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This paper presents a short summary of the protein folding problem, what it is and

why it is significant. Introduces the CASP competition and how accuracy is measured.

Looks at different approaches for solving the problem followed by a review of the current

breakthroughs in the field introduced by AlphaFold 1 and AlphaFold 2.
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1. INTRODUCTION

Proteins are the building blocks of life. They are vital to our existence with roles in almost all the
biochemical processes.

A protein is made up of one or more linear chains of amino acids (a singular chain is called a
poly-peptide), Figure 1B. All amino acids share a basic structure, which consists of a central carbon
atom, also known as the alpha (α) carbon, bonded to an amino group (NH2), a carboxyl group
(COOH), and a hydrogen atom. Every amino acid also has another atom or group of atoms bonded
to the central atom, this is known as the residual (R) group, this group determines the identity of the
amino acid and its chemical properties, Figure 1A. There are 20 types of amino acids commonly
found in proteins.

A protein is a complex substance that consists of amino-acid residues joined by peptide bonds
(Merriam-Webster, 2020), a large bio-molecule consisting of one or more long chains of amino
acid residues.

1.1. The Importance of Protein Folding
A protein’s biological function is determined by its three-dimensional native structure, which
is encoded by its amino acid sequence (Jankovic and Polovic, 2017), to be biologically active,
all proteins must adopt specific three-dimensional structures (Creighton, 1990). Changes in the
structure of the protein can change it’s behavior completely, from rendering it non-functional to
rendering it toxic (Selkoe, 2003). Understanding and controlling protein folding is arguably the
most important challenge in structural biology (Martnez, 2014; Jankovic and Polovic, 2017).

Denaturated proteins, which have had essentially all of their three-dimensional structure
disrupted, can refold from their random disordered state into a well-defined unique structure, in
which the biological activity is virtually completely restored (Levinthal, 1968). This demonstrates
that they permit renaturation in vitro, it shows that the 3D folding structure of the protein is
encoded in the sequence itself and does not depend on the creation process or on chaperones.

1.2. The Complexity of Protein Folding Prediction
The Energy Function Problem
One problem in protein folding prediction is that currently there is no easy way to calculate the
exact electrostatic potential, energies of bonds slightly stretched or in non-ideal structures without
involving slow and very resource intensive quantum mechanics simulations. It is crucial to know
the exact value as even a small error has the potential to accumulate over time into a completely
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different fold. This problem is similar to the N body problem
with N having an order of magnitude of 3 or higher, Figure 1D
illustrates this complexity on the human hemoglobin protein.

The Sampling Problem
Another significant obstacle in the prediction of protein folding
is the vastness of the sample space. Assuming that the bonds
are of constant length, in a protein with a very modest length
of 50 amino acids [the median length of a human protein is
375 (Brocchieri and Karlin, 2005)], each amino acid having two
rotatable bonds in the backbone (Figure 1C anglesψ and ϕ), and
only considering 10 degree increments we reach 10036) or 1072

possible conformations that need to be sampled in order to find
the one that has the lowest energy state. The number of states is
roughly equal to the estimated number of protons in the known,
observable universe (136× 2256 ≈ 1.57× 1079 Whittaker, 1945).

1.3. Casp and the Protein Data Bank
CASP (Critical Assessment of Structure Prediction) is a
community wide experiment to determine the state of the art in
modeling protein structure from amino acid sequence organized
by the Protein Structure Prediction Center. CASP is a biannual
contest in which participants submit models that attempt to
predict a set of proteins for which the experimental structures are
not yet public (Kryshtafovych et al., 2019).

Submissions are compared with experimental results by
independent assessors. The experiment is double blinded,
participants have no access to the experimental structures
and assessors do not know the identity of those making the
submissions (Kryshtafovych et al., 2019).

The Protein Data Bank is the single worldwide archive of
structural data of biological macro molecules (Berman et al.,
2000). It is a leading global resource for experimental data
providing access to 3D structure data for large biological
molecules (PDB, 2021).

CASP and The Protein Data Bank are the enablers of the
current breakthroughs in protein folding. CASP offering an
impartial metric of success while the Protein Data Bank offers the
data required for the training of the statistical models. Without
them, the current breakthroughs would be impossible.

1.4. How to Measure Accuracy
The Global Distance Test or GDT has been used since CASP 4
as a metric function defining the quality of the fold prediction.
GDT finds the largest subset of model residues that can be
superimposed on the corresponding residues in the reference
structure within a specific distance threshold (Chen and Siu,
2020). The Global Distance Test Total Score (GDT_TS) or
average GDT score represents the average GDT scores with a
cutoff point of 1, 2, 4, and 8Å. The values of the score range
from 0 (complete mismatch) to 100 (perfect superimposition).
A drawback of the of this metric is the dependence of the score
magnitudes on the evaluated protein’s size (Zhang and Skolnick,
2004).

