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Abstract: The “normal” immune response to an insult triggers a highly regulated response de-
termined by the interaction of various immunocompetent cells with pro- and anti-inflammatory
cytokines. Under pathologic conditions, the massive elevation of cytokine levels (“cytokine storm”)
could not be controlled until the recent development of hemoadsorption devices that are able to
extract a variety of different DAMPs, PAMPs, and metabolic products from the blood. CytoSorb® has
been approved for adjunctive sepsis therapy since 2011. This review aims to summarize theoretical
knowledge, in vitro results, and clinical findings to provide the clinician with pragmatic guidance
for daily practice. English-language and peer-reviewed literature identified by a selective literature
search in PubMed and published between January 2016 and May 2021 was included. Hemoadsorp-
tion can be used successfully as adjunct to a complex therapeutic regimen for various conditions.
To the contrary, this nonspecific intervention may potentially worsen patient outcomes in complex
immunological processes. CytoSorb® therapy appears to be safe and useful in various diseases
(e.g., rhabdomyolysis, liver failure, or intoxications) as well as in septic shock or cytokine release
syndrome, although a conclusive assessment of treatment benefit is not possible and no survival
benefit has yet been demonstrated in randomized controlled trials.

Keywords: hemoadsorption; CytoSorb®; amount of blood purified; COVID-19; immune system;
cytokines; cytokine storm; sepsis; septic shock; hemophagocytic syndrome

1. Introduction to Hemoadsorption

Sepsis and septic shock are complex, life-threatening conditions with persistantly
high [1] multiorgan failure-related mortality of up to 70%. Sepsis is the inglorious most
common cause of death in critical care and one of the greatest challenges for healthcare
systems worldwide [2–5].

Multiorgan failure in sepsis is predominately caused by dysfunctional microcircu-
lation [6], induced and regulated by multiple humoral and cellular mechanisms. The
different components of the immune system that are organized in highly complex, dy-
namic network-like structures are not well-understood [7]. The fact that sepsis and other
inflammatory conditions are not uniform, but inter-individually distinct, causes clinically
variable phenotypes of inflammatory states with alternating pro- and anti-inflammatory
characteristics [8].

Conventional treatment includes early anti-infective use, volume resuscitation, and
catecholamine therapy for hemodynamic stabilization and extracorporeal organ support,
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such as renal replacement therapy (RRT) [9]. Ideally, the dysregulated immune response is
controlled and “immunologic homeostasis” is restored [10]. CytoSorb® is the most widely
used hemoadsorption procedure at present [11] that specifically targets hyperinflammation
by extracorporeal removal of pro-inflammatory substances, i.e., cytokines.

2. Methods

This scoping review was conducted in compliance with PRISMA-ScR [12]. Although
less rigorous in methodology than a systematic review, the scoping review enjoys the
benefit of answering important questions in the absence of highly graded evidence to the
significance of hemoadsorption with CytoSorb®. We aimed to provide the clinician with
an orientation to the state of research, to outline corresponding topic areas, and, without
judging the methodological quality, to map the often-incomplete evidence. Our aim was
to simplify the decision-making-process in practice for the intensive care physician at
the bedside.

A selective literature search was performed in the PubMed database from January 2016
until 31 May 2021. The items used were: Basic of Immune System, CytoSorb, Hemoadsorption,
Cytokine, Cytokine Storm, Sepsis, Septic Shock, and Hemophagocytic Syndrome. In addition, the
database https://literature.cytosorb-therapy.com/ (accessed on 31 May 2021), which is
freely available on the Internet, was included in the literature search to identify publications
in sources not listed in PubMed.

English-language and peer-reviewed publications from January 2016 to May 2021
were included. In a few exceptions, seminal literature from before 2016 was also in-
cluded. This was done after internal review if an important effect on overall understanding
was expected.

The primary publications found in the database search were then subjected to an
internal multistep selection process. First, duplicates were removed. Selection was based
on heading, keywords, and abstract, and weighted by publication date and context. Then,
two by two experienced reviewers classified and included relevant publications (Figure 1)
based on the following key criteria:

- Infection/Host response
- Regulation and dysregulation of the immune system
- Cytokines and cytokine storm
- Corona-Virus induced Disease 2019 (COVID-19)
- Hemoadsorption with CytoSorb®—basic principles and function
- Hemoadsorption—Indications

# Systemic Inflammatory Response Syndrome (SIRS), sepsis and septic shock
# Trauma-induced inflammation (trauma, rhabdomyolysis)
# Liver failure, hyperbilirubinemia
# Acute respiratory distress syndrome (ARDS)
# Extracorporeal membrane oxygenation (ECMO)
# COVID-19-associated ARDS (CARDS)
# SIRS, perioperative use, cardiac surgery
# Intoxications
# Side effects
# Dosage of antibiotics

For these publications, the full text then assessed for its suitability with respect to the
objective of the review and information was included accordingly. Each publication was
evaluated according to the following criteria: (patho-)physiological basics, case reports,
case series, letter, retrospective studies, prospective studies, and reviews. In order to
provide an overview of the current state of clinical use, we deliberately refrained from a
strict assessment of study quality and partially included publications of lower evidence
(e.g., case reports).

https://literature.cytosorb-therapy.com/
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Figure 1. Flowchart for study selection adapted from the PRISMA-ScR statement [12].

