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As a new-generation CDK inhibitor, a CDK4/6 inhibitor combined with endocrine therapy
has been successful in the treatment of advanced estrogen receptor–positive (ER+) breast
cancer. Although there has been overall progress in the treatment of cancer, drug
resistance is an emerging cause for breast cancer–related death. Overcoming CDK4/6
resistance is an urgent problem. Overactivation of the cyclin-CDK-Rb axis related to
uncontrolled cell proliferation is the main cause of CDK4/6 inhibitor resistance; however,
the underlying mechanisms need to be clarified further. We review various resistance
mechanisms of CDK4/6 inhibitors in luminal breast cancer. The cell signaling pathways
involved in therapy resistance are divided into two groups: upstream response
mechanisms and downstream bypass mechanisms. Finally, we discuss possible
strategies to overcome CDK4/6 inhibitor resistance and identify novel resistance
targets for future clinical application.

Keywords: luminal breast cancer, endocrine resistance, upstream response signaling, downstream bypass
signaling, CDK4/6 inhibitor

INTRODUCTION

Breast cancer (BC) is a common women-related malignant tumor disease in developed countries.
Estrogen receptor–positive (ER-positive) breast cancer represents approximately 70% of all BC
(Goldhirsch et al., 2011; Malvezzi et al., 2013). ER-positive breast cancer can be further stratified into
pathological subtypes, such as ductal or mixed ductal and lobular, mucinous, and tubular
carcinomas, which are referred to as luminal breast cancer (Ignatiadis and Sotiriou, 2013).
Luminal breast tumors are highly heterogeneous in terms of histology and response to
treatment. Luminal A and B are two main ER-positive breast cancer subtypes, based on
different gene expression profiles, prognosis, and clinical therapy responses (Sotiriou and
Pusztai, 2009).

The difference between luminal A and B is mainly related to the expression of hormone receptors.
Luminal B tumors have lower levels of ER expression, lower or no levels of progesterone receptor
(PR) expression, but higher tumor grade and higher Ki-67–positive staining than luminal A tumors
(Goldhirsch et al., 2011; Creighton, 2012). Endocrine therapy, such as ER downregulators, selective
ER modulators, and aromatase inhibitors, is considered to be the primary treatment for luminal A
and luminal B. However, in the clinic, the main therapy for luminal B is chemotherapy, due to the
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lower sensitivity of these patients to endocrine treatment or drug
resistance (Rouzier et al., 2005; Ignatiadis et al., 2012). In fact,
endocrine resistance is an unavoidable problem in clinical
therapy of luminal tumors. Development of new therapy
methods to avert endocrine resistance is an urgent challenge
in clinical medicine (Anurag et al., 2020).

It is well known that the cell cycle is driven by cyclin-
dependent kinases (CDKs), such as CDK4 and CDK6, which
are also closely associated with tumor initiation and progression
Yu et al., 2006; Choi et al., 2012). The activity of cyclin D and
CDK4/6 complexes is considered to play the major role in tumor
cell proliferation driven by estrogen, especially in breast cancer
(Filmus et al., 1994). In recent years, it has been established that
targeting the cell cycle for anticancer treatment is a rational
option that could be combined with endocrine therapy.

CDK inhibitors, which target overactive CDK activities in
tumor cells, have been widely used in preclinical or clinical trials.
In the clinic, three CDK4/6 inhibitors, namely, palbociclib (Fry
et al., 2004), ribociclib (Infante et al., 2016), and abemaciclib
(Patnaik et al., 2016), have been successfully used in combination
with other endocrine therapy drugs for ER-positive and human
epidermal growth factor receptor-2 (HER2)–negative advanced
breast cancer treatment (Ribnikar et al., 2019); in addition,
significant overall survival (OS) benefits have been confirmed
at ESMO2019 conference.

