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Abstract: Herein, we report the catalyst assisted growth of TiO2 one-dimensional (1D) nanowires
(NWs) on alumina substrates by the thermal oxidation technique. RF magnetron sputtering was
used to deposit a thin Ti metallic layer on the alumina substrate, followed by an Au catalytic layer
on the Ti metallic one. Thermal oxidation was carried out in an oxygen deficient environment.
The optimal thermal growth temperature was 700 ◦C, in a mixture environment composed by Ar
and O2. As a comparison, Ti films were also oxidized without the presence of the Au catalyst.
However, without the Au catalyst, no growth of nanowires was observed. Furthermore, the effect of
the oxidation temperature and the film thickness were also investigated. SEM, TEM, and EDX studies
demonstrated the presence of Au nanoparticles on top of the NWs, indicating that the Au catalyst
drove the growth process. Raman spectroscopy revealed the Rutile crystalline phase of TiO2 NWs.
Gas testing measurements were carried out in the presence of a relative humidity of 40%, showing a
reversible response to ethanol and H2 at various concentrations. Thanks to the moderate temperature
and the easiness of the process, the presented synthesis technique is suitable to grow TiO2 NWs for
many different applications.

Keywords: TiO2 nanowires; seed-assisted thermal oxidation; thermal oxidation; TiO2 gas sensor;
metal oxide nanowires

1. Introduction

The field of one-dimensional (1D) nanomaterial research has witnessed a remarkable growth in
its attempt to drive new technologies and improve existing ones. There has been a significant interest
over the past decade in 1D nanomaterials owing to their unique physical and chemical properties.
These unique properties are impelled by an enhanced surface area and surface electronic properties
that can vary enormously from those of their bulk counterparts [1,2]. Among these materials, TiO2 1D
nanostructures received enormous attraction in the fields of photo electrochemical water spitting [3],
solar cells [4], and optical devices [5] due to their compatible band-edge positions, high resistance
to photo corrosion, high photocatalytic activity, lack of toxicity, and low cost [6]. Recently, TiO2 1D
nanostructures are gaining a significant interest in the detection of toxic and vapors due to the properties
mentioned above [7–9]. In particular, TiO2 exhibits a great potential for the fabrication of gas sensors
due to its high stability at a high working temperature and low cost [10–12].

Several attempts have been made to synthetize TiO2 nanowires (NWs) including vapor liquid solid
(VLS) [13–16], thermal oxidation [17–20], hydrothermal [21], sol gel [12,22], pulsed laser deposition [3,23],
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electrospinning [24–27], and anodization method [28]. However, wet chemical methods require further
cleaning processes and the nanostructures transfer on an appropriate substrate, which increase the cost
of the synthesis methods. Therefore, many studies have been conducted to optimize the growth of
TiO2 NWs via dry physical methods.

Generally, high-temperature physical synthesis methods lead to the production of contaminant-free
high-crystalline TiO2 structures in the stable rutile crystalline phase. Lee et al. [13] showed the VLS
growth of TiO2 nanowires by the thermal evaporation of a Ti source on the alumina substrate, thanks to
the deposition of a 500 nm thick Ti buffer layer on top of the Au catalyst. In that work, Ti powder
was placed at high temperature inside the furnace and heated to 1050 ◦C, acting as a source material.
Sani et al. [15] demonstrated the VLS growth of TiO2 NWs on a 50 nm thick Ti buffer layer by
using mixed Ti and graphite powder as a source material to reduce the evaporation temperature
of Ti. In general, the thermal evaporation processes reported in the literature always require two
steps, the sputtering of a Ti buffer layer and the evaporation of Ti at high temperature [16,29–31].
These processes require a high-energy consumption and a complex setup for the nanostructures growth.