The respective article assigned to the first appropriate group, so that, for example,
the frequent formulation “Hemoadsorption with CytoSorb®” required a grouping in the
chapter “Hemoadsorption”.

Finally, after extensive discussion among all authors, the texts assessed with respect to
various factors (e.g., publication date, methodology, results, and impact) and summarized
separately below for each topic.

3. Infection Response and Immune System Regulation

Injury or infection initially leads to local activation of humoral factors (e.g., comple-
ment factors) and activation of the innate immune system, e.g., via pattern recognition
receptors (PRR’s). These are diverse sets of receptors located on the surfaces or internally
of various cells of the immune system. They recognize both pathogen- and damage-
associated molecular patterns (PAMPs/DAMPs). PAMPs (e.g., Staphylococcus aureus
Toxic Shock syndrome Toxin and Clostridium perfringens toxin) are products formed by
various microbes. DAMPs, released by damaged endogenous cells or formed during the
processing of extracellular matrix, can trigger inflammatory reactions as alarmins via the
induction of cytosolic multiprotein complexes, so-called inflammasomes with subsequent,
e.g., gasdermin-D induced, proinflammatory cell death called pyroptosis [13–16].
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3.1. Cytokines and the Cytokine Storm

Cytokines control cell proliferation and differentiation, the regulation of angiogenesis,
and immune and inflammatory responses. Characteristic plasma cytokine profiles show
TNFα, IL1, IL8, and MCP-1 peaks in the first minutes to hours after infection, followed by
an IL6 increase [17,18]. IL10 is released later to control the inflammatory response [16,19].

Cytokines are key components to inflammation and their temporal and spatially fine-
tuned interplay with, i.e., the cellular components of the immune system will most likely
result in controlled inflammation with subsequent healing. However, severe injury and
disease (Table 1) can cause overproduction of several cytokines that may cumulate in sys-
temic inflammatory response syndrome (SIRS) and which is characterized by four criteria:
tachypnea, tachycardia, leukopenia or leukocytosis (leucocyte count > 12,000 cells/µL or
<4000/µL), and fever or hypothermia (body temperature > 38 ◦C or <36 ◦C). Although
this syndrome presents itself inter-individually in very different degrees the SIRS criteria
still seem useful to indicate a massive activation of the host defense triggered by, e.g., an
infection [20].

Table 1. External injuries and diseases that can trigger a SIRS potentially followed by Injury-
associated Immunosuppression (IAI) or Sepsis Associated Immunosuppression (SAI) modified
after [14].

External Injuries Disease

Polytrauma Pancreatitis
Craniocerebral trauma Liver insufficiency
Organ transplantation Renal insufficiency

Burn Stroke
Extensive surgery Myocardial infarction

Cardio-pulmonary resuscitation Heart failure
Cardiosurgical intervention Sepsis and Septic Shock

The term “cytokine storm” describes a very heterogeneous group of diseases character-
ized by excessive, life-threatening, potentially fatal hyperinflammation [21]. Once triggered,
the massive release of proinflammatory cytokines as part of the early immune response
causes shock and organ failure by microcirculatory disturbances and coagulopathy [9].
(Para-) clinical findings include: persistent fever, cytopenia, splenomegaly, hepatitis, or
coagulopathies [22,23].

Infectious and non-infectious diseases such as active rheumatic diseases can cause a
cytokine storm syndrome with massively elevated IL6 levels. [22]. In contrast, hemophagocy-
tosis syndromes are characterized by high IFNγ and IL10 levels in combination with mildly
elevated IL6 [24], an “anti-inflammatory cytokine storm with early immunosuppression”.

The pathophysiological response to the cytokine storm varies interindividually [17].
Elevated IL6 and resistin levels correlate with sepsis severity as well as end-organ damage
and appear to be associated with increased mortality [25]. In general, high concentrations of
proinflammatory cytokines are associated with increased mortality [26–28]. Elevated anti-
inflammatory cytokines, such as IL10, are also predictive of sepsis severity and worsened
outcome [28,29]. Relevant Cytokines are listed in Table 2.
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Table 2. Cytokine families and their functions with examples of pro- and anti-inflammatory cytokines; modified from [30–32].

Family Functions Cytokine Impact on
Inflammation

Removal Rate on
CytoSorb® (% at 120 min)

[30]/[32]

Interferone (IFN)

Regulation of innate immunity;
activation of antiviral effects;

antiproliferative effects; pyrogenic
effect.

IFNγ Pro 95.7/61

Interleukine (IL)

Growth and differentiation of
leukocytes.

Proinflammatory effects: induction of
cyclooxygenase II; expression of
various adhesion molecules; NO

synthase ↑; pyrogenic effect.

IL1β
IL2
IL6
IL7

Pro
Pro/Anti

Pro
Pro

97.2/n.d.
99.3/n.d.
99.6/78

n.d./n.d.

Antiinflammatory effects: inhibition of
proinflammatory cytokine (e.g.,

IL1α, IL1β, TNF) and
monocyte/macrophage, Promotion

of Th2-lymphocytes

IL1RA
IL4

IL10
IL11
IL13

Anti
Anti
Anti
Anti
Anti

92.1/n.d.
99.9/n.d.
99.8/n.d.
n.d./n.d.
94.2/n.d.

