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Ethanol-responsive movement disorders are a group of movement disorders of which

clinical manifestation could receive significant improvement after ethanol intake, including

essential tremor, myoclonus-dystonia, and some other hyperkinesia. Emerging evidence

supports that the sensitivity of these conditions to ethanol might be attributed

to similar anatomical targets and pathophysiologic mechanisms. Cerebellum and

cerebellum-related networks play a critical role in these diseases. Suppression of

inhibitory neurotransmission and hyper-excitability of these regions are the key points

for pathogenesis. GABA pathways, the main inhibitory system involved in these regions,

were firstly linked to the pathogenesis of these diseases, and GABAA receptors and

GABAB receptors play critical roles in ethanol responsiveness. Moreover, impairment

of low-voltage-activated calcium channels, which were considered as a contributor

to oscillation activity of the nervous system, also participates in the sensitivity of

ethanol in relevant disease. Glutamate transporters and receptors that are closely

associated with GABA pathways are the action sites for ethanol as well. Accordingly,

alternative medicines aiming at these shared mechanisms appeared subsequently to

mimic ethanol-like effects with less liability, and some of them have achieved positive

effects on different diseases with well-tolerance. However, more clinical trials with a large

sample and long-term follow-ups are needed for pragmatic use of these medicines, and

further investigations on mechanisms will continue to deepen the understanding of these

diseases and also accelerate the discovery of ideal treatment.

Keywords: ethanol, movement disorder, GABA receptor, low-voltage-activated calcium channel, glutamate

receptor

INTRODUCTION

Ethanol is known to have a significant influence on human bodies, especially on the nervous system
(1). Despite those negative effects as described in various studies, patients with certain diseases
benefited from the consumption of ethanol. The clinical manifestation of ethanol-responsive
movement disorders (ERMDs) could be significantly improved after ethanol intake. Patients
with essential tremor (ET), one of the most common movement disorders influencing ∼1% of
the population worldwide (2), were first reported to respond to ethanol in 1949 by Critchley
(3). Similarly, alcohol intake has long been known to decrease myoclonic symptoms in most
myoclonus dystonia (MD) patients since 1967 (4). Besides, cases of different phenotypes of dystonia
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(5–7), dyssynergia cerebellaris myoclonica (8–11), epilepsia
partialis continua (12), post-hypoxic myoclonus (13), and tremor
with multiple sclerosis (14) are also reported to have similar
positive responses to ethanol (Table 1).

In spite of the differences in phenomenology of all these
diseases mentioned above, their responsiveness to ethanol sets
them apart from other movement disorders and brings up the
possibility that the pathogenesis of these conditions might be
linked to shared anatomical networks and the sensitivity to
ethanol might be attributed to related mechanisms. Though not
yet explored thoroughly, some hypotheses have already been
raised to explain the phenomenon, mostly involving the GABA
system, low-voltage-activated calcium channels, and glutamate
pathways. Nevertheless, further investigations are needed to
elucidate the pathophysiology.

Ethanol therapy has been already applied to some ethanol-
responsive diseases such as essential tremor with clinical
results. However, the therapeutic use of ethanol is limited
by side effects involving the liver and brain and a high
rate of alcoholism (22). Therefore, with deeper understanding
of the pathogenesis, corresponding medicines have emerged
subsequently to mimic alcohol-like effects through the common
pathways among ERMDs.

In this review, we will elaborate reported diseases with
ethanol responsiveness and analyze their shared anatomical
networks, summarize the possible mechanisms underlying the
treatment-like effects of ethanol, describe the main deficiencies of

TABLE 1 | Effects of ethanol on reported ethanol-responsive movement disorders.

Diseases Year of first

report

Proportion

of ethanol

responders

Number of

reported

cases

Administration

route

Effective

dose

Clinical effects References

Tremor

Essential tremor 1949 74% – Intra-

arterial/Oral

Small dose Decrease tremor amplitude;

reduce gait disturbances

(3, 15–17)

Tremor with multiple

sclerosis

2008 – 1 Oral – Decrease tremor amplitude (14)

Myoclonus

Myoclonus dystonia 1967 77% – Oral – Reduce myoclonic symptoms;

improve cerebellar learning deficit

(4, 18, 19)

Dyssynergia

cerebellaris myoclonica

1990 – 12 Oral 30–40

g/180–200ml

spirit

Reduce myoclonic symptoms;

attenuate the giant cortical SEPs

(8–11)

Post-hypoxic

myoclonus

1991 – Oral 12.6 g Reduce myoclonic symptoms (13)

Epilepsia partialis

continua

2014 – 1 Oral – Reduce myoclonic symptoms (12)

Action myoclonus in

prostate cancer

2015 – 2 Oral Small dose Reduce myoclonic symptoms (20)

Dystonia 29% (21)

Isolated dystonia 1993 – 1 Oral 60 g Reduce myoclonic symptoms;

improve myorrhythmic

movements

(5)

Spasmodic dysphonia 2015 56% – Oral 2 drinks Reduce myoclonic symptoms (6)

Writer’s cramp 2012 – 1 Oral 200ml beer Reduce myoclonic symptoms (7)

current ethanol therapy, and then introduce progress on relevant
medication that could substitute for ethanol to avoid some of its
side effects.

ANATOMICAL NETWORKS INVOLVED IN
RELEVANT DISEASES

Ingestion of ethanol has long been proved to have a treatment-
like influence on hyperkinetic movement disorders (Table 1).
While the therapeutic effects vary among different diseases,
shared anatomical networks in these diseases, especially
cerebellum and neural circuits related to the cerebellum,
suggest the possibility of common mechanisms underlying
ethanol responsiveness.

