel et al. 2019). Thus, patients with poor survival
must be identified. Although several prognostic factors
have been reported, TNM stage is still the most valuable
predictor of KIRC (Frank et al. 2002). However, the clinical
outcomes may differ significantly among patients with
the same TNM stage due to the heterogeneity of KIRC
(Martínez-Salamanca et al. 2011; Park et al. 2019). There-
fore, new reliable prognostic biomarkers are urgently
needed to establish more accurate prognostic models.
Recently, mRNA gene signatures have been considered

as the potential predictors of prognosis for KIRC (Chen
et al. 2019; Wu et al. 2019; Zhang et al. 2019).

In our study, we established a seven-gene signature
(including PODXL, SLC16A12, ZIC2, ATP2B3, KRT75,
C20orf141, and CHGA) for the prognostic prediction for
KIRC, and the efficiency was good both in the TCGA
and ICGC cohorts. In addition, it was comparable with
the other five models (Zhan et al. 2015; Chen et al.
2019; Hu et al. 2019; Wu et al. 2019; Zeng et al. 2019).
The risk score calculated using the seven-gene signature
was an independent prognostic factor for KIRC, and it
was effective in stratifying the OS of patients. The ROC
and DCA showed that the nomogram combining the
seven-gene signature and other clinical prognostic
factors is efficient in predicting the survival of patients

Table 2. Comparison of the nomogram (combined model) with age, TNM stage and prognostic model
Models 3-year AUC (95%CI) P-value 5-year AUC (95%CI) P-value

Age model 0.57 (0.50–0.63) 0.59 (0.52–0.67)
TNM stage model 0.77 (0.71–0.82) 0.72 (0.65–0.79)
Prognostic model 0.71 (0.65–0.78) 0.75 (0.68–0.81)
Nomogram (combined) model 0.80 (0.75–0.85) 0.79 (0.74–0.85)
Nomogram vs. age model <0.001 <0.001
Nomogram vs. stage model <0.04 <0.001
Nomogram vs. prognostic model <0.001 0.054

AUC area under curve, CI confidence interval, TNM tumor-node-metastasis.

Figure 7. The time-dependent ROC and DCA curves of the nomogram. (a, b) The time-dependent ROC curves of the nomogram com-
pared with other independent prognostic factors for the 3- and 5-year overall survival of patients with KIRC. (c, d) The DCA curves of the
nomograms compared with other independent prognostic factors of the 3- and 5-year overall survival of patients with KIRC.
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with KIRC. However, patients in the high-risk group had a
significantly poorer OS only in stage III/IV, but not in
stage I/II. This result might be attributed to the the
small sample size of the high-risk group (n = 36) and
the relatively low clinical progression of stage I and II
disease. Thus, the difference became challenging to dis-
tinguish. Another interesting point was that the seven-
gene signature had a modest ability to differentiate
KIRC from normal tissues, and this result indicated that
the signature had a potential role in the differential diag-
nosis of KIRC. Finally, GSEA revealed two oncological sig-
natures in the high-risk group, which might partially
explain the potential molecular mechanisms.

Most studies mainly focused on cancer-related genes.
However, some genes in our signature were not involved
in cancer. PODXL is an anti-adhesive transmembrane gly-
coprotein, which is a member of the CD34 family (Snyder
et al. 2015). Several studies showed that PODXL is associ-
ated with the invasion, migration, epithelial–mesenchy-
mal transition, and metastasis of cancers, and it could
be considered an independent prognostic factor (Meng
et al. 2011; Lin et al. 2014; Taniuchi et al. 2016).
However, only few studies have reported the role of
PODXL in KIRC. SLC16A12 is a member of the SLC16A
family, and its function is not known. A recent study
showed that SLC16A12 can be a prognostic factor for

patients in KIRC, indicating that SLC16A12 might be a
critical tumor suppressor (Mei et al. 2019). ZIC2 is a
member of the ZIC family and is a transcription factor
(Inaguma et al. 2015). Some studies revealed that ZIC2
could regulate the progression of several types of
cancer, including nasopharyngeal carcinoma (Shen
et al. 2017), bladder cancer (Wang et al. 2017), and liver
cancer (Zhu et al. 2015). However, the functions of ZIC2
in KIRC are not fully elucidated. ATP2B3 belongs to the
family of P-type primary ion transport ATPases, and it is
highly expressed in the cerebellum and brain. ATP2B3
plays an important role in the regulation of neuronal
Ca2 + . However, there are limited data about its role in
cancer (Cali et al. 2015). KTR75 is a member of the type
II keratin family, and it plays an essential role in nail
and hair formation (Duverger et al. 2016). Its other
roles in cancer remain unknown. The function of
C20orf141, a protein-coding gene, is still not fully eluci-
dated to date. CHGA is a protein in the secretory granules
of several normal and neoplastic neuroendocrine cells,
and it has been considered an important biomarker of
neuroendocrine neoplasms (Oberg 1997; Tomassetti
et al. 2001; Mahapatra et al. 2005). In addition, its use
as an early diagnosis biomarker for several types of
cancer, including prostate cancer and gastric cancer,
has been approved (Yang and Chung 2008; Ma et al.

Figure 8. Capacity of the seven-gene signature in differentiating KIRC from normal tissues. (a) The difference in the risk score between
the groups or TNM stage. (b) The ROC curve of the risk score between the groups or TNM stage.
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2010). However, no study has assessed the role of CHGA
in KIRC.

In our study, the seven-gene signature was based on
mRNA expression instead of methylation status or
somatic mutations, and it could be more cost-effective
when used in clinical practice. In addition, the gene sig-
nature was more reliable because it was validated using
data from the ICGC cohort and those from other online
databases. Although our gene signature had a good per-
formance in predicting the survival of patients with KIRC,
it still had several limitations. First, the seven-gene signa-
ture was generated base on data from TCGA, in which
most patients were White and Asian. Second, the signa-
ture was validated using data from the ICGC, and the
sample size was still limited. Thus, multiple centers
across different populations are important for the
further validation of our model. Third, precise and rigor-
ous basic experiments must be conducted to identify the
biological functions of signature genes. Finally, since our
seven-gene signature could distinguish KIRC from
normal tissues, its ability to classify the different types
of kidney cancer should be explored.

Conclusion

our study developed a novel seven-gene signature and
nomogram for predicting the OS of patients with KIRC,
which might be helpful for clinicians in establishing indi-
vidualized treatments.
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