Chemokine
Control of chemotaxis; recruitment

of leukocytes; predominantly
proinflammatory activity.

IL8
MCP1

MIP-1α

Pro
Pro
Pro

100/n.d.
100/n.d.
97.3/97.4

Colony-stimulating
factors (CSF)

Stimulation of hematopoietic
progenitor cell proliferation and

-differentiation.
G-CSF Pro 99.4/n.d.

Transforming growth
factors

Regulation of proliferation,
differentiation, adhesion of cells. TGFβ Anti n.d./n.d.

Tumor necrosis factor
(TNF)

Proinflammatory; activates cytotoxic
T-lymphocytes.

TNFα
(Cachectin) Pro 98.4/21.7

Peptide hormone

Early-phase cytokine; uremic toxin;
release from myeloid cells;

neutrophil migration ↓;
phagocytosis performance ↓.

Resistin Pro n.d./n.d.

Soluble Cytokine
Receptors with

Anti-inflammatory
Activities

Inhibition of the natural ligands and
thus suppression of the typical

effect.

sIL-1RII
sTNFRp55 Anti n.d./n.d.

n.d.: no data.

A severe, potentially fatal cytokine storm may possibly occur in association with
COVID-19, leading to the excessive release of various pro- and anti-inflammatory cytokines
(e.g., IL1, IL2, IL6 IL7, IL10, GCSF, IP10, MCP1, MIP1A, INFy, and TNFα) [33–39].

However, a recent, critically discussed rapid review [40] concluded that IL6, an
important proinflammatory cytokine, synthesized in fibroblasts, monocytes, T-cells, and
endothelial cells [41], is lower in patients with severe COVID-19 compared with other
hyperinflammatory states associated with acute respiratory distress syndrome (ARDS),
sepsis, or cytokine release syndrome (CRS) [42]. On the other hand, two randomized
controlled trials (ReMAPCap and RECOVERY) showed that blockade of the IL6 pathway
with tocilizumab improves the prognosis of COVID-19 patients [43,44]. In conclusion,
the data remain controversial and it appears that the often-described hyperinflammation
linked to COVID-19 is by no means the only pathomechanism [42].

3.2. Immunosuppression

To control inflammation, anti-inflammatory cytokines are increasingly released as the
immune response progresses. Antigen presenting cell (APC) activation levels, expression of



Int. J. Mol. Sci. 2021, 22, 12786 6 of 23

HLA-DR, and co-stimulatory molecules decrease. Antigen presentation, pro-inflammatory
mediators, and phagocytosis are reduced. In consequence, an anti-inflammatory situation
(IL10↑↑, APC↓) known as Sepsis Associated Immunosuppression (SAI) or Injury Associated
Immunosuppression (IAI) may develop (Table 1). [14,45–48].

Major players in SAI may be myeloid-derived suppressor cells (MDSC). They mediate
T-cell dysfunction, resulting in a higher incidence of secondary infections [48–51]. Another
cellular entity contributing to SAI are regulatory T-cells (Tr1 cells), that, among other things,
inhibit the activation of key inflammasomes (Nod-like receptor protein: pyrin domain
containing 3 (NLRP3) inflammasome) through increased IL10 release [16,52]. Human
leucocyte antigen (HLA-DR) plays an important role in T-cell activation as a key MHC
class II molecule on monocytes/macrophages. HLA-DR establishes together with various
co-factors (e.g., CD40-CD40L) the link between antigen-presenting cells and the T-cell
receptor (TCR). The expression of HLA-DR is downregulated by the release of IL10. This
may contribute to immunosuppression when IL10 levels are excessively high. As a clinical
example, frequent immunosuppression with increase of infection (e.g., pneumonia) after
CNS injury is (co-)caused by a reduced HLA-DR level (cut off: <8000 molecules/cell) longer
than two days [14].

Based on a better understanding of the interplay of pro- and anti-inflammatory cy-
tokines by overlapping, in part redundant, networks of cells and cytokines, new therapeu-
tic approaches have been developed that, as with hemoadsorption, aim to modulate the
amount of inflammatory cytokines as part of the host defense [34,35,38,53].

4. Hemoadsorption with CytoSorb®

4.1. Basics

To control a dysregulated immune response has long been the subject of various
therapeutic efforts. The rational is to reduce the elevated concentrations of pro-and anti-
inflammatory cytokines equally, with preserving their ratios, instead of intervening at
a specific pathway in the complex immunological network [7,30]. Hemoadsorption is
based on this therapeutic principle and aims to restore the immunologic balance [10] by
reducing the plasma concentrations of pro- and anti-inflammatory mediators below a “toxic
threshold” [54]. It is also possible that the change in the equilibrium of cytokines between
the affected tissue and the blood plays an important role. As the concentration gradient
increases, chemotaxis-mediated increased migration of immunocompetent cells into the
affected region appears possible [55].