Cerebellum and ERMDs
As a sophisticated brain region that performs a wide range of
crucial roles in movement disorders, the cerebellum integrates
information from the spinal cord, cerebral cortex, and vestibular
nuclei; compares efference copies and reafference signals; and
corrects for discrepancies between them to enable the execution
of smooth, well-coordinated movements. Undoubtedly, evidence
from most published studies indicates the critical role of the
cerebellum in the pathophysiology of ERMDs.

Essential tremor (ET), the most common movement disorder
worldwide (2), is predominantly related to the cerebellum and is
mainly linked to Purkinje cells, the main cerebellar output, and
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the inhibitory neurons in the cerebellar cortex (23). Decreased
density (24, 25), increased heterotopic rates (26), morphological
changes on dendritic arborizations (27), and axonal changes
(28) of Purkinje cells could be referred to hyperactivity of the
cerebellum and consequently to tremor. Besides, neuroimaging
studies, as a non-invasive approach of research, have also
highlighted the morphologic abnormalities in the cerebellum.
Atrophic changes in different lobules of the cerebellum, including
gray matter and white matter, are revealed in previous studies
(29, 30).

Myoclonus-dystonia being the second common disease in
ERMDs, ∼76.9% of reported patients of myoclonus-dystonia
(MD) were responsive to ethanol (31). Besides myoclonic
symptoms, cerebellar learning deficits could also get improved
via ethanol intake since reduced baseline acquisition of
conditioned eyeblink responses and normal blink reflex recovery
cycle were observed inMDpatients after drinking (19), providing
clinical evidence for the possible role of the cerebellum.
Neurophysiological (32), structural (33), functional (34), and
metabolic (35) studies also support the cerebellum as the
subcortical generator underlying motor symptoms in MD.
Moreover, impaired motor learning and abnormal nuclear
envelope in the cerebellar Purkinje cells were detected in
MD mouse models, the paternally inherited Sgce heterozygous
knockout mice (36), and acute cerebellar knockdown of Sgce
could reproduce salient features of MD in mice (37), further
confirming the essential role of cerebellum in this disease.

As for dystonia, animal studies have also provided compelling
evidence of a role played by the cerebellum in generating
dystonic-like movements and postures, including altered burst
patterns in Purkinje cell firing (38, 39), dysfunctional interactions
with basal ganglia, another essential region for dystonia (40),
and abnormal morphology of Purkinje cells (41). Studies on
clinical patients with dystonia have provided neuropathologic
(42), neurophysiologic, and functional neuroimaging evidence
(43) for the significance of the cerebellum in dystonia.

In addition, though not compelling enough, other ERMDs
are also likely linked to the cerebellum, revealed by different
aspects of studies. For example, Ganos et al. (44) proposed that
the cerebellum also played a critical role in the pathophysiology
of cortical myoclonus including dyssynergia cerebellaris
myoclonica (DCM) based on alterations in inhibitory
neurotransmission and the presence of cerebellar pathology.

Overall, there is little doubt about the relationship between
the cerebellum and ERMDs, and it is more and more likely that
neural circuits and pathophysiological mechanisms involving the
cerebellum are of great significance for these diseases.

Cerebellum-Related Networks in ERMDs
Cerebello-thalamo-Cortico-Cerebellar Loop
Notably, given the dearth of direct connections between the
cerebellum and peripheral nervous system, the intricate task
of the cerebellum is mainly accomplished by modulating the
excitability of the primary motor cortex through the cerebello-
thalamo-cortical tract. The altered cerebello-thalamo-cortico-
cerebellar loop could be detected in different ERMDs.

Electrophysiology, structural magnetic resonance imaging
(MRI), diffusion MRI, and positron emission tomography (PET)
studies have revealed various abnormalities in cerebello-thalamo-
cortico-cerebellar circuits in ET (45, 46). Based on that, a recent
study revealed the distinctive white matter microstructural values
localize to the cerebellar peduncles and thalamo-cortical visual
pathways via diffusion tensor imaging (DTI) and fractional
anisotropy, suggesting that a cerebello-thalamo (posterior)
cortical network rather than a cerebello-thalamo-motor cortical
network takes part in ET (47).

Functional MRI (fMRI) was performed using a validated
“Go/No go” task to assess the possible network causing MD
and demonstrated a distinct association of motor symptoms
in MD with the cerebello-thalamo-cortical system (48). A
study with voxel-based morphometry and DTI also illustrated
the white matter changes found in the subthalamic area of
the brain stem, connecting the cerebellum with the thalamus,
which are compatible with the hypothesis that abnormal
function in MD involves cerebello-thalamo-cortical pathways.
Moreover, an altered cerebello-thalamo-cortico-cerebellar loop
was revealed in other phenotypes of dystonia including
MD through functional imaging (49) and neurophysiologic
studies (50, 51).

In addition, abnormalities of key structures within the
cerebello-thalamic-cortico-cerebellar loop were unveiled in some
other ERMDs, despite lack of evidence of functional connectivity.
Degeneration of cerebellar and thalamic regions was the

pathological substrates for tremor in multiple sclerosis patients,

implicated by a study based on structural MRI (52). Decrease

in amplitude of giant cortical somatosensory-evoked potentials
(SEPs) was confirmed in patients with DCM after alcohol
ingestion (10), indicating the possible role of the cerebral cortex.
Further studies based on neuroimaging and electrophysiology are
needed to elucidate the connection between these regions.