Recent studies focused on the synthesis of TiO2 NWs by the thermal oxidation method. This method
allows the production of TiO2 NWs with a stable rutile phase [32]. The oxidation of a Ti foil in an
oxygen environment has been previously studied [17,20,33], and Peng et al. [18] showed that a direct
oxidation of the Ti foil was also possible in an organic atmosphere. However, all studies reported so
far have been carried out by using Ti foils as a substrate, in the presence of dangerous vapors such as
ethanol as an oxidation gas and using an oxidation temperature above 800 ◦C [34].

In this paper, we report for the first time the seed-assisted synthesis of TiO2 NWs directly on the
alumina substrate by thermal oxidation, starting from a thin Ti layer deposited on the substrate and
using only small amounts of oxygen as oxidizing gas. Thanks to the thermal oxidation method, it is
possible to avoid the transfer of nanostructures from one substrate to another. This is a great advantage
with respect to wet chemical synthesis techniques: The proposed method is highly scalable for a mass
production, as it could be easily implemented in industrial processes. The oxidation temperature was
reduced compared to the literature, allowing the formation of TiO2 NWs on the alumina substrate
at only 650 ◦C. This high-yield method allows the growth of TiO2 NWs with an average diameter
of 20–40 nm, with a length of several micrometers. Furthermore, these TiO2 NWs show a reversible
response to ethanol and H2 when integrated in chemical sensing devices.

2. Materials and Methods

Alumina substrates (2 × 2 mm, Kyocera, Japan, 99.9% purity) were used to deposit and grow TiO2

NWs. These substrates were ultrasonically cleaned for 15 min in acetone to remove dust particles,
and then dried in a synthetic air flow. A thin metallic Ti layer (50, 100, or 200 nm) was deposited
by RF magnetron sputtering (75 W argon plasma, chamber pressure 5.0 mTorr, and 300 ◦C with a
deposition time of 25, 50, or 100 min). Subsequently, a deposition of a thin Au layer was performed
on the Ti surface by RF magnetron sputtering (75 W argon plasma, chamber pressure 5.0 mTorr,
room temperature), resulting in an agglomeration of nanoparticles (2–5 nm) acting as seed catalysts for
the nanostructures growth. Finally, samples were placed in a homemade thermal oxidation chamber
and were oxidized. The internal pressure of the chamber was maintained at 10−1 mbar during the
oxidation, which was carried out in a temperature range between 600–750 ◦C for 2–4 h in a mixed gas
flow of O2 (1–20 Standard cubic centimeters per minute (SCCM)) and argon (100 SCCM). Table 1 collects
all experimental parameters controlled during the synthesis process.
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Table 1. Experimental condition tested for the synthesis of TiO2 NWs.

Parameter Condition

Ti layer thickness (nm) 50, 100, 200
Oxidation temperature (◦C) 600, 650, 700, 750

Oxidation time (h) 2, 3, 4
Oxygen flow (SCCM) 1, 5, 10, 20
Argon flow (SCCM) 100

The surface morphology of TiO2 NWs was investigated by a field emission scanning electron
microscope (FE-SEM, LEO 1525, Zeiss) operating at 3–5 kV. Transmission electron microscopy (TEM)
images were obtained using a JEOL JEM-1400 microscope operating at 120 kV. Raman measurements
were performed using a Horiba Jobin Yvon Labram HR800 Evolution confocal Raman spectrometer
with a 532 nm laser excitation, Olympus MPlan N 100×microscope objective able to focus the excitation
light to ~1 µm spot, and 1800 g/mm grating providing ~2 cm−1 spectral resolution.

After the nanostructures synthesis and characterization, chemical sensing devices were fabricated
as shown in Figure 1. For the functional characterization of the sensing devices performances, we used
the same alumina substrates covered by TiO2 NWs as active transducers. A TiW adhesion layer and
Pt interdigitated electrodes (IDE) were deposited by DC magnetron sputtering on top of TiO2 NWs
(75 W argon plasma, 7 SCCM argon flow, 5.0 mTorr pressure at 300 ◦C). The TiW adhesion layer was
placed between the platinum IDE and the alumina substrate to improve the mechanical adhesion of
the stacked structure.