Despite the fact that the new guidelines for the therapy of
advanced breast cancer includes a CDK4/6 inhibitor combined
with endocrine treatment as the first- or second-line drug in most
countries, most patients eventually develop acquired drug
resistance to CDK4/6 inhibitors (Konecny et al., 2011). Several
factors affect the effectiveness of CDK4/6 inhibitors, such as
continuous expression of G1-S-phase cyclins and gene mutations
in key cell signaling pathways (Herrera-Abreu et al., 2016).
Research on the molecular mechanisms or clinical strategies to
overcome CDK4/6 inhibitor resistance is ongoing (Pandey et al.,
2019; Portman et al., 2019). Therefore, the major emerging
consideration in treatment of advanced luminal breast cancer
is now CDK4/6 inhibitor resistance.

In this review, we discuss three CDK4/6 inhibitors with
different clinical trial results and various resistance
mechanisms, aiming to help identify novel clinical therapeutic
targets to improve endocrine therapy resistance and provide
possible strategies to overcome resistance to CDK4/6
inhibitors in advanced luminal breast cancer.

CDK4/6 Inhibitors in Luminal Breast Cancer
In malignant cells, overactive CDK activities are targeted by CDK
inhibitors. The major barrier limiting CDK inhibitors from
further development is the lack of selectivity, due to similar
structures among CDKs (Shapiro, 2006; Michaud et al., 2010).
In the meantime, some biocomputing technologies, such as
computer-aided (Kalra et al., 2017) and pharmacological
(Tadesse et al., 2018; Yin et al., 2018) approaches, have been
employed to develop a new-generation CDK inhibitor with
higher selectivity. Recently, there has been great progress in
CDK inhibitor design, especially the design of CDK4/6
inhibitors, which have been successfully used in clinical trials.

ATP-binding domains are the main drug targets of CDK4/6
inhibitors to block cell cycle G1-S transition (Asghar et al., 2015).
Three third-generation CDK inhibitors, palbociclib, ribociclib,
and abemaciclib, have higher specificity to CDK4/6 than other
members of the CDK family and have been translated into clinical
use against advanced luminal breast cancer. The phase III
MONALEESA-3 trial used a combination of ribociclib and
fulvestrant in advanced ER+/HER2 breast cancer
demonstrated an increased PFS (progression-free survival)
(Slamon et al., 2018) and an improved OS compared with
fulvestrant alone (Slamon et al., 2019). The phase III
MONARCH-plus trial with abemaciclib and nonsteroidal
aromatase inhibitor (NSAI) or fulvestrant treatment showed
improved PFS in predominantly Chinese postmenopausal
women with ER+/HER2 breast cancer (Jiang et al., 2019a).
Moreover, in the phase III MONARCH HER trial, triple
treatment with abemaciclib, trastuzumab (Herceptin), and
fulvestrant showed better therapy outcomes than trastuzumab
plus chemotherapy in ER+/HER2+ patients. In addition, phase II/
III trials of the three CDK4/6 inhibitors in combination with
letrozole, tamoxifen, fulvestrant, and herceptin in the first-/
second-line setting have already been completed (Table 1).

Resistance Mechanisms of CDK4/6
Inhibitor
CDK4/6 inhibitors are not a panacea due to the therapy
resistance. It has been reported in the PALOMA-2 trial that
more than 30% patients experienced recurrence of their cancer
within 2 years of CDK4/6 inhibitor treatment (Finn et al., 2016),
indicating that palbociclib combined with endocrine therapy may
affect CDK inhibitor sensitivity and allow tumor cells to return to
a proliferative phenotype. However, whether the mechanism of
endocrine therapy resistance is associated with the inhibition of
cell cycle or activation of other “bypass” signaling pathways is not
fully understood. We summarized the molecular mechanisms of
CDK4/6 inhibitor resistance below (Figure 1).

CyclinD1-CDK4/6–Rb Pathway
Upregulation of cyclin–CDK activity promotes the cell cycle and
proliferation (Hanahan and Weinberg, 2011). The
retinoblastoma (Rb) protein acts as a gatekeeper to prevent
the cell cycle from progressing from G1 phase into S phase.
CDK4/6 forms heterodimers with D-type cyclins (particularly
D1) to phosphorylate Rb. As a result, Rb protein phosphorylation
leads to the release of transcription factor E2Fs, which activates
the DNA transcriptional program for cell cycle G1/S.