Guillain–Mollaret Triangle
The Guillain–Mollaret triangle means the loop from the dentate
nucleus to the red nucleus to inferior olivary (IO) nucleus to the
dentate nucleus via the cerebellar cortex, which also participates
in the pathogenesis of ERMDs such as ET and MD.

IO neurons have a natural tendency to oscillate in a
synchronous pattern at a frequency of 4–10Hz, which is exactly
the most common frequency seen in ET patients (53). Boecker
et al. (54) once used H15

2 O PET to investigate the effect of ethyl
alcohol on regional cerebellar blood flow in patients with alcohol-
responsive ET and found that alcohol suppressed cerebellar
activities in both control and ET patients but induced increasing
activities in IO only in the latter group. Animal models are also
useful to interrogate the pathogenesis of the diseases. Harmaline
is most frequently used to induce tremor in experimental models.
It can induce ET-like tremor through its actions on the IO nuclei.
Like tremor in ET patients, harmaline-induced tremor could be
suppressed by ethanol (55). Besides, studies of diffusion tensor
image (DTI) indicated the involvement of the superior cerebellar
peduncle fiber tracts in ET patients, which receive input from the
dentate nucleus and send output to the red nucleus (56). Based
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on these findings, a disturbance in the Guillain–Mollaret triangle
may underlie tremor pathogenesis in ET.

As for MD patients, besides the involvement of the cerebello-
thalamo-cortico-cerebellar pathway, increased white matter
volume and fractional anisotropy and decreased mean diffusivity
were also found in the subthalamic area of the brain stem,
including the red nucleus (33), also indicating the possible role
of Guillain–Mollaret triangle.

PATHOPHYSIOLOGIC MECHANISMS

Since the discovery of ethanol responsiveness, researchers have
never stopped investigating the pathophysiologic mechanisms
underlying the phenomena. However, the specific mechanisms
have not yet been fully elucidated. As mentioned above, ERMDs
share common anatomical networks such as cerebellum and
cerebellum-related circuits, which means the therapeutic effects
of ethanol are largely attributed to similar pathways that play a
critical role in these regions. Ethanol responsiveness might be the
result of the combination of some of these knownmechanisms or
some other unknown pathways.

GABA Pathways and ERMDs
As the main inhibitory system in the nervous system, especially
in cerebellum-related circuits, the reduction of GABAergic
inhibitory function contributes to various ERMDs, such as
ET, MD, progressive myoclonic epilepsy (44), and dystonia
(57). Thus, GABA pathways were first linked to ethanol
responsiveness, in which GABA receptors, including GABAA

receptors and GABAB receptors, play a critical role.

GABAA Receptors and ERMDs
GABAA receptors (GABAARs) are one of ligand-gated chloride
channels. According to distribution, these receptors are divided
into three types: postsynaptic GABAAR containing 2 α1/α2/α3
subunits, 2 β subunits, and 1 γ2 subunit that respond to
benzodiazepine but not to ethanol; extra-synaptic expressed
GABAAR which contains 2 α4/α6 subunits, 2 β subunits,
and 1 δ subunit that respond to ethanol, general anesthetics,
and neurosteroids rather than benzodiazepine (58, 59); and
presynaptic GABAARs located on parallel fibers which could
depolarize terminals to induce glutamate release onto molecular
layer interneurons and Purkinje cells and thereby lead to
increased excitability of target neurons (60) (Figure 1).

The connection between GABAAR and ERMDs is
controversial. Postsynaptic GABAARs are first considered
as a candidate participant in the pathogenesis of essential
tremor (ET). Not only α1 subunit-deficient mice manifest with
similar postural and kinetic tremor to ET (61), but PET studies
(62) and autoradiography experiments (63) also supported
altered postsynaptic GABAAR functions among ET patients.
However, the inconsistency in manifestations between α1−/−

mice and ET patients casts doubt in this assumption. Specifically,
tremor in α1−/− mice presents earlier in life and has a higher
mean frequency (19.3Hz), accompanied by considerable
incoordination, which is not typical for ET patients (61). Besides,
there is no report about any association between homozygous

α1 subunit mutations and patients with ET or other ERMDs,
shedding the possibility that loss-of-function of α1 subunits only
share part of mechanisms with ET pathogenesis.

Based on that, we try to explain it in three different angles.
(1) Postsynaptic GABAAR alterations are only restricted to
one or certain parts of oscillation circuitry in ERMDs. For
example, defective GABAAR were detected in the dentate
nucleus rather than the cerebellar cortex in patients with ET
(64). (2) Presynaptic rather than postsynaptic GABAARs play
a major role in the pathogenesis. In fact, the in vivo PET
study of ET patients reveals increased benzodiazepine antagonist
[11C]flumazenil signals (62) while ex vivo autoradiography
experiments found decreased benzodiazepine binding (63). (3)
Extra-synaptic GABAARs, which do not contain α1 subunits,
also contribute to the mechanisms. Besides, α1−/− mice, δ−/−,
and α6−/− mice also exhibited similar tremor to ET, and
their symptoms were significantly improved after injection of
inhibitors of extra-synaptic GABAA receptors (65) (Figure 2).

Ethanol is one of the activators of δ subunits of extra-
synaptic GABAA receptors (66, 67). Tonic inhibition via extra-
synaptic GABAA receptors is critical for long-term maintenance
of the inhibitory status of neurons. Thus, ethanol might enhance
tonic inhibition of target cells to compensate for dysfunction
of postsynaptic or presynaptic GABAARs and thereby relieve
symptoms in ERMDs (Figure 3).