CytoSorb® (CytoSorbents Corporation, Monmouth Junction, NJ, USA), approved in
Europe in 2011 for patients with excessive cytokine levels, is a high-tech polymer adsorbent
with a total surface area of over 45,000 sqm and very high binding capacity that is applied
for blood purification in an extracorporeal circuit. Highly porous polyvinylpyrrolidone-
coated polystyrene-divinylbenzene beads (polymer beads with a size of: 300–800 µm) [41]
bind through a combination of hydrophobic interactions, van der Waals’ forces, and charge-
induced interactions a broad spectrum of molecules with a molecular weight <55 kDa.
Various hydrophobic, pro-and anti-inflammatory mediators, immune response-triggering
DAMPs or PAMPs, as well as endogenous metabolism-generated (e.g., bilirubin and
myoglobin) or pharmacologic substances (e.g., anticoagulants and psychotropic drugs) are
adsorbed [56–62]. Concentration is a major determinant of adsorption efficiency, meaning
higher concentrations lead to faster adsorption [61,63].

The CytoSorb® adsorber is predominantly and in combination used with continuous
renal replacement therapy. Operation as an additional hemoperfusion with any approved
blood pump system is possible as well as integration into an extracorporeal membrane
oxygenation (ECMO) circuit [64–66]. The required anticoagulation can be managed sys-
temically with heparin or locoregionally with citrate [41,67,68].
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4.2. Indications

Hemoadsorption with CytoSorb® may be used for the treatment in numerous indica-
tions (Table 3).

Table 3. Indications (para-) clinical criteria for the use of the CytoSorb® adsorber modified from [66,69].

Indications Clinical Criteria Paraclinical Criteria

Rhabdomyolysis

- Reperfusion syndrome
- Trauma
- Malignant Hyperthermia

Independent of renal function Myoglobin > 1000 U/L (observe trend)

Inflammation (SIRS) triggered by:

(1) External injuries

- Sepsis/Septic shock
- Hemorrhagic shock

# Trauma

• Polytrauma
• Craniocerebral

trauma

# Ruptured aortic
aneurysm

- Post-Cardiac Arrest Syndrome
- Cardio-pulmonary resuscitation
- Extensive surgery

# Organ transplantation
# Cardiosurgical

intervention

- Severe skin and soft tissue
damage

# Burns
# Necrotizin fasciitis

- Post-Cardiotomy Syndrome
- Acute Respiratory Distress

Syn-drome

(2) Diseases

- Pancreatitis
- Liver insufficiency
- Renal insufficiency
- Stroke
- Myocardial infarction
- Cardiogenic shock/Heart failure
- Tumor Lysis Syndrome
- Hemophagocytosis Syndrome

- Norepinephrine > 0.3 µg/kg/min
- >1 Vasopressors
- additional inotropics

- Metabolic Azidosis (pH < 7.25)
- Lactate > 2 mmol/L (observe trend)
- (Interleukin 6 > 500 pg/mL)

Liver failure/Hyperbilirubinemia
bridging to transplant or to recovery Icterus

- Total bilirubin > 10 g/dL (observe
trend)

- MELD > 20

Life-threatening bleeding
under Direct Oral Anticoagulants (DOAC)

Medical history (dose, last intake,
extent of planned operation)
Type of bleeding (major or minor
bleeding)
Availability of specific antidotes
(andexanet alfa)

Hemoadsorption with CytoSorb® requires an extracorporeal circuit, e.g., in the context
of CRRT, ECMO or as a standalone procedure in the context of hemoperfusion. All
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these procedures have specific complications. In addition, the complications due to the
intravascular access devices themselves must be considered.

If the CytoSorb® Adsorber is used as an adjunctive procedure, e.g., in septic shock or
as part of ECMO treatment, these factors do not play a role. However, if primary CytoSorb®

therapy is planned, the intensive care therapist must carefully consider the complications
associated with the procedure when determining the indication. From the authors’ point of
view, the use of CytoSorb® in the context of acute, time-critical treatment of intoxications
(Table 4), life-threatening bleeding under DOAC [59], or acute rhabdomyolysis [60], e.g., in
the context of malignant hyperthermia, is sufficiently well documented and should not be
withheld from the patient, i.e., in these cases the establishment of an extracorporeal circuit,
usually a CRRT, seems justified.

In other situations (Table 3), we are very critical of the establishment of an extracor-
poreal circuit to perform hemoadsorption and consider the current data situation in this
regard to be insufficient.

4.2.1. SIRS, Sepsis and Septic Shock

The adjunctive therapy of SIRS, sepsis, or septic shock with CytoSorb® should help to
reduce, downregulate, or prevent an excessive immune response (“cytokine storm”). Cap-
illary leakage and vasoplegia should be alleviated and the microcirculation improved [70].
Since no direct measurements of efficacy are available, a decrease in IL6-concentration
and vasopressor requirement, or an increase in lactate clearance have been suggested as
surrogate parameters [71]. A decrease in lactate of >2 mmol/L and vasopressor require-
ments, i.e., to below 20% of the initial dose [70], are supposed to indicate therapeutic
success [65,71] whereby the duration of treatment should depend on the individual pa-
tient’s response [41]. Several in vitro studies exhibited effective adsorption of a broad
spectrum of PAMPs and DAMPs or various cytokines by CytoSorb®. Procalcitonin is
equally adsorbed, which must be taken into account in the interpretation of lab test re-
sults [30,32]. However, the IL6 concentration, which is frequently used to indicate start
and efficacy of hemoadsorption therapy and for the assessment of the effect of hemoad-
sorption, has recently been questioned for its usefulness since the levels are balanced by
the endogenous turn-over and the extracorporeal elimination [72–74]. CytoSorb® therapy
could be useful in septic shock [75,76], but indication, indication thresholds and duration of
therapy are controversially discussed. With explicit attention to the limitations of data from
animal studies, especially the conditional applicability to humans, Peng et al. demonstrated
prolonged survival in the rat model under hemoadsorption [77]. A randomized controlled
trial demonstrated no mortality reduction for hemoadsorption in ARDS patients with low
case severity (APACHE II: 23) [78]. Methodologically, the study was criticized for its short,
discontinuous CytoSorb® use (6 h/d for 7 d) which did not significantly reduce IL6 levels.
In contrast, data from the CytoSorb® registry reported a mean CytoSorb® application
duration of 50 h [79]. Brouwer et al. reported a significant reduction of mortality in patients
with septic shock if continuous CytoSorb® therapy was applied for 56 h [65]. However, the
statistical method of “stabilized inverse probability of treatment weigths (sIPTW)” has been
scrutinized [80]. Probably, the application of a higher “dose” (amount of blood purified
(ABP), unit: l blood/kg bw), higher blood flow, in combination with a longer treatment
(ca. 85 h), is associated with lower mortality [72]. More retrospective studies demonstrated
a mortality benefit for hemoadsorption [81], especially if CytoSorb® therapy was started
early (within 12 h) [82]. On the other hand, several recently published studies have failed
to demonstrate any effect of hemoadsorption on mortality [74,83].