Metal oxide interactions with target gas molecules are thermally activated. Therefore, platinum heaters
were fabricated on the backside of the alumina substrate using the same conditions used for the
electrodes. Finally, substrates were mounted on transistor-outline (TO-39) packages by using
electro-soldered gold wires. The sensors conductometric responses were tested in a stainless steel
chamber (1 L volume) located inside a climatic chamber (Angelantoni, Italy, model MTC 120) with
temperature set at 20 ◦C. Humidified air was produced by flowing the dry air through a Drechsel bottle,
held in a thermostatic bath at 25 ◦C. Four different sensors were mounted inside the test chamber,
which is able to measure the performances of the sensors simultaneously. A fixed voltage (1 V) was
applied to the sensor active films and the total gas flow was set to 200 SCCM with 40% relative
humidity (RH).
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Figure 1. Schematic of the conductometric device fabricated.

Fabricated devices were tested towards ethanol, acetone, carbon monoxide, and hydrogen at 300,
400, and 500 ◦C. Prior to the introduction of the target gas, samples were stabilized for 10 h at each
temperature. Sensors were exposed to the selected gas concentration for 20 min, and then the synthetic
air flow was restored to recover the baseline signal. The devices response was calculated from the
variation of their electrical conductance, using the following formulae for oxidizing and reducing
gases, respectively.

Response =
RGas −RAir

RAir
=

GAir −GGas
GGas

(1)
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RAir and GAir are the base line resistance/conductance of the sensor and RGas and GGas are the
resistance/conductance of the sensor in the presence of the target gas.

3. Results

3.1. Morphological and Structural Characterization

As pointed out in the previous section, TiO2 NWs were grown on the alumina substrate by
thermal oxidation in an oxygen deficient environment. Figure 2 illustrates the SEM and TEM images
of Ti (200 nm thickness) samples, grown at 700 ◦C with 10 SCCM oxygen and 100 SCCM argon flow
for 3 h. Figure 2a shows the pure Ti metal growth at 700 ◦C in the mixture of Ar/O2. Many dense
polycrystalline grains were formed during the oxidation of the Ti metal, but these polycrystalline grains
did not show any uniform orientation in the growth direction. Figure 2b shows the SEM plain-view
images of the Au/Ti growth at similar conditions. The results indicate that the Au layer has a strong
influence on the NWs growth, confirming that the growth of TiO2 NWs is driven by Au nanoparticles
(NPs) [35]. Further investigations reveal that these NWs have two dominant segments (Figure 2c).
These segments of the NWs are composed of a narrow needle-like top and wide grain at the bottom.

Figure 2d shows the TEM image of some TiO2 NWs, removed from the alumina substrate and
dispersed on a carbon grid. TEM images clearly illustrate the presence of Au nanoparticles on top of
the NWs, further confirming that Au nanoparticles have a fundamental effect on the NWs growth.
NWs exhibit a quite uniform diameter and have a neck-like narrow-end close to the Au nanoparticles.
Figure 3 reports the diameter distribution of the TiO2 NWs. The average diameter of TiO2 NWs was
20–40 nm while the length was several micrometers. In the end, this growth method resulted in being
scalable and reproducible.
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Figure 2. SEM plain views of TiO2 nanowires (NWs) growth at 700 ◦C with 10 SCCM oxygen and
100 SCCM argon flow for 3 h, (a) without gold catalyst and (b) with gold catalyst. (c) TiO2 NWs with
narrow needle-like top and wide grains at the bottom. (d) TEM image of the TiO2 nanowires.
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Figure 3. Diameter distribution of the thermally oxidized TiO2 nanowires growth at 700 ◦C with
10 SCCM oxygen and 100 SCCM argon flow for 3 h.