GABAB Receptors and ERMDs
GABAB receptors (GABABRs), belonging to G protein-coupled
receptors, perform different functions according to their
location. When located presynaptically, activated GABABRs
prevent the release of neurotransmitters like GABA and
glutamate. Postsynaptic GABABRs, however, could induce
hyperpolarization and slow inhibitory postsynaptic potentials
(IPSP) and suppress glutamate receptors as well. Still, some
GABABRs exist extra-synaptically to inhibit T-type calcium
channels, which will be further elaborated later (68) (Figure 1).
The relationship between GABABR and ERMDs is unclear,
although abnormality of GABABR was detected in the dentate
nucleus of ET patients (64) (Figure 2). Ethanol, as an activator
for presynaptic GABAB receptors, is able to inhibit the release of
glutamate and thereby suppress the excitability of postsynaptic
cells (69), which help alleviate hyperkinetic symptoms of ERMDs
(Figure 3).

Low-Voltage-Activated Calcium Channels
and ERMD
Low-voltage-activated (LVA) calcium (Ca) channels, known as T-
type Ca2+ channels, belong to voltage-gated Ca2+ channels with
high-voltage-activated (HVA) Ca2+ channels and intermediate-
voltage-activated (IVA) Ca2+ channels. They are activated by
G protein-coupled receptors such as GABABRs. Normally, the
opening of HVA Ca2+ channels needs a large membrane
depolarization, while a weak depolarization near the resting
membrane potential could trigger the LVA Ca2+ channels, with
IVA in between. Part of LVA Ca2+ channels stay inactivated
under normal circumstances (70) (Figure 1).
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FIGURE 1 | Physiologic functions of GABA receptors, LVA Ca2+ channels, and glutamatergic pathways. GABA, transformed from glutamate in GABAergic neurons,

acts through the combination of specific receptors. GABAA receptors belong to ligand-gated chloride (Cl-) channels. Postsynaptic GABAA receptor, a mediator for

phasic inhibition, consists of two α(α1–α3) subunits, two β subunits, and one γ2 subunit. The extra-synaptic GABAA receptor, however, elicits tonic inhibition,

containing two α (α4, α6) subunits, two β subunits, and one δ subunit. GABAB receptors could be distributed in three different sites. When located presynaptically,

they could regulate the release of neurotransmitters of GABAergic and glutamatergic neurons via the suppression of HVA calcium channels. As for postsynaptic

GABAB receptors, they could induce slow IPSP by activating outward potassium channels and suppressing inward HVA calcium channels. They also inhibit

NMDAR/AMPAR to counteract the excitatory influence of glutamate. Besides, extra-synaptic GABAB receptors, as well as other G protein-coupled receptors, could

activate LVA Ca channels to induce neuronal oscillation, though part of LVA calcium channels normally remain silent. With regard to glutamine, which could be

transported into GABAergic neurons and glutamatergic neurons via SNAP7 and SNAP1/SNAP2, respectively, are the basic materials for synthesis of glutamate. In

addition, astrocytes could uptake GABA through GABA transporter 3 (GAT3) and glutamate via EAAT2. Both glutamate and GABA could change into glutamine in

astrocytes, and glutamine will be released to the intercellular space again through SNAP3/SNAP5.

LVA Ca2+ channels are confirmed to be associated with
controlling neuronal excitability and oscillatory behavior, and
an increasing number of studies have proved its relation with
repetitive burst discharges. Genetically, the HS1BP3 gene, which
encodes HS1-binding protein 3, is one of candidate genes for
familial essential tremor (71) and highly expressed in motor
neurons and Purkinje cells regulating Ca2+-dependent protein
kinase activation of tyrosine and tryptophan hydroxylase (72).
As for animal experiments, lack of 4–10Hz rhythmic burst
discharges in inferior olive (IO), a crucial promoter for essential
tremor, was present in mice lacking the CaV3.1 gene (73),
and five T-type calcium antagonists, including ethosuximide
and zonisamide, suppressed tremor in two different animal
tremor models (74), suggesting that LVA Ca2+ channels are
the molecular pacemaker substrates for intrinsic neuronal
oscillations of IO neurons, and this mechanism is likely to be a
pathological cause of essential tremor (Figure 2).

Acute ethanol administration has been shown to cause
disruption of native T-currents, and long-term disruption of LVA

Ca2+ channel expression and function occurs upon withdrawal
after chronic intermittent ethanol exposures (75, 76). Ethanol
inhibition of LVA Ca2+ channels is due to activation of
the protein kinase C pathway, with a major effect on the
hyperpolarized shift in inactivation (Figure 3). Among three
isoforms of T-type Ca2+ channels (CaV3.1, CaV3.2, CaV3.3),
CaV3.2 was significantly affected by ethanol, and might be
another novel target for ethanol (77).

Glutamate Pathways and ERMDs
Impairment of glutamate pathways, especially different
glutamatergic receptors, contributes to the onset of ERMDs
such as ET and MD (78). One candidate alternation is the
glutamate transporter mainly located in astrocytes, excitatory
amino acid transporter 2 (EAAT2). These receptors uptake
glutamate into astrocytes to regulate the concentration of
glutamate in the extracellular space (Figure 1). Involvement of
EAAT2 is supported by postmortem and ex vivo experimental
studies that revealed decreased EAAT2 in the cerebellar cortex
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FIGURE 2 | Pathophysiologic mechanisms of ethanol-responsive movement disorders. Dysfunction of receptors and transporters marked in red participates in the

pathogenesis of essential tremor, including α1, δ, and α6 subunits of GABAARs, EAAT2, reopened LVA Ca2+ channels, and AMPAR. GABABRs are also the potent

participants, which was indicated in red question marks. Besides, compositions marked in blue contribute to myoclonus dystonia such as NMDAR and AMPAR.