The optimization of application duration, adsorber exchange modalities, and blood
flow rate may be crucial for success and is subject of intensive research.

However, clear evidence of a survival benefit for CytoSorb® therapy in the form of a
randomized, prospective study (RCT) is still missing.
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4.2.2. Trauma Induced Inflammation, Injury Associated Immunosuppression
and Rhabdomyolysis

Various injuries ((poly-) trauma, burns, and major surgery) can lead to massive
SIRS with, e.g., increased DAMPs-induced expression of pro- and anti-inflammatory
mediators, occurring especially within the first 24 h [84,85]. Individually different, a phase
of immune paralysis, the IAI follows. CytoSorb® may offer a therapeutic approach here,
via control of the massive release of various DAMPs (e.g., high mobility group box-1
protein (HMGB1) or extracellular histones) [86]. Trauma is often aggravated by muscle
injury and reperfusion syndrome with subsequent rhabdomyolysis. This may also be
caused by reperfusion syndrome following occlusion of large vessels. Non-traumatic
diseases (malignant hyperthermia, autoimmune diseases, and intoxications) may also be
causative [87]. Myoglobin precipitation (haemoprotein MG17.8 kDa) in the renal tubules
(crush kidney), combined with elevated concentrations of free oxygen radicals [88], can
damage the kidneys to the point of acute failure (ARF) [89]. Important therapeutic measures
include early aggressive volume therapy, consistent surgical therapy for compartmental
syndromes [90], and, if necessary, RRT [91]. However, RRT cannot prevent ARF [90].
CytoSorb® rapidly lowers myoglobin serum levels due to its high myoglobin extraction
rate and thus can be recommended as part of a multimodal treatment approach [87,88,92].
It remains unclear whether CytoSorb® can prevent ARF in rhabdomyolysis.

4.2.3. Liver Failure and Hyperbilirubinemia

In up to 40% of critically ill patients, hyperbilirubinemia is present with an increased
risk of death [93]. Clinical and paraclinical findings typically include varying degrees
of icterus, lactic acidosis, coagulation disorders, hepatic encephalopathy, and circulatory
insufficiency. ARF is an additional complication. Acute or acute-on-chronic liver failure
(ALF/ACLF) can be primary (e.g., viral) or secondary (e.g., cholestasis-, hypoxemia-, or
shock-related). It is based on a complex immunopathology involving the release of various
PAMPs and DAMPs, as well as the release of a variety of cytokines and the activation of
various immune cells such as monocytes and macrophages. Frequently, localized hepatic
inflammation leads to generalized vasopathy and multiorgan failure via SIRS [94,95].

In addition to water-soluble ammonia, hydrophilic direct bilirubin and bile acids, the
accumulation of indirect, albumin-bound, i.e., hydrophobic bilirubin plays an important
role in the pathogenesis of acute liver failure [57,96]. Progression to ALF or ACLF may be
perpetuated by “hepatic SIRS” [97]. CytoSorb® adsorbs indirect bilirubin and bile acids
and modulates the concentrations of involved cytokines [57,98] while RRT controls serum
concentrations of ammonia and direct bilirubin [99,100]. With CytoSorb®, bilirubin is
released from its strong albumin binding and gets adsorbed while albumin concentrations
remain virtually unchanged [56,57], resulting in an overall improvement in liver func-
tion [41]. This is true even when used for several weeks [62]. CytoSorb® therapy may
be a simple, user-friendly alternative to bridge to functional recovery or orthotopic liver
transplantation [93,101]. Initial clinical trial results appear positive [69].

4.2.4. Acute Respiratory Distress Syndrome (ARDS) and Extracorporeal Membrane
Oxygenation (ECMO)

Hallmarks of ARDS, one of the most common diagnoses in intensive care units [102],
are acute inflammation with increased pulmonary vascular permeability, increased lung
weight, and loss of aerated lung tissue [103]. The main symptom is rapidly progressive
respiratory distress coupled with a “cytokine storm” that develops with the typical course
of pro- and anti-inflammatory cytokine peaks [17,104].