2. PREDICTION TECHNIQUES

2.1. Physics Simulations
Based on simulating quantummechanics, these constituted some
of the first attempts in predicting the folding of a protein.
The main idea in here being to rely on molecular dynamics
simulations in order to obtain the protein folding. While this
approach is accurate for proteins of limited size (up to hundreds
of residues) the computational cost rises exponentially with
the length of the protein chain. Another disadvantage of this
approach is that it can get stuck due to erroneous force-fields
producing inaccurate results.

It is believed that these approaches can go beyond
documented structures and capture novel folds (Surbhi
et al., 2020).

2.2. Fragment Assembly
Models are built from short, contiguous backbone fragments
taken from proteins of known structure. Fragment selection is
typically guided by sequence similarity, as well as by predictions
of local structural features such as secondary structure or
backbone torsion angles (Kuhlman and Bradley, 2019). Multiple
assemblies of fragments are generated and then evaluated using
a coarse-grained energy value function. For the lowest valued
candidates a more fine grained, and thus more computationally
expensive, value function is used in order to select the best
candidate for prediction. Variations of this approach have been
the best predictors in the FM category for both CASP9 (Moult
et al., 2011) and CASP10 (Moult et al., 2014), and were among
the two dominant tools in CASP11 (Moult et al., 2016).

2.3. Machine Learning
Machine-learning techniques have a long history of applications
to protein structure analysis (Kuhlman and Bradley, 2019).
Initially used as components in a workflow, to predict 1D
features such as backbone torsion angles or secondary structure
(Kuhlman and Bradley, 2019), they have recently seen a boom in
the field with end-to-end approaches (Surbhi et al., 2020). Works
like End-to-End Differentiable Learning of Protein Structure
by Mohammed AlQuraishi (AlQuraishi, 2019b) and later the
AlphaFold architectures created by DeepMind (Senior et al.,
2020) showing the true predicting power of machine learning.

Successful strategies from image processing and natural
language processing, such as convolutional neural networks
and the attention mechanism have been incorporated in the
architectures designed to predict the correct fold of a protein.

3. ALPHAFOLD

3.1. What Is AlphaFold
AlphaFold is Alphabet’s DeepMind entry in the CASP13
competition. It is an artificial intelligence system designed
to tackle the problem of protein folding. A a co-evolution
dependent workflow (AlQuraishi, 2019a) that has a deep
convolutional neural network as its main component. This
system takes the sequence for which a folding is desired to
be found together with Multiple Sequence Alignment (MSA)
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FIGURE 1 | (A) Formula of the amino acid, (B) Ball and stick representation of an amino acid, (C) Poly-peptide chain with illustrating the torsion angles ψ and ϕ for

each amino acid in chain, (D) Human hemoglobin, 1GZX, ball and chain representation with an amino acid length of 141.

statistics as inputs and outputs a structure prediction (Senior
et al., 2020). AlphaFold takes advantage of the observation that
residues in spatial contact tend to show patterns of correlated
mutations (Kuhlman and Bradley, 2019).

3.2. CASP13 Results
AlphaFold represents an anomalous leap in protein structure
prediction (AlQuraishi, 2019a). AlphaFold is able to predict
more FM domains with high accuracy than any other system
participating in CASP13, particularly in the 0.6–0.7 TM-score
range (Senior et al., 2020).

Alpha Fold achieved a summed z-score of 52.8 compared with
36.6 for the next closest group. Furthermore combining FM and
TBM/FM categories, AlphaFold scored 68.3 compared with 48.2
despite using only FM techniques (Senior et al., 2020).

3.3. AlphaFold Architecture
The AlphaFold solution is composed of two stages. A
convolutional neural network that takes as an input the protein
sequence and a series of Multiple Sequence Aligned features
and outputs a protein specific potential surface, followed by
a second stage consisting of multiple Gradient Descent runs
in order to find the structure that best minimizes the protein
potential function.

Deep Convolutional Neural Network
With the help of distograms (histograms showing inter-residue
distances) the problem of finding the 3D structure of the protein
can be interpreted as a computer vision problem. By doing so
the tools and findings from computer vision can be applied to
the protein folding problem. One of the pioneers of this method

within the CASP competition being RaptorX-Contact server
(Wang et al., 2017).