GABAARs and GABABRs in glutamatergic neurons are also likely to play a role in MD, shown in blue question marks as well.

and increased expression in the thalamus (79, 80) in patients
with ET. In the genetic aspect, one variant (rs3794087) of
the SLC1A2 gene encoding EAAT2 seems to be related with
essential tremor (81, 82), though some other studies doubted this
association (83–85). N-Methyl-D-aspartate receptor (NMDAR),
a postsynaptic glutamate receptor and a regulator of efflux of
N-acetylaspartate (NAA) (86), is another possible participant
in pathogenesis. Decreased NAA/creatine and NAA/choline
ratios in the cerebellum, although no difference was observed
in thalamus (80) or basal ganglia (87), backed up this view. In
addition, another postsynaptic and extra-synaptic glutamate
receptor, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor (AMPAR), also plays a significant role, supported
by success suppression by AMPAR antagonist of harmaline-
induced tremor, one of classic animal models for ET (88)
(Figure 2).

Moreover, glutamate pathways are closely associated with
GABA systems so that alterations in GABA receptors will
also have significant influence on glutamate transmission.
Glutamine, which could be transported into GABAergic neurons
and glutamatergic neurons via system N receptors, SNAP7
and SNAP1/SNAP2, respectively, are the basic material to
the synthesis of glutamate. GABA, subsequently, could be
transformed into GABA in GABAergic neurons. To maintain

a balance concentration in the intercellular space, astrocytes
then take the responsibility to uptake GABA through GABA
transporter 3 (GAT3) and glutamate via EAAT2. Both glutamate
and GABA could change into glutamine again in astrocytes,
and glutamine will be released to the intercellular space again
through another two system N receptors SNAP3/SNAP5. In
addition, presynaptic and postsynaptic GABA receptors in
glutamatergic synapses could inhibit the release of glutamate
when activated (Figure 1). Impairment of this relation is a
potential mechanism for MD. MD is often caused by mutations
in the SGCE gene (89). SGCE encodes ε-sarcoglycan (ε-SG) and
a brain-specific isoform, expressed in GABA postsynaptic and
presynaptic cells, respectively, and loss-of-function mutations
are only found in those parts related to ε-SG (90). Meanwhile,
long-term depression of glutamatergic synapses was shown to be
inhibited in a myoclonus dystonia mouse model (78). Therefore,
dysfunction of postsynaptic GABA receptors might result in the
pathogenesis of MD (Figure 2).

Ethanol is able to antagonize the effect of harmaline through
impairment of NMDA-mediated glutamate transmission (91).
Downregulation of EAAT2 and AMPAR (92) among chronic
alcohol assumption also suggests their possible role for ethanol
responsiveness (Figure 3), but more studies are in need for
confirm their functions.
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FIGURE 3 | Effects of ethanol and other medicines on ethanol-responsive movement disorders. The action sites of ethanol, sodium oxybate, NAS, zonisamide,

perampanel, 1-octanol, and octanoic acid are marked with blue, purple, green, red, pink, and orange, respectively. Ethanol serves as an activator for the δ subunit of

GABAARs and an inhibitor for LVA Ca2+ channels, NMDAR and AMPAR. Sodium oxybate could convert into GHB, a structural analog of GABA for GABAB receptors.

NAS is also the agonist of the δ subunit of GABAARs, while zonisamide works as an antagonist for LVA Ca2+ channels. As for perampanel, it could suppress AMPAR

selectively. Besides, 1-octanol and its active metabolite octanoic acid exhibited its ability to block LVA Ca2+ channels, but other mechanisms might participate at the

same time.

PROGRESS ON PHARMACOTHERAPY
FOR ERMDS

Though ethanol is able to alleviate symptoms of ERMDs to
some degree, researchers gradually found that concomitant with
improvements, the consumption of ethanol can also bring about
a host of problems, regarding its efficacy, adverse effects, and
misuse. First of all, ethanol is rapidly metabolized and eliminated
in the human’s body and exhibits a tendency to produce a
rebound of involuntary movements when it wears off (22). These
characteristics make it nearly impossible for ethanol to serve as
long-term control or modulation of the frequency of paroxysms.
Furthermore, the ameliorative effects of ethanol may lead to
alcoholism especially in those symptomatic patients. As reported
in most cases, ethanol of small doses could achieve the best
therapeutic effects on patients of ethanol-responsive movement
disorders. However, to maintain the same treatment effects,
repeated doses are necessary and dose of ethanol increases over
time (18). Therefore, alcoholism becomes a liability. Moreover,
ethanol has various short-term and long-term adverse effects.
With increasing frequency and rising doses due to tolerance,
consumption of ethanol can cause irreversible damage to
brains, livers, and other organs (93). Considering that some of

ethanol-responsiveness diseases are characterized as early onset
such as myoclonus dystonia, the damage once occurred may
significantly affect patients’ quality of life and life span.

Therefore, since ethanol is not a perfect treatment for patients
of ethanol-responsivemovement disorders, it is urgent to identify
an alternative medication with fewer liabilities. Medicines that
might meet the criteria are classified as follows (Table 2),
and their potential therapeutic mechanisms are shown in the
Figure 3. Treatment efficacy and deficiencies of these drugs
are discussed.

GABAergic Drugs
There is a long history of the application of GABA modulators
on ethanol-responsive movement disorders. Primidone, for
instance, is the first-line therapy for ET which could reduce
the amplitude of tremor by 70% (2). Patients with MD also
received symptomatic improvements from benzodiazepine and
primidone (94, 95). However, both drugs could bring up various
irreversible adverse effects soon after regular intake, and longer-
term survey reveals that approximately half of patients would
discontinue consumption eventually due to tolerance or side
effects. Such condition is possibly because of differences between
the lesion locations and acting sites of these drugs. Recent
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TABLE 2 | Potential medicines for ethanol-responsive movement disorders.