In luminal breast cancer, the development of resistance to
endocrine therapy is associated with the function and integrity of
Rb (Musgrove et al., 2011). Fortunately, the low incidence of Rb
gene deletion/mutation (3.9%) in luminal-like breast tumors
offers the possibility for CDK4/6 inhibition (Ciriello et al.,
2015). This viewpoint has been solidified by a study that
showed that the effects of clinical therapy in luminal breast
cancer were not sensitive to palbociclib when Rb expression is
absent (Dean et al., 2012). In addition, the function of Rb can also
be regulated by E2F transcriptional factors. Malorni et al.

Frontiers in Pharmacology | www.frontiersin.org November 2020 | Volume 11 | Article 5802512

Li et al. Resistance to CDK4/6 Inhibitor

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


indicated that the expression of both E2F1 and E2F2 could cause
loss of Rb and predict the sensitivity of cell lines to palbociclib in
luminal breast cancer (Malorni et al., 2016).

CDK4/6 Overexpression
Overexpression of CDK4 or CDK6 is the main mechanism of
resistance to CDK4/6 inhibitors. Studies have shown that

FIGURE 1 | Upstream response and downstream bypass signaling mechanisms of CDK4/6 inhibitor resistance. Current molecular mechanisms of CDK4/6
inhibitor resistance are highlighted. ER, estrogen receptor; CDK, cyclin dependent kinases; ATM, ataxia telangiectasia mutated; CHK2, checkpoint kinase 2; Rb,
retinoblastoma protein.

TABLE 1 | CDK4/6 inhibitors for the treatment of advanced luminal breast cancer in phase II/III trials.

Clinical trial Regimen Phase Patients PFS (months) ORR Hazard
ratio

References

First line
PALOMA-1 Letrozole + palbociclib/Letrozole Ⅱ 165 10.2 vs. 20.2 39 vs. 55% 0.49 Finn et al. (2015)
PALOMA-2 Letrozole + palbociclib/Letrozole Ⅲ 666 14.5 vs. 24.8 44 vs. 55% 0.58 Finn et al. (2016)
MONALEESA-2 Letrozole ± ribociclib Ⅲ 668 14.7 vs. 26.0 37 vs. 53% 0.57 Hortobagyi et al. (2018)
MONARCH-3 NSAI ± abemaciclib Ⅲ 493 14.7 vs. 28.2 44 vs. 59% 0.54 Goetz et al. (2017)
MONALEESA-7 NSAI/Tamoxifen + OFS ± ribociclib Ⅲ 672 13.0 vs. 23.8 36 vs. 51% 0.55 Tripathy et al. (2018)

Second line
PALOMA-3 Fulvestrant ± palbociclib Ⅲ 521 4.6 vs. 9.5 11.1 vs. 25% 0.46 Cristofanilli et al. (2016)
MONARCH-1 Abemaciclib monotherapy Ⅱ 132 6.0 20% — Dickler et al. (2017)
MONARCH-2 Fulvestrant ± abemaciclib Ⅲ 669 9.3 vs. 16.4 21 vs. 48 0.55 Sledge et al. (2017)
MONALEESA-3 Fulvestrant ± ribociclib Ⅲ 725 12.8 vs. 20.5 29 vs. 41% 0.59 Slamon et al. (2018)
MONARCH-plus NSAI ± abemaciclib Ⅲ 306 14.73 vs. NE 30.3 vs. 56% 0.499 Jiang et al. (2019a)

Fulvestrant ± ribociclib Ⅲ 157 5.59 vs. 11.47 7.5 vs. 38.5% 0.376
MONARCH HER Herceptin + abemaciclib + fulvestrant Ⅲ 79 8.32 vs. 0.65 vs. 5.69 32.9 vs. 13.9 vs.