The generation of the distogram was done using a deep
residual network. The input is composed of features extracted
from similar protein sequences and usedMSAs to generate profile
features. These features were passed to amodule consisting of 220
blocks of of dimension 64 x 64. Each block consists of a sequence
of neural network layers that interleave three batchnorm layers;
two 1 x 1 projection layers; a 3 x 3 dilated convolution layer
and exponential linear unit nonlinearities (Senior et al., 2020).
The network outputs a predicted distance probability over 64
equal bins representing the range between 2 and 22 Åfor each
amino acid pair, allowing to not only predict a distance but also
a confidence level. It also outputs a prediction for the backbone
torsion angles.

The network was trained on the Protein Data Bank (PDB)
structures to predict the distances dij between the cβ atoms of
pairs, ij, of residues of a protein (Senior et al., 2020).

Gradient Descent on Protein Specific Potential
The second stage of the AlphaFold solution consists of the
construction of a smooth protein specific potential filed over
which an optimal minimum is calculated by Gradient Descent.
In order to construct the potential field, a spline is fitted to the
negative log probabilities over the bins of the distogram. The
spline, parametrised by the torsion angles outputed by the neural
network have been integrated into a differentiable model of
protein geometry. In order to correct for the overrepresentation
of the prior, a reference distribution was subtracted from the
potential. To combat steric clashes a smoothing score that
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incorporates van derWaals forces has been added to the potential
(Senior et al., 2020). The torsion angles resulted from the
neural network are further refined using gradient descent on the
potential function created.

The optimisation process is repeated for multiple sampled
initialisations, and a genetic algorithm is applied, adding noise
to the backbone torsion angles as mutation, in order to find the
structure with the lowest potential.

3.4. Convolutional Neural Networks and
Protein Folding
The potential drawback of using convolutional neural networks is
that theymay not map accurately over the problem. Convolutinal
neural networks are invariant to translations, this makes them
great at detecting an object in the picture, but not so well suited
at detectinos where the positioning in the sequence conveys
meaning, such as understanding a statement. The protein folding
problem seems to be closer to the latter rather than the former.

A second possible drawback in using convolutional neural
networks is that their information is local (generally a detection
of an object is not be affected by something in the other corner
of the image). This is generally good behavior in detecting images
but might not take advantage of all the information available for
the protein folding problem.

Another possible drawback of AlphaFold is choosing the
distogram as the main representation of a proteins structure.
The space of possible protein foldings is very small compared
to the space of possible distograms. Because the network isn’t
constrained in any way to only distograms of possible protein
foldings, it is possible for it to output distograms that are
impossible in the real world. This greatly increases the search
space that the network explores and therefore decreases its
accuracy and increases the training time. Choosing the distogram
as a final output of the network instead of an actual 3D structure
can also be considered a bottleneck as some of the more complex
and subtle interactions that the model might have learned could
not be expressed using this representation, this is worsened by the
fitting of a spline over the predicted distances, discarding most of
the subtleties of the model.

4. ALPHAFOLD 2

AlphaFold2 is the second iteration of the AlphaFold system. It
is DeepMind’s entry in the CASP14 competition, an end to end
solution for predicting a protein folding given its amino acid
sequence.

4.1. Results
CASP14
During the CASP14 competition, AlphaFold2 has achieved what
can be considered a breakthrough in the problem of protein
folding. AlphaFold2 has achieved outstanding results not only
when compared with the previous years results but also when
compared to the other competing groups. DeepMind’s solution
has vastly outperformed the 145 other solutions participating
in the CASP14 competition (Flower and Hurley, 2021) with a
summed z score of 244.0217 and an average Z score of 2.6524,

the closest competitor achieved a summed z score of 92.1241 with
an average Z score of 1.0013 (Center, 2020). Nearly two-thirds
of the predictions were comparable in quality to experimental
structures (Flower and Hurley, 2021) with some cases being
virtually indistinguishable from the experimental results (Flower
and Hurley, 2021).

Outside CASP
AlphaFold2 has results outside the CASP competition as well.

AlphaFold2 prediction have been validated against the
structure of ORF3a where the results have ended up being
similar to structures later determined experimentally despite
their challenging nature and having very few related sequences
(Flower and Hurley, 2021).

4.2. Architecture
AlphaFold 2 is an end to end solution (Jumper et al., 2020). This
not only allows the network to better fine tune by evaluating on
the actual structure instead of an intermediary step. It also frees
the network to explore different avenues by not having to restrain
itself to an imposed strategy.