Drug name Mechanisms tmax t1/2 Adverse effects Effects on ERMDs Clinical trials

Sodium oxybate GABABR agonist 25–46min 35–60min Feeling drunk,

dizziness, headache,

abuse, respiratory

depression, seizures,

coma

Improve myoclonic,

dystonia and tremor

symptoms, but with an

60% occurrence rate of

adverse events

NCT03292458;

NCT00598078;

EUCTR2007-002222-

30-FR

SAGE-217 Extra-synaptic

GABAAR agonist

1 h 16–23 h Sedation Well-tolerated and

achieve improvement

of tremor symptoms

NCT02978781

Zonisamide LVA Ca2+ channel

blocker; GABA agonist

2–6 h 52–60 h Headache, nausea,

fatigue, sleepiness, and

diarrhea

Well-tolerated and

improvement in ET, MD

and tardive dyskinesia

NCT00616343;

NCT01806805

Perampanel Highly-selective,

non-competitive

AMPAR antagonist

0.55–11 h 64.9–129 h Dizziness, somnolence,

fatigue and headache

Markedly exhibit

anti-tremor effects on

ET patients

NCT02668146

1-Octanol and octanoic

acid

Unclear (could serve as

a LVA Ca2+ channel

blocker)

70 min* 83.5 min* Headache, asthenia,

lethargy, nausea, dry

mouth, taste change,

heartburn, bloating,

and constipation

Well-tolerated and

receive remarkable

improvements on

amplitude and

frequency of tremor

NCT00001986;

NCT00102596;

NCT00848172;

NCT01468948;

NCT01864525

*1-Octanol is transformed into octanoic acid soon after administration. Here lists pharmacokinetics of octanoic acid.

tmax , The amount of time that a drug is present at the maximum concentration in serum; t1/2, The time required for one half of the total amount of a particular substance in a biological

system to be degraded by biological processes when the rate of removal is nearly exponential.

clinical trials, as a result, focused more on relatively safe, efficient,
concentric drugs. Here, newly experimental GABAergic drugs
are exhibited.

Sodium Oxybate
Sodium oxybate is currently an approvedmedicine for narcolepsy
in the United States and also used for intravenous anesthesia,
ethanol withdrawal, and abstinence in Europe (96). It is the
sodium salt form of γ -hydroxybutyric acid (GHB), a structural
analog of GABA that interacts with GABAB receptors. When
ingested orally, it could be quickly absorbed and cross the blood–
brain barrier, converted into GHB within the brain (97). It
is proved to be an agonist of most GABAB receptors as well
(98), which also suggests that it might deliver a similar effect
to ethanol.

Recent clinical trials showed that over half of patients
with ethanol-responsive movement disorders achieved symptom
improvement after administration of sodium oxybate, and
the improvement of myoclonus at rest usually occurs earlier
than that of myoclonus in action. In 2000, Priori et al.
(99) reported a patient with ethanol-responsive MD whose
myoclonus was improved with daytime dosing of sodium
oxybate. Later on, patients with post-hypoxic myoclonus (96)
and spasmodic dysphonia (100) (NCT03292458) were also
reported to demonstrate dose-dependent improvements from
sodium oxybate. In addition, Termsarasab and Frucht (20)
reported that two patients of prostate cancer with ethanol-
responsive action myoclonus of one leg went into remission after
initiation of sodium oxybate.

However, a multiple-dose, double-blind, placebo-controlled
study in ET patients (NCT00598078) did not receive an ideal
result. Although the group using sodium oxybate 1.5 g at ∼8
am, placebo at ∼10 am, and sodium oxybate 1.5 g at ∼12 pm

appeared to get improvement in essential rating tremor scales,
safety problems cannot be ignored that 60% of group members
met with adverse events during the studies. Currently, a single-
and multiple-dose study to compare the pharmacokinetics,
pharmacodynamics, safety, and tolerability of sodium oxybate in
subjects with moderate to severe ET (EUCTR2007-002222-30-
FR) is under way, which might bring about a more convincing
and comprehensive evaluation on this medicine.

Application of sodium oxybate is facing a number of
problems. Firstly, the average time for sodium oxybate to peak
plasma concentration ranges from 35 to 60min, and it is rapidly
eliminated through several steps into carbon dioxide and water
with a terminal half-life of 36 ± 9min for 25 mg/kg and 39 ±

7min for 35 mg/kg (101). This means sodium oxybate could only
serve for temporary improvement rather than long-term control.
In addition, the best effect of the drug was observed in patients
who reported improvement of symptoms with small doses of
alcohol. For those patients less sensitive to ethanol, they might
get benefits from sodium oxybate with increased doses (100),
but adverse effects such as dizziness, headache, abuse, respiratory
depression, seizures, and coma, especially when taken with other
central nervous system depressants like ethanol, will overshadow
the ethanol-mimetic effects (102). These side effects will not
only limit the practical use of sodium oxybate but also bring up
safety issues.

In short, sodium oxybate has potential in improving
symptoms of ethanol-responsive movement disorders
temporarily and rapidly, especially for patients with high
sensitivity to ethanol, but its safety is a concern.