Figure 4 reports the SEM images of Au/Ti samples grown in the presence of 10 SCCM oxygen
and 100 SCCM argon flow for 3 h at different temperatures. At 600 ◦C (Figure 4a), TiO2 grains are
well distinguished on the surface but NWs appear only in a few spots with a nonuniform distribution
and very short length. A huge difference was observed by increasing the temperature to 650 ◦C.
Figure 4b shows the long and thin NWs grown at this temperature. However, no significant growth
improvements can be obtained by increasing the oxidation time to 4 h at 650 ◦C. In addition, wide grains
are observed beneath the NWs. On the contrary, dense, long, and thin NWs were formed when the
oxidation temperature was increased to 700 ◦C (Figure 4c). Early studies demonstrate that the Ti
diffusion temperature required to form nanowires is above 800 ◦C (in Ti foils) [20,32]. Nevertheless,
we observed that this temperature decreases to 650 ◦C in the presence of Au nanoparticles. At 750 ◦C,
instead, thick nanorod-like structures can be observed at the bottom of the NWs, confirming that
700 ◦C is the optimum temperature for TiO2 NWs growth.
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Figure 4. SEM view of TiO2 nanowires grown at different temperatures: (a) 600, (b) 650, (c) 700,
and (d) 750 ◦C. Oxidation time was 3 h and the oxygen and Ar flow was set 10 and 100 SCCM, respectively.



Nanomaterials 2020, 10, 935 6 of 15

Figure 5 reports the effect of the layer thickness on the synthesis of TiO2 nanostructures, which is
significant. It is not possible to observe any TiO2 NWs if the thickness of the Ti metal layer is 50 nm
(Figure 5a). The NWs growth, instead, is well visible on 200 nm thickness films (Figure 5c), while very
short and few NWs can be seen when the thickness is decreased to 100 nm (Figure 5b). Figure 5d
shows the EDX spectra of thermally oxidized 200 nm film, revealing the presence of Au. In fact,
minor Au peaks can be seen at 2.3 KeV, confirming the presence of Au after the oxidation process on
the nanowires tip.

No significant changes were observed by varying the oxygen flow from 1 to 20 SCCM. Finally,
we studied the effect of oxidation time also. Thin and long NWs were observed when the oxidation
time was set to 3 h, and further oxidation results in the growth of flake-like structures. Thanks to
the previous considerations, optimum conditions for the synthesis of TiO2 NWs were identified.
The optimal Ti layer thickness was 200 nm, the gas flow was 10 SCCM of oxygen and 100 SCCM of
argon, 3 h of deposition, and an oxidation temperature of 700 ◦C.

Apart from the SEM and TEM analysis, TiO2 NWs were also analyzed by Raman spectroscopy
(Figure 6), confirming the rutile crystalline structure. TiO2 active vibrations were located at 142 cm−1

(B1g), 238 cm−1 (broad band), and 444 cm−1 (Eg), 624 cm−1 (A1g), and 824 cm−1 (B2g) [36–38]. The broad
Raman band at 238 cm−1 could be due to the second-order scattering or disorder effects. Galstyan et al.
reported the phase transition from anatase to rutile at the annealing temperature of 500 ◦C [3].
Therefore, our results are in good agreement with the theoretical analysis and published data,
confirming that the TiO2 NWs prepared by the proposed method have a rutile phase without any
significant impurities [39,40].
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Figure 5. SEM view of TiO2 nanowires grown from different film thicknesses: (a) 50, (b) 100, (c) 200 nm
at 700 ◦C, (d) EDX spectra of the 200 nm thick TiO2 NWs sample. Oxygen flow and Ar flow were set at
10 and 100 SCCM, respectively.
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Figure 6. Raman spectrum of TiO2 nanowires growth at 700 ◦C, 10 SCCM oxygen, and 100 SCCM
argon flow for 3 h.