13.9%
0.673 Tolaney et al. (2019)

Herceptin + abemaciclib Ⅲ 79 0.943
Herceptin + chemo Ⅲ 79 —

PFS, progression free survival; NSAI, nonsteroidal aromatase inhibitors; OFS, ovarian function suppression; ORR, objective response rate; NE indicates that the value could not be
estimated.
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increased expression of CDK6 reduced the response of CDK4/6
inhibitors in luminal cell line models. At the same time,
knockdown of CDK6 rescued the therapy sensitivity, which
indicated that CDK6-mediated drug resistance may be
independent of CDK4 expression (Yang et al., 2017). In
addition, either high or low expression of CDK4 has been
detected in CDK4/6 inhibitor–resistant breast cancer cells
(Bollard et al., 2017). Therefore, whether the expression of
CDK4 is associated with CDK4/6 inhibitor resistance requires
further investigation.

p16 Amplification
As a member of the INK4 family, p16 is a natural inhibitor of
CDK4 and plays a vital role in the regulation of the cell cycle
(Serrano et al., 1993). In general, p16 severs as a tumor suppressor
and targets the CDK4/6 complex in dysregulatory cells depending
on the function of Rb (Medema et al., 1995). For example, Dean
JL et al. reported that the resistance to CDK4/6 inhibitors was
caused by the absence of Rb, regardless of p16 expression (Dean
et al., 2012). On the other hand, the expression level of p16
affected the effectiveness of CDK4/6 inhibition. Overexpression
of p16-mediated resistance to CDK4/6 inhibitors in the absence
of Rb (Witkiewicz et al., 2011) and low expression of p16 did not
rescue the clinical benefit in Rb-positive luminal breast cancer
patients in the phase II palbociclib monotherapy trial (DeMichele
et al., 2015). The potential mechanism is that p16 overexpression
suppresses the activity of CDK4 and expression of cyclin D1
(Witkiewicz et al., 2011), which are the main targets of CDK4/6
inhibitors, thus leading to reduced or no effects of CDK4/6
inhibition (Elvin et al., 2017). Whether p16 amplification and
loss of Rb work together in CDK4/6 inhibitor resistance is not
clearly understood. Further studies revealing the mechanistic
association between p16 and Rb might be beneficial to avert
acquired resistance to CDK4/6 inhibitors.

ATM-CHK2 Activation
Deficiency of mismatch repair may lead to the endocrine therapy
resistance in luminal breast cancer through the abrogation of
CHK2-mediated inhibition of CDK4. A recent study showed that
defects in single-strand break repair in luminal breast cancer can
drive endocrine therapy resistance and is closely associated with
the ATM-CHK2-CDC25A pathway (Anurag et al., 2018). ATM,
as a DNA damage sensor, activates CHK2, which in turn
phosphorylates CDC25A at S123 for degradation. Importantly,
as a phosphatase, CDC25A could inhibit the phosphorylation of
CDK4/6. The CDK4/6 complex activity could be reactivated with
the “on state” of CDC25A. Therefore, the cross talk between the
CDK4/6–Rb and ATM–CHK2–CDC25A axes is very important.
Moreover, recently, Haricharan et al. demonstrated that for the
efficacy of endocrine agents in luminal tumors, both ATM and
CHK2 are required; inactivation of either of these negative cell
cycle regulators prevents cell cycle arrest upon ER inhibition
(Haricharan et al., 2017).

Loss of ER Expression
In luminal breast cancer, activation of ER is the major driver of
CDK4/6. Selective ER-related endocrine therapy, such as ER

downregulators (fulvestrant), ER modulators (tamoxifen), and
aromatase inhibitors (AIs), have been combined with CDK4/6
inhibitors and broadly used in the treatment of advanced ER-
positive breast cancer. The expression level of cyclin D1 could be
upregulated by ER (Du et al., 2014). Resistance to CDK4/6
inhibitors may be related to the decrease in cyclin D1 due to
the loss of ER (Gong et al., 2017b). For instance, resistance to the
CDK4/6 inhibitor abemaciclib occurred in preclinical trials and
was associated with the loss of cyclin D1 and ER/PR expression. In
addition, studies showed that CDK6 overexpression diminished
the responsiveness to ER antagonism and mediated the resistance
to CDK4/6 inhibitors by decreasing the expression of ER and PR
(Yang et al., 2017). Moreover, tumor biopsy specimens from
patients associated with changes in ER/PR levels showed
resistance to CDK4/6 inhibitors mediated by low ER/PR
expression. Moreover, it also has been indicated that luminal
tumors are resistant to endocrine therapy when they have an
activating ESR1 mutation; however, CDK4/6 inhibitors take effect
regardless of ESR1 mutation status (Fribbens et al., 2016).