Neuroactive Steroids
Neuroactive steroids (NASs) are one of positive modulators
for the δ subunit of extra-synaptic GABAARs as mentioned
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above (103). SAGE-547, the first-generation NAS, has completed
an exploratory study in ET. Although well-tolerated, little
evidence for increased efficacy was found during the open-
label period, and increased sedation and sleepiness at the
higher dose questioned its safety for long-term treatment (104).
Subsequently, SAGE-217, another NAS, is under clinical trials
for ET. A phase 1 single ascending dose (SAD) and multiple
ascending dose (MAD) clinical trial has completed and a phase
2 clinical trial (NCT02978781) is currently underway. Results of
the phase 1 study showed that SAGE-217 was orally bioavailable,
with a terminal-phase half-life of 16–23 h and a tmax of ∼1 h.
No serious adverse events were reported during both SAD and
MAD studies, and mild adverse events including sedation were
dose-dependent and transient. The primary results for phase 2
research indicated that SAGE-217 30-mg capsules were generally
well-tolerated and achieve improvement of tremor symptoms via
KinesiaTM and TETRAS upper-limb combined kinetic and total
scores (105). Detailed data is needed to fully assess the reliability
and validity of this trials, and further randomized controlled trials
(RCTs) should be carried out to fully explore the efficacy and
safety of SAGE-217.

LVA Ca2+ Channel Blockers
Little data are available on the effects of LVA Ca2+ channel
blockers on ERMDs. To date, among all the definite LVA
Ca2+ channel blockers, only ethosuximide and zonisamide were
reported to have effects on animal models (74, 106, 107), but little
clinical efficacy was found in ethosuximide (108). Here, progress
on zonisamide is elaborated in clinical trials.

Zonisamide
Zonisamide is a medication mainly used to treat symptoms of
epilepsy in the United States, United Kingdom, Japan, South
Korea, and Australia with different application ranges and is
also used in the treatment of motor symptoms of Parkinson’s
disease in some countries such as Japan (109). It has multiple
mechanisms of action, including inhibition of sodium and T-type
calcium channels, to suppress neuronal hypersynchronization
(110) and modulation of GABAergic neurotransmission (111).
Thus, zonisamide could mimic the influence of ethanol in
different ways and is likely to replace ethanol for similar or even
better results with fewer side effects.

Clinical evidence has demonstrated the potential of
zonisamide for treatments of ethanol-responsive movement
disorders. In 2008, Zesiewicz et al. (112) conducted a double-
blind placebo-controlled trial to investigate the effects of
zonisamide in patients of essential tremor (NCT00616343) and
found that tremor amplitude was significantly improved in the
group with zonisamide intake, and 60% of patients of this group
demonstrated improvements while the others felt that their
tremor was at least “minimally improved.” In 2012, Iwata et al.
(113) discovered that zonisamide may be useful for the treatment
of tardive dyskinesia, a disease reported to be responsive to
ethanol. Patients of myoclonus dystonia also benefited from use
of zonisamide (NCT01806805), with significant improvements
in action myoclonus, myoclonus-related functional disability,
and dystonia (114).

Zonisamide has a clear advantage over ethanol in that it
has been proved relatively safe, effective, and well-tolerated in
long-term treatments as monotherapy or adjunctive therapy
(115, 116). Additionally, zonisamide has a pharmacokinetic
characteristic favorable for clinical use. It is rapidly absorbed
orally, with a bioavailability close to 100%. The time to peak
blood levels is achieved in about 2–6 h (117), with the half-life
of 52–60 h found in single-dose studies (118, 119). Therefore,
zonisamide can be used in conjunction with ethanol or sodium
oxybate that the former one serves as a long-term control;
the latter two can work for temporary relief. Nevertheless,
zonisamide is associated with some common adverse effects of
this medicine, such as headache, nausea, fatigue, sleepiness, and
diarrhea (117). These side effects will definitely impact the quality
of life in patients, reduce compliance, and even cause irreversible
damages. In addition, all the clinical trials we found were small in
sample size and poor at blinding, which is insufficient for clinical
applications. RCTs with adequatemethodology and large samples
should be performed to assess long-term efficacy and safety.

Glutamate Receptor Blockers
Although glutamatergic pathways are considered tightly
associated with ERMDs, not much clinical trial has been done on
corresponding drugs. Here we introduce one potent blocker for
glutamate receptors.

Perampanel
Perampanel, approved as an antiepileptic drug currently, is
a highly selective, non-competitive AMPAR antagonist that
could regulate glutamate neurotransmission. Perampanel was
rapidly absorbed when taken orally, reaching its maximum
concentration after 0.55–11 h, and its terminal-phase half-life
was 64.9–129 h, indicating its rapid onset and long maintenance
(120). The most common adverse effects for perampanel are
dizziness, somnolence, fatigue, and headache (121). An open-
label trial of perampanel has completed for ET treatment
(NCT02668146). In a small sample size of 12, perampanel
exhibited marked anti-tremor effect (122). RCTs with large
samples and long-term follow-up are still needed to confirm its
effectiveness and safety.