3.2. Growth Mechanism

SEM, EDX, and TEM images confirmed the presence of Au nanoparticles on the tip of the TiO2

NWs, showing that the process may be similar to the vapor liquid solid (VLS). However, in our case
there is no external Ti source: The Ti source is directly the sputtered Ti layer. Ti reacts with oxygen
forming a TiO2 film when exposed to an oxygen environment. Then, the oxygen further diffuses
through the oxide layer to the metal interface, causing a polycrystalline grain growth (Figure 7).
Previous studies have shown that Ti atoms diffuse from the Ti layer to Au, forming intermetallic phases
TiAu4, TiAu2, TiAu, and Ti3Au [41]. The diffusion can occur in a local gradient of chemical potentials in
the presence of Au NPs [32,42]. The presence of the Au catalyst is of utmost importance in the synthesis
of Ti NWs, as Au promotes preferential nucleation of TiO2 on its surface and it also suppresses TiO2

nucleation on other sites of the substrate. The presence of oxygen in the atmosphere promotes the
elongated growth of TiO2 along the principal growth direction. The wider base and the tapering shape
of the NWs can be explained based on the diffusion of Ti from the sputtered layer during the growth.
This base can be clearly observed when the oxidation time is longer than 3 h. Figure 7 shows that
few NWs cause a change of direction with very sharp edges. This is due to the extended defects in
the crystallographic structure of the NWs [32]. These defects can lead to an abrupt change of crystal
structure orientation in NWs, which results in a sharp change of the main growth direction.
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3.3. Gas Sensing

Optimized samples (Ti layer thinness 200 nm, 10 SCCM of oxygen flow, 3 h, and oxidation
temperature at 700 ◦C) were used to fabricate chemical sensing devices and for their characterization in
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the presence of target chemical compounds. More specifically, we have investigated the conductometric
response of the fabricated material in the presence of different chemical species such as ethanol, acetone,
H2, and CO in a wide temperature range (300–500 ◦C), in order to understand the sensing behavior.
Figure 8 shows the dynamic response of TiO2 NWs towards ethanol, acetone, H2, and CO at a working
temperature of 400 ◦C. The electrical conductance increases when introducing a reducing gas and
increases with the gas concentration. As the synthetic air flow is restored, the conductance decreases
recovering the baseline value. This behavior is typical of n-type semiconductors. At the operating
temperature of 300 ◦C and below, the conductance is very low and noisy. Moreover, the response is
very low toward the investigated chemical compounds. Figure 9 reports the short-term stability of the
TiO2 NWs based gas sensors, resulting in the exposure of the same gas concentrations over a short
period. A very small change in the baseline conductance was observed within the different cycles.
On the other hand, the sensor response towards ethanol and hydrogen slightly decreased after the first
measurements, probably due to thermal stabilization over the measuring period. The response was
stable after the first exposure to the target analyte.
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Figure 10 indicates the temperature dependence of the device performances in terms of response.
Overall, TiO2 NWs show good responses to ethanol and H2. The response toward hydrogen is
maximum at 400 ◦C, while it decreases at higher temperatures. The response of TiO2 NWs towards
ethanol is high at all working temperatures; nevertheless, also for ethanol detection the optimal working
temperature is 400 ◦C. The temperature has a high impact on the response for ethanol, it increases
more than two times from 300 to 400 ◦C. A low response was observed for CO even at 500 ◦C, less than
one at any operating temperature. We have also tested TiO2 NWs toward other chemical compounds
such as acetone, but the response was negligible.
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The response time and recovery time could be defined as the time to reach 90% of the steady state
of Ggas and Gair, respectively. Figure 11 shows the influence of the temperature and gas concentrations
towards both response time and recovery time. The response time for ethanol is about 2 to 4 min at all
temperatures ranging from 300 to 500 ◦C (Figure 11a). In addition, the response time at 300 ◦C is lower
compared to 500 ◦C. The recovery time is more than 2 min at 300 ◦C and less than one minute at 400 ◦C,
indicating that these sensors have a fast recovery. The response time and recovery time is less than
4 min for hydrogen and it decreases for higher working temperatures. Moreover, Figure 11 shows that
the gas concentration has no significant impact on the response time and recovery times. Considering
the volume of the test chamber (1 L) and the gas flow used (200 SCCM), it takes approximately 15 min
to have a complete atmosphere change inside the measuring chamber, by pumping three times the
volume of the chamber. Nevertheless, from Figure 11 we may observe that the devices start responding
before this complete atmosphere change (<4 min). Therefore, we can suppose that the response and
recovery times are overestimated and that the sensing devices are much faster than reported.
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Figure 12 shows the estimated calibration curve and power fitting for TiO2 NWs for ethanol and
H2 at optimum working temperatures. The experimental data can be fitted by a typical power relation
for metal oxide conductometric sensors:

Response = A[Gas concentration]B (2)

where A and B are constants typical of the gas sensing material and stoichiometry of the involved
reactions. The detection limit was calculated by taking one as a threshold response to ethanol and H2.
These TiO2 NW detection limits for ethanol and H2 were identified as 30 and 90 ppm, respectively.
The detection limit for ethanol is lower compared to H2. Table 2 summarizes the values of A and B
coefficients and the detection limits of TiO2 NWs.Nanomaterials 2020, 10, x FOR PEER REVIEW 11 of 15 

 

 

Figure 12. Calibration curves of TiO2 NWs reporting the response versus gas concentration at optimal 
temperatures and relative humidity of 40% at 20 °C. 

Table 2. Power law calibration coefficients and detection limits of TiO2 for ethanol and H2 at optimal 
working temperatures of 400 °C. 

Gas Detection Limit (ppm) A B 
Ethanol 32 0.0405 0.9214 

H2 90 0.0173 0.9029 

Table 3. Summary of H2 and ethanol sensing performances of TiO2 NWs. 

Synthesis Method Composition Gas 
Gas 
con: 

(ppm) 

Temp: 
(°C) 

RH% Res(S) Ref 

Hydrothermal Nano belts 

Ethanol 
 

400 350 40 13 [43] 
Hydrothermal Nanowires 1000 500 30 4.5 [44] 

Electrospinning Nanowires 1000 400 0 15.8 [45] 
Hydrothermal Nanowires 500 400 0 6 [46] 
Hydrothermal Nanotubes 47 500 0 15 [47] 

Thermal oxidation Nanowires 500 400 40 15 This 
work 

VLS Nanowires 

Hydrogen 
 

1000 500 0 1 [48] 
Hydrothermal Nanotubes 500 500 0 9.6 [47] 

Anodic oxidation Nanotubes 100 150 0 18 [49] 
Hydrothermal Nanorods 1000 200 0 0.87 [50] 

Electrochemical 
Anodization Nanotubes 20,000 25 0 0.25 [51] 

Hydrothermal Nanowires 5 RT 0 3.5 [52] 

Thermal oxidation Nanowires 500 400 40 5.2 This 
work 

Figure 12. Calibration curves of TiO2 NWs reporting the response versus gas concentration at optimal
temperatures and relative humidity of 40% at 20 ◦C.



Nanomaterials 2020, 10, 935 11 of 15

Table 3 reports the literature data on gas sensing properties of TiO2 NWs and nanobelts, synthesized
by various methods, towards ethanol and hydrogen. TiO2 nanobelts and nanowires synthetized
via the hydrothermal technique exhibit good responses to ethanol at 350–400 ◦C in the presence of
humidity [43,44]. However, most of the other results show a good response only in the absence of
humidity [45–47]. Moreover, as a hydrogen gas sensing material, it shows a noble response to 500 PPM
at 400 ◦C by comparing with other results [48,49]. However, most of the studies have been carried out
in a high concentration of hydrogen or without the humidity environment [50–52]. From these results,
it can be concluded that TiO2 NWs grown by thermal oxidation show a high response to ethanol and
H2 even compared to state-of-the-art results.