Activation of PI3K–AKT–mTOR Signaling
The PI3K–AKT–mTOR signaling pathway is involved in tumor
cell growth, survival, and metastasis. In luminal breast cancer, ER
transcriptional activity could be enforced by the activation of
PI3K–AKT–mTOR signaling, which drives endocrine therapy
resistance (Miller et al., 2011). Furthermore, activation of the
PI3K–AKT–mTOR pathway can also promote the stability of the
CDK4/6 complex, thus reversing the effects of CDK4/6 inhibition
(Miller et al., 2011). A recent study indicated that loss of PTEN
expression could mediate CDK4/6 inhibitor resistance by
increasing AKT activation and decreasing the expression of
p27, which leads to the excessive activation of CDK4 and
CDK2 (Costa et al., 2020). CDK4 in lysosome activates
mTORC1 and is also associated with cancer progression
(Martinez-Carreres et al., 2019). Moreover, it has been
reported that CDK4/6 inhibitors preferred to activate
PI3K–AKT–mTOR pathway than ER signaling (Takeshita
et al., 2018), with the reactivation of E2F (Jansen et al., 2017).
Therefore, the therapeutic trial, endocrine therapy backbone
combined with PI3K and mTOR inhibition, and CDK4/6
inhibitors can be combined.

Strategies that inhibit PI3K and mTOR activities have been
shown to restore sensitivity to endocrine therapy. Everolimus, a
mTOR inhibitor, was the first drug developed to overcome
endocrine therapy resistance in combination with AI
(Pronzato, 2017). Some other mTORC1/2 inhibitors also
restored the sensitivity of CDK4/6 inhibitors in resistant cells
by suppressing Rb phosphorylation (Michaloglou et al., 2018).
PI3K inhibitors, such as alpelisib, combined with fulvestrant
prolonged PFS among patients with mutated PIK3CA in
advanced luminal breast cancer who had previously received
endocrine therapy (Andre et al., 2019). In addition, PI3K
inhibitors have been implicated in the prevention of early
CDK4/6 inhibitor adaptions by decreasing the expression of
cyclin D1 (Herrera-Abreu et al., 2016). In the future, a
combination of a PI3K–AKT–mTOR pathway inhibitor and a
CDK4/6 inhibitor may be a valuable therapeutic strategy.
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Upregulation of FGFR Pathway
The fibroblast growth factor receptor (FGFR) pathway is involved
the proliferation and survival in luminal breast cancer (Sahores
et al., 2018). Like other mitogenic pathways, FGFR is relevant in
the crosslinking of cyclin D and CDK4/6. Of the five FGFRs,
FGFR1 is associated with CDK4/6 inhibitor resistance. FGFR1
activates the PI3K–AKT–mTOR and RAS–MEK–ERK signaling
pathways (Turner et al., 2010). In the clinic, FGFR1
overexpression mediated resistance to palbociclib or ribociclib
when combined with endocrine therapy (fulvestrant) (Formisano
et al., 2017). This could be reversed by the FGFR tyrosine kinase
inhibitor (TKI) lucitanib (Formisano et al., 2019). FGFR2
amplification has also been reported in metastatic luminal
breast cancer and the response to an mTOR inhibitor (Wein
et al., 2017). In addition, FGF2 could also activate FGFR signaling
and mediate endocrine therapy resistance in preclinical research
(Turner et al., 2010). A previous study showed that the FGFR2
inhibitor formononetin had a strong inhibitory effect on
angiogenesis and tumor growth (Wu et al., 2015). Therefore,
targeting FGFR1/2 in luminal breast cancer may be a viable
option combined with the inhibition of CDK4/6 to overcome
CDK4/6 inhibitor resistance.