Specific therapeutic procedures do not yet exist. Rather, evidence-based treatment
is characterized by supportive therapeutic procedures. These include, for example, lung-
protective ventilation [105], adequately high PEEP levels [106], prone positioning [107,108],
or the establishment of extracorporeal membrane oxygenation (ECMO) [109,110].
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In addition to the underlying disease, the foreign surface of the ECMO circuit itself,
rapidly amplifies hyperinflammation by complement, endothelial, and leukocyte activation
of varying degrees [66,111,112], making CytoSorb® therapy a rational option. Several
studies have reported a decrease in extravascular lung water (normalization of pulmonary
vascular permeability), vasopressor requirements [104,113], and inflammatory parameters,
associated with rapid clinical stabilization [114]. The high ECMO blood flow rates have
a dose-increasing, effect-enhancing, and thus, if high enough (ABP > 13 L/kg), possibly
mortality-lowering effect [72].

4.2.5. COVID-19-Associated ARDS (CARDS)

In COVID-19, a potentially massive cytokine storm may cause lethal destruction of the
lung with attenuated pulmonary vasoregulation, ventilation-perfusion mismatch, and high
risk of thrombosis and impairment of other organ functions via microvascular damage (en-
dothelitis) as well [33,35–37,53,115]. This may explain the phenotypic differences between
“typical” ARDS and CARDS characterized by hypoxemia, normal compliance, and altered
ventilation-perfusion ratio [116,117]. Based on pathophysiological considerations, some
authors recommend to use [36,118–120] or consider [121] CytoSorb® in COVID-19. Since
initial experience was positive and suggested a therapeutic effect [122], CytoSorb® was
temporarily approved in April 2020 by the US Food and Drug Administration (FDA) for
emergency use in patients with CRS under certain conditions [123].

Supady and colleagues studied the effect of CytoSorb® therapy in 34 patients with
severe COVID-19 pneumonia who received ECMO [124] in a randomized controlled trial.
The authors interpreted their data to mean that early initiation of CytoSorb® therapy had a
negative effect on survival. Although seemingly well balanced, the study was critizised for
incomplete data on treatment details and a survival rate in the control group with ECMO
only [73,125] that was much higher than in any other ECMO study. Since no previous
study had reported any detrimental effects, hemoadsorption for COVID-19 patients should
be used with caution and only in the context of clinical trials.

4.2.6. Post-Pump Syndrome and Perioperative Use in Cardiac Surgery

Cardiopulmonary bypass (CPB) is by principle similar to ECMO, is routinely used in
cardiac surgery, and is known to cause a complex inflammatory response with mediator
release (C3a, C5a, histamine, IL6, IL8, and TNFα) immediately after blood contact with
the foreign surface. Foremost is the activation of the complement and coagulation sys-
tems [58,112,126,127]. The SIRS in CPB, termed “post-pump syndrome”, is prognostically
relevant [128–130] and clinically characterized by increased vascular permeability, de-
creased peripheral vascular resistance, hypotension and tachycardia, and an increased risk
of thrombosis. This suggests that hemoadsorption is reasonable [127,131] and a high ABP
may be favourable [72]. Various case series and retrospective studies demonstrated that
CytoSorb® application resulted in normalization of cytokine levels, hemodynamic stabiliza-
tion, reduced vasopressor requirements, less renal replacement therapy, and normalization
of serum lactate concentrations [126,132–136].

Two randomized pilot studies on intraoperative CytoSorb® use under CPB failed to
demonstrate any advantage for hemoadsorption, which may be due to the small patient
numbers, low cytokine levels, and short CytoSorb® application duration [127,130].

In contrast, the multicenter study REFRESH I [58] showed a significant reduction
in free hemoglobin, an independent predictor of mortality, on ECMO [137]. Following
investigations could not confirm these findings [138].

4.2.7. Intoxications

Due to its binding properties, CytoSorb® is an option in the acute treatment of over-
doses or intoxications with various drugs [98] (Table 4). These molecules often contain
central hydrophobic structures (e.g., benzene rings) that are adsorbed on the polymer
beads even in case of high plasma protein binding [139]. As example, therapeutic levels of



Int. J. Mol. Sci. 2021, 22, 12786 11 of 23

rivaroxaban or ticagrelor can be eliminated before emergency surgery [59,140]. Maximiza-
tion of blood flow rapidly leads to high clearance in time-critical situations. The duration
of therapy, blood flow rates, and changing intervals considering the adsorber saturation
kinetics should be individually adjusted to achieve optimal clearance [127,141–144].

Table 4. Drugs that can effectively be removed by CytoSorb® or in which a relevant decrease of serum concentrations must
be expected (modified from [62]).