Table 2. Power law calibration coefficients and detection limits of TiO2 for ethanol and H2 at optimal
working temperatures of 400 ◦C.

Gas Detection Limit (ppm) A B

Ethanol 32 0.0405 0.9214
H2 90 0.0173 0.9029

Table 3. Summary of H2 and ethanol sensing performances of TiO2 NWs.

Synthesis Method Composition Gas Gas Con:
(ppm)

Temp:
(◦C) RH% Res (S) Ref

Hydrothermal Nano belts

Ethanol

400 350 40 13 [43]
Hydrothermal Nanowires 1000 500 30 4.5 [44]

Electrospinning Nanowires 1000 400 0 15.8 [45]
Hydrothermal Nanowires 500 400 0 6 [46]
Hydrothermal Nanotubes 47 500 0 15 [47]

Thermal oxidation Nanowires 500 400 40 15 This work

VLS Nanowires

Hydrogen

1000 500 0 1 [48]
Hydrothermal Nanotubes 500 500 0 9.6 [47]

Anodic oxidation Nanotubes 100 150 0 18 [49]
Hydrothermal Nanorods 1000 200 0 0.87 [50]

Electrochemical Anodization Nanotubes 20,000 25 0 0.25 [51]
Hydrothermal Nanowires 5 RT 0 3.5 [52]

Thermal oxidation Nanowires 500 400 40 5.2 This work

3.4. Gas Sensing Mechanism

The sensing properties of the TiO2 NWs are based on the change of the electrical resistance due
to the adsorption and desorption of the chemical species from the surface of the sensing material.
This mechanism has been adopted for many semiconductor metal oxides and it was described
elsewhere in detail [53]. When the sensor is exposed to air, oxygen molecules adsorb on the TiO2

surface, forming oxygen ions, and capturing electrons from its conduction band, leading to an increase
of the metal oxide electrical resistance. The reaction kinetics are shown by the following reactions [54]:

O2(gas) → O2(ads) (3)

O2(ads) + e→ O−2(ads) (4)

O−2(ads) + e→ 2O−
(ads) (5)

O−2 + e→ O2−
(ads) (6)

Some oxygen atoms may diffuse and spill over from the Au nanoparticles onto TiO2 NWs,
capturing electrons from the conduction band. This mechanism increases oxygen adsorption,
resulting in an enhancement of NWs interaction with the target gas molecules. When the sensors
are exposed to ethanol and H2, gas molecules may be chemisorbed and react with adsorbed oxygen
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species to form H2O. This will result in the release of trapped electrons back to TiO2 with a decrease in
the sensor resistance. Possible reactions are as follows:

C2H5OH(ads) + O−
(ads) → CH3CHO(ads) + H2O + e− (7)

H2 + O−
(ads) → H2O(gas) + e− (8)

4. Conclusions

In conclusion, TiO2 NWs were grown on the alumina substrate by the seed assisted thermal
oxidation method. RF magnetron sputtering was used to deposit Ti and Au layers. Thermal oxidation
was carried out in an oxygen deficient environment. Morphological characterization revealed the
presence of Au nanoparticles on top of the NWs, indicating that the Au catalyst drove the growth process.
Raman spectroscopy confirmed the rutile crystalline phase of the material. All the morphological
investigations confirmed that the oxidation temperature, film thickness, and oxidation time play a
crucial role in the growth of TiO2 NWs. Moreover, gas sensing measurements showed the ability of
TiO2 NWs to detect ethanol and H2 at an optimal temperature of 400 ◦C. The detection limits resulted
below 50 and 100 ppm for ethanol and H2, respectively. These results demonstrate that TiO2 NWs
are good candidates for the fabrication of a chemical/gas sensing device. Moreover, this synthesis
technique may be adopted further to grow TiO2 NWs on different transducers for their employment in
applications such as photo electrochemical water spitting and solar cells.
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