Alterations of Hippo Pathway
The Hippo pathway is closely related to the development and
progression of breast cancer and has emerged as a linchpin in
breast cancer therapy resistance (Gujral and Kirschner, 2017) (Shi
et al., 2015). Hippo pathway effectors, such as YAP, TAZ, and
TEAD, have been employed as drug targets to hit other signaling
pathways (Dey et al., 2020). In ovarian cancer, YAP expression is
associated with PI3K inhibitor resistance (Muranen et al., 2016).
TEADs have also been shown to be a mediator of CDK6
induction (Xie et al., 2013). Importantly, alterations in the
Hippo pathway are related to CDK4/6 inhibitor resistance. In
the latter clinical case, loss of FAT1 is associated with CDK4/6
inhibitor resistance caused by YAP/TAZ nuclear localization and
CDK6 overexpression in ER-positive breast cancer (Li et al.,
2018). Therefore, targeting the Hippo pathway offers a new
therapeutic strategy against CDK4/6 inhibitor resistance.

Downstream Bypass Signaling
Mechanisms
The molecular mechanisms responsible for resistance to CDK4/6
inhibitors are diverse and complicated, and the current
knowledge is far from complete. Recently, several new
“bypass” signaling pathway mechanisms on CDK4/6 inhibitor
adaption have been discovered.

Activation of CDK2 Signaling
Cyclin E–CDK2 complexes can also inactivate Rb by
phosphorylating Rb and releasing transcriptional factor E2F to
initiate the cell cycle. However, as the “second wave” that
phosphorylates Rb, the efficiency of this process is subsequent
to CDK4/6 complexes. Excessive activation of the CDK2 pathway
mediates resistance to CDK4/6 inhibitors because released E2F
reverse targets cyclin E2, stabilizing the cyclin E2–CDK2

complexes and reducing CDK4/6 inhibition (Caldon et al.,
2009). The abnormal expression of cyclin E1/2-CDK2 and
persistent activation of E2F are associated with resistance to
CDK4/6 inhibitors (Taylor-Harding et al., 2015). For instance,
CCNE1 gene amplification also induces resistance in the CDK4/6
single agent model; CCNE2 gene amplification has been found in
patients in whom palbociclib treatment failed (Hortobagyi et al.,
2016). Moreover, in the clinic, lower CCNE1 messenger RNA
expression is often associated with improved palbociclib efficacy
in ER-positive metastatic breast cancer (Turner et al., 2019).
Activity of cyclin E1–CDK2 complexes could be suppressed by
p21Waf1/Cip1 and p27Kip1 (Martin et al., 2017); therefore, the
development of CDK2 inhibitors have the potency and
advantage as bypass signals to reduce CDK4/6 inhibitor
resistance by the inhibition of cyclin E1/2–CDK2 (Caldon
et al., 2012).

Autophagy
Autophagy is generally thought of as a cell survival mechanism.
The activation of autophagy induces cell cycle arrest and cell
senescence (Glick et al., 2010). Targeting autophagy is an
available strategy for novel drug development and tumor
treatment. Autophagy inhibition is relevant to the efficacy of
anti–breast cancer drugs (Chittaranjan et al., 2014). An
accumulation of evidence suggests that autophagy activation is
involved in resistance to CDK4/6 inhibitors. Studies have shown
that breast cancer cells activate autophagy in response to
palbociclib, possibly through the inhibition of cyclin D1
expression, and the combination of autophagy and CDK4/6
inhibitors induces irreversible growth inhibition and
senescence in vitro (Vijayaraghavan et al., 2017b). More work
is being done to increase the efficacy of CDK4/6 inhibitors by
inhibiting autophagy, which may help avert CDK4/6 inhibitor
resistance.