An important component of the model is a version of the
iterative SE(3)-Transformer (Jumper et al., 2020). A transformer
is an auto encoder architecture specialized in sequence to
sequence mapping. It employs an attention mechanism that
allows it to learn correlations in the input data (Vaswani
et al., 2017). The Iterative SE(3)-Transformer is a graph
transformer with a customized attention mechanism designed
to be equivariant under continuous 3D roto-translations (Fuchs
et al., 2021). By using this architecture the network no longer
needs to spend resources learning that the interactions are
invariable with respect to the global position and rotation.

The attention mechanism (Jumper et al., 2020) of the
transformer provides a greater flexibility to the network, it
dynamically learns the information flow allowing complex
interaction with non-neighboring nodes. This allows the network
to learn what relations are relevant and which can be ignored.

AlphaFold 2 Takes a protein sequence as input. Starting from
the sequence, similar sequences are found usingMSA and the raw
sequences are embedded. Feeding the rawMSA sequences allows
a more complex understanding of the amino-acid correlations,
complexity further enriched by the attentionmechanism that sifts
through the data and prioritizes the most significant information.
Added to these are a set of potential templates for the MSA
sequences.

Because only geometrical constrains are enforced in the
network, after the prediction a relaxation step is needed in order
to enforce the stereo-chemical constraints (Jumper et al., 2020).

4.3. Equivariance and Protein Folding
Equivariance is a form of symmetry for functions from one space
with symmetry to another. One example of a well known network
architecture that illustrates the property of equivariance over the
operation of translation is the Convolutional Neural Network.
Through the embedding of the equivariance property in the
model the network learns faster the concept of invariance, a more
specific version of equivariance, facilitating the decoupling of an
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objects classification form its position in the input space. SE(3),
the special Euclidean group of 3D space, extends the property of
equivariance over continuous translation and rotation.

In order to help the neural network find the correct folding,
the query sequence is augmented with MSA and pairwise
features. These statistics are invariant under the proteins global
location and it’s rotation. This makes the SE(3)-Transformer a
good contender as a model architecture.

4.4. Improvements Over AlphaFold 1
AlphaFold 2 uses an embedding that contains the full sequences
found by MSA and potential templates (Flower and Hurley,
2021), while the previous solution was receiving only MSA
statistics. This allows AlphaFold2 a richer more complex
understanding of the protein space.

Embedding the physical and geometric notions into the
architecture instead of a search process (Jumper et al., 2020).
This considerably restricts the search space and allows better
performance by not exploring, or even considering, physically
impossible configurations.

Replacing the convolutional neural network with an attention
based architecture, this replaces the rigid information flow from
the local neighbors of the convolutional networks with a flow
dynamically controlled by the network (Jumper et al., 2020).

Applying the model in an iterative manor using the Iterative
SE(3)-Transformer allows the gradients to propagate through the
whole architecture eliminating the disconnect between pairwise
distance predictions and the 3D structure encountered in the
initial AlphaFold model.

4.5. Limitations of AlphaFold 2
One limitation of approaches based on MSAs, such as
AlphaFold2, is that they are constrained by our current
knowledge and data sets. Such approaches are able to interpolate
between known points in the protein-structure space and maybe
even extrapolate around such known points but are not able to
confidently and accurately predict novel configurations. I believe

that in order to model such novel configurations a molecular
dynamics components is essential.

Another limitation stems from the fact that AlphaFold2
was trained on PDB, this specializes the network in predicting
structures as they would be found in the PDB, which may not
be the natural fold state of that protein. Some of the PDB folds
only happen in known special conditions, such as the presence of
another protein, these special conditions are usually documented
during the solving of the fold. In such a case AlphaFold2 will
predict the folding as it is found in the PDB, but is unable
to provide the special conditions in which the particular fold
happens. This limitation is most clearly observable for proteins
with multiple native structures.

5. CONCLUSION

AlphaFold 1 proved that neural networks posses the complexity
required in order to be capable of modeling the protein folding
mechanism. AlphaFold 2 further improves accuracy by using
a more representative internal representation and embedding
equivariance knowledge in the model. This frees the network
from having to learn the equivariance concept and concentrate
on the underlying folding mechanism.

A giant leap forwards in the problem of protein folding.
AlphaFold 2 will have a big impact in the industry, enabling a less
time consuming and more accessible protein folding prediction.
This has the potential of accelerating the rate of discoveries in any
field in which proteins play a significant role.

AlphaFold 2 illustrates the power of focusing the learning
process by restricting the search space and embedding knowledge
in the model.
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