Drug Group Active Pharmaceutical Substances References

positive effect likely

Antiarrhythmics

Amitriptyline [145]
Flecainide [146]
Digoxin [141]

Digitoxin [147]

Antidepressant Amitryptilin [145,148]

Anticonvulsants
Carbamazepine

[141]Valproic Acid
Phenytoin

Beta Blocker Bisoprolol [148]

Calciumchannel blockers
Amlodipine [148]
Verapamil [149]

Hypnotics and sedatives Phenobarbital [141]

Psychotropic drugs

Quetiapine [143]
Venlafaxine [150]

3,4-Methylenedioxy-methamphetamine
(MDMA, “Ecstasy”) [151]

Toxins
Aflatoxine [32,152]

Toxic Shock Syndrome toxin-1 (TSST-1) [32]
Viper Snake Venom [153]

positive or negative effect likely
(according to the indication)

Anticoagulants

Dabigatran [154]
Edoxaban [155]

Rivaroxaban [59,156]
Ticagrelor [59,139,144,156]

Contrast agents Iodixanol
Iohexol [157,158]

Immunosuppressives Tacrolimus
Cyclosporine [141]

negative effect likely Antibiotics

Amikacin, Vancomycin, Tobramycin,
Gentamicin, Ciprofloxacin, Meropenem,
Piperacillin, Flucloxacillin, Imipenem,

Teicoplanin, Linezolid

[61,63,141,159,160]

Antimycotics Fluconazole, Voriconazole [63]

4.3. Side Effects

CytoSorb® is a CE-approved bio- and hemocompatible medical device. Cellular com-
ponents (e.g., leukocytes/platelets) are minimally extracted. In principle, adhesion of blood
cells to the polymer beads is detectable by electron microscopy [138], but the induction of
hemolysis or other clinically significant side effects have not been reported [161]. Similarly,
there is no evidence for a “CytoSorb®-induced” inflammatory response or coagulopa-
thy [138]. CytoSorb® therapy is considered to be safe [72,133]. However, it is to be expected
that in patients receiving relevant long-term medication, e.g., anticonvulsants and immuno-
suppressives, the drug concentrations drop significantly during hemoadsorption [127].

Interaction with the CytoSorb® adsorber appears possible from a pharmacokinetic
point of view for a variety of the drugs used in intensive care, but requires further investi-
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gation. As an example, the adsorption of triiodothyronine [127,162] can be considered. The
function as an iodine donor for various immunological pathways is limited with it; e.g.,
neutrophil granulocyte function is compromised and mortality is increased in patients with
low fT3 and fT4 levels in septic shock [163]. Whether hemoadsorption possibly enhances
such a pathomechanism has not been investigated until now but cannot be ruled out
pathophysiologically.

4.4. Dosage of Antibiotics

Antimicrobial chemotherapy is elementary in sepsis therapy and should start within
the first hour of diagnosis [9,164]. Anti-infective dosing is very complex and depends
on various determinants including hyperdynamic/hypodynamic circulation, volume of
distribution, hepatic/renal clearance, albumin concentration, and extracorporeal organ
support (ECMO, RRT) [165]. There is an increased risk of mis- or underdosing with
hemoadsorption [166–168] and dosing needs to be adjusted even under CRRT [169].

CytoSorb® may aggravate this problem by an “anti-antibiotic effect”. Relevant ad-
sorption phenomena (mainly in-vitro data) with high extraction rates [63] have been
described for various anti-infectives (Table 4). According to animal data (hemoperfusion
over 6h, without adsorber change), the influence of CytoSorb® on the total clearance of
the investigated 17 various anti-infectives seems negligible. An additional dose has been
recommended for fluconazole and linezolid only [160]. First clinical data for linezolid
suggest similar behavior in humans [159]. Due to the initial high volume of distribution
and the decrease in clearance within a few hours after CytoSorb® installation, various
authors recommend an additional anti-infective dose per adsorber for a variety of antibi-
otics [127,141,159,170]. Drug monitoring under hemoadsorption therefore seems to be
essential [160].

5. Perspectives

The interaction of various pro- or anti-inflammatory components of the immune sys-
tem with different organ systems (cytokine storm) is causative for SIRS, sepsis, and septic
shock, the most frequent indications for CytoSorb® use. Modulation of the host defense
by “immunomodulation” with a “theoretical” reduction in the plasma concentration of
various cytokines and good biocompatibility may potentially help to control shock and
prevent multiorgan failure. However, potentially deleterious effects due to the nonspe-
cific interference with complex immunologic processes should be considered. Therefore,
hemoadsorption with CytoSorb® as adjunctive therapy in severe cytokine dysregulation
states can currently only be recommended in the context of clinical trials. In septic shock,
a decrease in mortality under hemoadsorption with CytoSorb® has not yet been clearly
demonstrated. Whether a postulated “anti-antibiotic effect” has undesired effects remains
speculative. On the other hand, it remains undetermined which patients, if any, could
potentially benefit from such a therapy. Possibly, a recently presented dynamic scoring
system may be useful to help identifying the right patients [82]. None of these have been
scrutinized by adequately powered randomized controlled trials. It is possible that the lack
of clear data to date is due to the heterogeneity of the studies published to date. This relates
to differences in study type, statistical models, patient populations studied, study design,
or primary or secondary outcome. For illustration, some studies on the use of CytoSorb®

in septic shock are summarized in Table 5.
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Table 5. A selection of current studies that have investigated the use of CytoSorb® therapy in sepsis and septic shock. Note the heterogeneity of the studies in terms of study design,
patient populations, and outcome parameters. n.d. no data, CS—CytoSorb®, RCT—randomized controlled trail, SOFA—Sepsis Organ Failure Assessment Score, APACHE II—Acute
Physiology and chronic Health Evaluation Score.