Immune Evasion
The adaptive immune response plays a role in CDK4/6 inhibitor
efficacy. CDK4/6 inhibitors promote tumor immunogenicity, and
the effects of CDK4/6 inhibitors targeting both tumor T cells and
regulatory T cells are associated with reduced activity of E2F
transcription factors and DNA methyltransferase (Goel et al.,
2017). In addition, CDK4/6 inhibitors enhance antitumor
immunity by increasing T-cell activation and promoting
T cells to kill tumor cells (Deng et al., 2018). Moreover,
immunotherapeutic approaches combined with CDK4/6
inhibitors could achieve better therapeutic effects. CDK4/6
inhibitors increase the expression of PD-L1 (programmed cell
death ligand 1), thus inducing the inflammatory
microenvironment and improving tumor immunogenicity
(Minton, 2017; Schaer et al., 2018). Therefore, CDK4/6
inhibitors combined with a PD-L1 immune checkpoint
inhibitor can improve the effect of tumor immunotherapy.
Currently, there are several ongoing clinical trials of immune
checkpoint antibodies, including pembrolizumab and avelumab
(Anurag et al., 2020). However, immune evasion or alterations in
the immune microenvironment eventually leads to CDK4/6
inhibitor resistance (Goel et al., 2017; Teh and Aplin, 2019).
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In terms of mechanism, immune evasion may be associated
with the abnormal expression of immune-related regulators,
such as IFN-α and IFN-β, and change in tumor
microenvironment of CDK4/6 inhibitor–resistant breast
tumors (Vijayaraghavan et al., 2017a). Future investigations
using tumor-infiltrating lymphocyte analyses are needed to
better understand CDK4/6 inhibitor resistance mechanisms of
immune evasion.

Epigenetic Alterations
Histone deacetylases (HDACs) can increase CDK4/6
inhibition efficacy and mediate cell cycle arrest by
upregulating p21 expression in CDK4/6 inhibitor resistant
tumors (Lee et al., 2018). Even though the mechanism is
not very clear, HDAC inhibition works synergistically with
CDK4/6 inhibitors in luminal breast cancer. Cornell et al.
demonstrated that miR-432-5p–mediated suppression of the
TGF-β signaling pathway via SMAD4 knockdown and
increased CDK6 expression, thus conferring transmissible
and reversible CDK4/6 inhibitor adaptation (Cornell et al.,
2019). In addition, a recent study showed that LncRNA
TROJAN could mediate resistance to CDK4/6 inhibitors by
increasing CDK2 activation in ER+ breast cancer (Jin et al.,
2020). Analysis of patient plasma exosomes may identify
emerging resistance mechanisms.

Strategies to Overcome CDK4/6 Inhibitor
Resistance
In the clinic, treatment effectiveness is based on the improved
survival of patients. Currently, endocrine targeted therapy and
chemotherapy are common options for the treatment of luminal
breast cancer. CDK4/6 inhibitors have been used in advanced ER-
positive breast cancer patients with antimitosis, but they
eventually develop resistance to the CDK4/6 inhibitors (Franco
et al., 2014; Yoshida et al., 2016). In the past 5 years, endocrine
therapy combined with PI3K and mTOR inhibitors and CDK4/6
inhibitors has gradually become a new therapeutic strategy.

Several studies have confirmed that CDK4/6 inhibitors
combined with PI3K inhibitors (Vora et al., 2014) or
mTORC1/2 inhibitors could reverse resistance (Michaloglou
et al., 2018). Furthermore, studies have shown that CDK4/6
inhibitors may increase tumor immunogenicity, which
provides a rationale for combination regimens composed of
CDK4/6 inhibitors and immunotherapies. Therefore, CDK4/6
inhibitors combined with other clinical therapies might be a
cautious approach to overcome therapy resistance. We
summarized possible strategies to overcome resistance to
CDK4/6 inhibitors in Table 2.