Long-Chain Alcohols and Their
Ramifications
Till now, it remains uncertain whether or not using one or
some of the drugs mentioned above could completely mimic
the effects of ethanol in all aspects, especially considering the
uncertain involvement of those unknown mechanisms. Thus,
other alcohols were expected to substitute ethanol in a better way.
Alcohols ranging from methanol to decanol were all studied in
vitro, in which octanol, unlike others, showed its ability to block
LVA Ca2+ channels, and 1-octanol exhibited the best efficacy
mainly due to its longer duration among all isoforms in models
of essential tremor (123). Still, 1-octanol might act through other
mechanisms like GABA-receptor interaction.
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1-Octanol and Octanoic Acid
1-Octanol is approved as a food flavoring substance and a
precursor to perfumes. It is rapidly converted to octanoic acid
after administration. Octanoic acid is then likely to work as active
metabolite in the body, while the concentration of 1-octanol
is maintained at a relevantly low level (124). In 1989, Sinton
et al. (125) revealed that 1-octanol was an effective blocker of
harmaline-induced tremor. Bushara et al. (126) then conducted a
pilot trial of 1-octanol in ET patients (NCT00001986) and found
that 1-octanol significantly decreased tremor amplitude for up to
90min and no severe side effects or signs of intoxication were
observed at a single oral dose of 1 mg/kg. A dose-escalation
study (NCT00102596) of oral 1-octanol in patients with essential
tremor then demonstrated that 1-octanol was well-tolerated up
to 64 mg/kg without overt intoxication, and higher doses may
produce more sustained benefit (127).

Octanoic acid is also used as food and cosmetic additive
and sometimes used in assessment of gastric emptying. It could
permeate the blood–brain barrier in the rat by a rate of 94%
(128). In 2012, a study in a harmaline-induced mouse model of
ET showed that octanoic acid could suppress tremor following
dose-dependent efficacy (129). To assess an oral, single, low
dose of octanoic acid in patients with ethanol-responsive ET,
Haubenberger et al. (130) conducted a randomized controlled
study (NCT00848172) and reached a conclusion that octanoic
acid was effective after 180min of intake. Furthermore, Voller
et al. (131) described the dose-dependent effect of octanoic acid
in patients with essential tremor (NCT01468948); a single dose
of 128 mg/kg was not associated with serious adverse events.
Patients with essential voice tremor also received considerable
improvement on magnitude of amplitude and frequency tremor
(NCT01864525), further supporting the potential utility of
octanoic acid for ERMDs (132).

One overt advantage of 1-octanol and octanoic acid is its
safety. Based on the results of all the clinical trials so far,
mild adverse effects include headache, asthenia, lethargy, nausea,
dry mouth, taste change, heartburn, bloating, and constipation
(130). Moreover, among all the research, the maximum tolerated
doses of two drugs are still unknown, further highlighting
their safety. In addition, 1-octanol and octanoic acid show a
longer duration than ethanol. Octanoic acid, serving as one
possible drug as well as being the primary metabolite of 1-
octanol, has a half-life time of 83.5min (130). Nevertheless,
the effects of long-chain alcohol and their ramifications on
other ethanol-responsive movement disorders require additional
experimental and clinical investigations. In other movement
disorders, 1-octanol and octanoic acid may not show the
best efficacy.

LIMITATIONS

The present understanding on the mechanisms and
pharmacotherapy of ERMDs should be considered in the
context of the following limitations.

In the aspects of neural networks involved in these diseases,
though compelling evidence has supported the essential role

of the cerebellum and circuits linked to the cerebellum, the
unsolved question is whether these movement disorders are
originated from the cerebellum, or are subsequently mediated
by other structures within the shared anatomical networks, or
are the result of disruption in connectivity between several brain
structures. Future investigations on this question will be helpful
for a better understanding of these diseases and development
of optimal pharmacotherapy and neurosurgical intervention
for ERMDs.

As for pathophysiologic mechanisms, the current hypothesis
can only partly elucidate the effects of ethanol on ERMDs. It
has been proved that genetic etiology is probably an indicator
of ethanol responsiveness (21, 133). Early-onset ET has a
higher possibility of a positive family history, and Hopfner
et al. (133) compared patients under 24 years of age to those
over 46 of ET and found that ethanol responsiveness was
much more common among young patients. Junker et al. (21)
recently concluded in a recent large sample research that ethanol
responsiveness of dystonia is associated with a positive family
history for movement disorders, generalized dystonia, and an
earlier age at onset. These two studies suggest that patients
who have an underlying genetic contribution are more likely to
respond beneficially to ethanol. However, the genetic connection
among GABA systems and ERMDs, though important, remains
unclear. On the one hand, it suggests that during genetic
analysis of ERMDs, genes related to GABA pathways need
to be paid more attention to. On the other hand, based on
discovered genetic risk factors, some new mechanisms might
be uncovered for a better understanding and more effective
therapy for ERMDs. In addition, some deficiencies, especially
safety concerns, exist among alternative medicines mentioned
above. Lack of large-sample, long-term clinical trials also
make it insufficient for clinical application of these medicines.
Therefore, developing a more effective and safer drug is key
to further development of treatment for diseases responsive to
ethanol, which is possibly inspired by deeper understanding of
ethanol responsiveness.

CONCLUSION

Ethanol-responsive movement disorders are a group of
dyskinesia, of which clinical manifestation could receive
significant improvement after consumption of ethanol. Despite
their various clinical features, these diseases share similar
anatomical targets and common physiopathological sites for
ethanol. Cerebellum and cerebellum-related neural circuits
are the most potent common anatomical regions involved in
ERMDs, in which GABA pathways, LVA Ca2+ channels, and
glutamatergic system play key roles. Corresponding drugs
have received clinical results with fewer liabilities compared to
ethanol, including GABAergic drugs like sodium oxybate and
NASs, LVA Ca2+ channel blockers like zonisamide, glutamate
receptor antagonists like perampanel, and long-chain alcohols
like 1-octanol and its corresponding acid. Promoting the use of
these drugs may be a boon to patients, improving their quality of
life and extending their lives. However, there is still a long way
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for clinical application of these drugs due to lack of large-sample,
long-term follow-up data. Further exploration on neuro-circuits
and mechanisms underlying ethanol responsiveness will also
deepen the understanding of these diseases and accelerate the
discovery of ideal treatment.
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