Author Indication Study Design Number of
Patients

APACHE
II

SOFA
(pre) Procedure Blood Flow

(mL/min)

Adsorber
Useful Life

(h)

No of Adsor-
ber/Patient

Change
Interval (h) Outcome

Scharf et al.
Ann. Intensive
Care. 2021 [74]

Septic shock
(“cytokine

storm”)

Propensity
score matching

analysis;
retrospective

38 with CS.
105 without

CS.
n.d. n.d.

ECMO, RRT,
Hemo-

perfusion
n.d. 7–12

(Median 9) 1 n.d. No difference
between groups

Schultz et al.
Journal of

Critical Care.
2021 [72]

Septic shock Retrospective
cohort study 70 with CS. 30.2 13.8 CVVHD 100–200 26.75 3.2 24 With high dose

28-d mortality ↓

Supady et al.
Lancet Respir.

Med. 2021
[124]

Severe
COVID 19-
pneumonia
with ECMO

Single centre,
open-label

RCT

17 with CS.
17 without CS. n.d. 9.0

9.0 ECMO 100–700 24 3 24 28 d mortality ↑

Rugg et al.
Biomedicines.

2020 [124]
Septic shock

Retrospective
study;

“genetic”
matched
analysis

42 with CS.
42 without CS. n.d. 13.0

12.0 CRRT n.d.

24
(38 Patients
had only 1

CS)

1 24
28 d and in

hospital
Mortality ↓

Kogelmann
et al.

Journal of the
Intensive Care
Society. 2020

[104]

septic shock
(Pneumonia
+ ARDS +

ECMO)

case series 7 28–56 11–16 CVVHD 100–150 (12)/24 4.14 (12)/24

Observed
mortality ↓ vs.

predicted
mortality

Schitteck et al.
Ann. Intensive
Care. 2020 [83]

septic shock

Retrospective
and

prospective
cohort study

43 with CS.
33 without CS.

39
35 n.d. CVVHDF n.d. n.d. n.d.

changed
with the

CRRT

No difference
between groups

in mortality
LOS ICU ↓
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Table 5. Cont.

Author Indication Study Design Number of
Patients

APACHE
II

SOFA
(pre) Procedure Blood Flow

(mL/min)

Adsorber
Useful Life

(h)

No of Adsor-
ber/Patient

Change
Interval (h) Outcome

Brouwer et al.
Crit. Care.
2019 [65]

septic shock
propensity

score weighted
retrospective

67 with CS.
49 without CS. n.d. 13.8

12.8 CRRT 250–400 24 n.d. 24 28 d mortality ↓

Schädler et al.
PlosOne. 2017

[78]

severe sepsis,
septic shock

+ ALI

multicenter
RCT

47 with CS.
50 without CS.

24.6
23.8 n.d. Hemo-

perfusion 200–250 6 (for 7 d) 7 24 no effect

Kogelmann
et al.

Crit. Care.
2017 [70]

septic shock case series 26 27–48 8–20 CVVHD 100–150 (12)/24 2.61 (12)/24

Observed
mortality ↓ vs.

predicted
mortality

Friesecke et al.
J. Artif.

Organs. 2017
[71]

septic shock
Prospective

interventional
study

20 n.d. 14.3 CVVH/CVVHD 189
142 ~24 n.d. 24

Lactat ↓,
Vasopressor ↓
Interleukin 6 ↓
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Therefore, prospective studies of single indications for clearly defined patient groups,
e.g., severe burn patients with cytokine storm and myoglobinemia, under more precisely
definable “experimental” conditions would be useful to generate evidence for the respective
efficacy or inefficacy of hemoadsorption on the basis of possibly also smaller study cohorts.

Due to its special physicochemical properties, the range of indications for CytoSorb®

has been significantly expanded in recent years. Hemoadsorption can be part of complex
treatment regimens in liver failure, rhabdomyolysis, or intoxication.

Further high-quality randomized controlled trials of hemoadsorption are urgently
needed and should consider factors such as blood flow, dose (amount of blood purified
(ABP)), average adsorber use time, and total duration of hemoadsorption (Table 5). Po-
tential side effects or interactions, in addition to a patient population clearly defined by
indication and disease severity, should be equally investigated. Based on the findings,
relevant contraindications should be formulated. Getting answers to these questions would
be a prerequisite for adopting CytoSorb® therapy into routine intensive care medicine.
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Abbreviations

ABP Amount of blood purified [L/kg]
ACLF Acute-on-chronic liver failure
ALF Acute liver failure
ARF Acute renal failure
APC Antigen presenting cell
ARDS Acute respiratory distress syndrome
COVID-19 Corona-Virus induced Disease 2019
CRS Cytokine release syndrome
DAMPs damage-associated molecular patterns
HMGB1 high mobility group box-1 protein
IAI Injury Associated Immunosuppression
MCP-1 Monocyte chemoattractant protein-1
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MDSC myeloid-derived suppressor cells
NLRP3 Nod-like receptor protein: pyrin domain containing 3
IL interleukin
RRT renal replacement therapy
PAMPs pathogen-associated molecular patterns
PRR’s Pattern recognition receptors
SAI Sepsis Associated immunosuppression
SARS-CoV-2 Severe Acute Respiratory Syndrome Corona-Virus 2
SIRS Systemic Inflammatory Response Syndrome
sIL-1RII Soluble IL-1 receptor type 2
sTNFRp55 Solube TNF receptor p55
TSST-1 Toxic Shock syndrome Toxin-1
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