Potential Biomarkers for Predicting CDK4/6
Inhibitor Resistance
Whether CDK4/6 inhibition is truly suitable for patients with
advanced ER-positive breast cancer and whether resistance
develops are being studied in a number of preclinical studies
and models. Rb may be a biomarker. It has been demonstrated
that fully functional Rb is required for the effective use of
CDK4/6 inhibitors in the clinic (Karakas et al., 2016).
However, not all Rb+/ER+ patients would benefit from
CDK4/6 inhibitor therapy, even though the mutation of Rb
is very rare (3.9%) in ER-positive breast cancer. The utility of
Rb as biomarker combined with low-molecular-weight cyclin
E1 (LMWE) is associated with CDK4/6 inhibitor sensitivity
(Hunt et al., 2017). A cohort of 109 patients with Rb-/LMWE+
had shorter PFS when treated with palbociclib plus endocrine
therapy (Vijayaraghavan et al., 2017b). Although cyclin D1
plays a vital role in CDK4/6 inhibition, unfortunately, CCND1
amplification as single biomarker for CDK4/6 inhibitor
sensitivity needs to be refined further. In the PALOMA-1
study, patients treated with palbociclib plus letrozole had no
beneficial outcomes regardless of CCND1 status (Finn et al.,
2015). Moreover, CDK4 phosphorylation status shows the
potential as a biomarker to predict the sensitivity to
palbociclib but needs further clinical observation (Raspe
et al., 2017).

TABLE 2 | Possible strategies to overcome resistance to CDK4/6 inhibitors in ER-positive BC.

Resistance study Potential mechanisms Possible strategies References

Cell cycle genes Rb, cyclin D1, cyclin E Intact Rb, CCNE1 amplification Turner et al. (2019)
CDK4, CDK6 Knockdown of CDK4 and CDK6 Yang et al. (2017)
p16, p21, p27 Intact Rb and knockdown of p16 Dean et al. (2012), Elvin et al. (2017)

Crosstalk pathways ATM-CHK2 ATM inhibitor Ku60019 Haricharan et al. (2017), Anurag et al. (2018), Lang et al. (2018)
PI3K/AKT/mTOR PI3K-AKT-mTOR inhibitors Costa et al. (2020)
ER Selective ER-related endocrine therapy Fribbens et al. (2016)
FGFR FGFR2 inhibitor formononetin Wu et al. (2015)
Hippo FAT1, verteporfin, CA3, VGLL4 peptide Liu-Chittenden et al. (2012), Li et al. (2018), Song et al. (2018),

Smith et al. (2019)
CDK2 Flavopiridol, AT7519, dinaciclib Tan et al. (2004), Squires et al. (2009), Parry et al. (2010)
Autophagy NAPI, ATG7, chloroquine Liang et al. (2016), Gong et al. (2017a), Cui et al. (2018)

Combination therapy Endocrine therapy Fulvestrant, tamoxifen and AI Turner et al. (2017)
PI3K/mTOR inhibitor Alpelisib, everolimus Pronzato (2017), Andre et al. (2019)
Immune checkpoint inhibitor Pembrolizumab, atezolizumab, nivolumab Kok et al. (2018), Schmid et al. (2019), Schneeweiss et al. (2019)
Epigenetic inhibitor Romidepsin, vorinostat, tucidinostat Robertson et al. (2013), Bian et al. (2018), Jiang et al. (2019b)

NAPI, nanoparticle autophagy inhibitors.
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CONCLUSION

The development of CDK4/6 inhibitors has been a significant
advancement in luminal breast cancer therapy. In other breast
cancer subtypes, such as triple negative breast cancer, clinical
trials of CDK4/6 inhibitors in combination with anti-androgen
inhibitors are still ongoing. However, resistance to CDK4/6
inhibitors in clinical treatment is an unavoidable problem.
Although CDK4/6 inhibitor resistance has been well
investigated and different mechanisms have been revealed,
systematic and comprehensive clinical trials are required to
develop new strategies to overcome CDK4/6 inhibitor
resistance. Therefore, further efforts to investigate much more
precise resistance mechanisms to CDK4/6 inhibitors or to
develop more successful CDK inhibitors are needed in order
to explore new therapeutic approaches to avert or overcome
resistance.
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