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Type-1 cardiorenal syndrome refers to acute kidney injury induced by acute worsening

cardiac function. Worsening renal function is a strong and independent predictive

factor for poor prognosis. Currently, several problems of the type-1 cardiorenal

syndrome have not been fully elucidated. The pathogenesis mechanism of renal

dysfunction is unclear. Besides, the diagnostic efficiency, sensitivity, and specificity of

the existing biomarkers are doubtful. Furthermore, the renal safety of the therapeutic

strategies for acute heart failure (AHF) is still ambiguous. Based on these issues, we

systematically summarized and depicted the research actualities and predicaments of the

pathogenesis, diagnostic markers, and therapeutic strategies of worsening renal function

in type-1 cardiorenal syndrome.

Keywords: worsening renal function, type 1 cardiorenal syndrome, acute heart failure, pathogenesis, biomarker,

treatment

INTRODUCTION

Acute heart failure (AHF), characterized by acute or subacute worsening symptoms and signs
of heart failure (HF), is an intractable clinical and public health problem with high morbidity,
mortality, and economic burden. AHF commonly coexists with numerous complications and renal
dysfunction may be the most frequent one with a prevalence of approximately 25–40% (1, 2).
To better apprehend the disorders of the coexistence of the concomitant impairment of both the
cardiac and renal function, whereby acute or chronic dysfunction in one organmay induce acute or
chronic dysfunction of the other, the terminology “cardiorenal syndrome” (CRS) is nominated (3).
Depending upon the chief culprit of the pernicious and bidirectional insufficiency of both organs,
CRS can be categorized into five clinical subtypes and acute worsening renal function (WRF) caused
by the acute deterioration of cardiac function is termed as type-1 CRS (CRS-1 or acute CRS) (4, 5).

Impaired kidney function is an important independent prognostic factor for adverse events
including cardiovascular mortality, the longer length of in-hospital stay, and HF re-hospitalization
for AHF patients (6–8). Related clinical studies have validated that even an insignificant increase (as
low as 0.2 mg/dL) in serum creatinine correlates with a poor prognosis for AHF patients (9). CRS-1
is a tremendous obstacle to nephrologists and cardiologists. However, there are several problems
of WRF in CRS-1 that need to be solved. First, there is still a scarcity of a precise and quantitative
description of WRF while the criteria of a 0.3–0.5 mg/dl rise in serum creatinine concentration,
a 25% increase in plasm creatinine levels, or a decline in glomerular filtration rate (GFR) of
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9−15 ml/min during AHF admission is established and has
been accepted by some clinical trials (10–13). Second, the
etiologies of WRF in CRS-1 remain unclear. Numerous factors,
including hemodynamic imbalance, neurohormonal activation,
and oxidative stress, may be involved in the pathogenesis.
The exhaustive mechanism has not been absolutely elucidated.
Third, while an increasing number of biomarkers have been
explored and utilized in the diagnosis of renal dysfunction, the
diagnostic efficiency, sensitivity, and specificity are still skeptical
in the clinical practice. Last, renal safety of therapeutic strategies
for AHF, such as decongestant therapy, is still debatable and
some agents may be kidney toxic. Taking into account these
controversies, WRF in CRS-1 is a noteworthy topic.

In this review, we summarized the latest findings of WRF
in CRS-1, including the pathogenesis, clinical parameters
facilitating diagnosis, and treatment strategies. A comprehensive
and deep understanding of WRF in CRS-1 may provide new
insights for early identification and effective treatment.

Definition of WRF
Although the term WRF is commonly regarded as an acute
and/or sub-acute change that occurs to kidney function,
exhibiting an increase of serum creatinine concentration or a
decline of the estimated glomerular filtration rate (eGFR) during
AHF, a precise and unified definition of WRF in CRS-1 has
not been given for that different renal injury biomarkers and
different amplitude of variation which is considered significant
were adopted in different studies. To tackle this issue, various
definitions and criteria of WRF were proposed by three
different consensus groups: Risk, Injury, Failure, Loss of kidney
function, and End-stage kidney disease (RIFLE), Acute Kidney
Injury Network (AKIN), and Kidney Disease: Improving Global
Outcomes (KDIGO) (14–16). Different stages of acute kidney
injuries (AKI) /WRF are classified in all sets of criteria, which are
described in Table 1.

PATHOGENESIS

The etiologies and pathogenic mechanisms of WRF in CRS-1
patients are multifactorial and ambiguous. The hemodynamic
imbalance, neurohormonal activation, sympathetic activity,
pharmacological interventions, inflammation along with
oxidative stress may be involved in the pathogenesis of WRF in
CRS-1 (Figure 1) (17).

Hemodynamic Imbalance
The hypovolemia caused by diminished cardiac output or
over-quick decongestion therapy can lead to impaired renal
infusion. The reduced renal perfusion, or so-called impaired
renal “preload”, is regarded as the dominating etiology of WRF
in CRS-1 according to the historical mainstream viewpoints
(18). Kidney artery under-filling due to hypovolemic status
can lead to renal cortical ischemia or infarction. Besides,
inadequate kidney perfusion can induce acute ischemic tubular
necrosis (19). Hypovolemia can also activate the neurohormonal
activation as described hereinafter. The vasoconstriction and
sodium-retaining neurohormones, including angiotensin II and

renin, will be over-generated and over-secreted as an auto-
compensatory mechanism (20). However, this hypothesis is
oversimplified and can only partially explain WRF in CRS-
1, especially for patients with AHF with obviously impaired
left ventricular systolic function and decreased cardiac output.
For patients with normal left ventricular systolic function,
videlicet, persevered left ventricular ejection fraction (LVEF),
or for those with isolated right ventricular failure and elevated
pulmonary artery pressure, the theory is unpersuasive (21). In
fact, the proportion of WRF in CRS-1 caused by diminished
cardiac output and reduced renal vasculature perfusion may be
relatively low. The clinical manifestation of the majority is a
“warm and wet” pattern, rather than a “cold” pattern, which
refers to the presentation of preserved left ventricular systolic
function and/or normal blood volume (22). The Evaluation
Study of Congestive Heart Failure and Pulmonary Artery
Catheterization Effectiveness (ESCAPE) trial also revealed no
relationship between hemodynamic parameters and WRF in
congestive heart failure patients receiving pulmonary artery
catheter–guided therapy (23). On this occasion, “forward failure”
caused by low cardiac output should not be regarded as the main
determinant of renal dysfunction in CRS-1 patients and renal
congestion may play a more vital role.

Renal congestion induced by systemic congestion and volume
overload may also participate in the pathogenesis (24). For
patients with a “warm and wet” pattern, systemic congestion,
increased pulmonary and/or renal congestion are the main
hemodynamic profile. The exact mechanism of WRF induced
by renal congestion has not been well clarified. Increased renal
vessel pressure caused by renal congestion may trigger interstitial
edema, tubular dysfunction, and reversible azotemia (25, 26).
The phenomenon that increased central venous pressure (CVP)
and/or raised intra-abdominal pressure (IAP) positively correlate
with WRF in AHF also provides more testimonies. Previous
literature has indicated that the increase in CVP has a strong
association with declined GFR and WRF in patients with AHF
(27). Mullens et al. demonstrated that it is the elevation of the
admission baseline CVP, mean CVP, and discharge CVP rather
than the cardiac index (CI) or other hemodynamic parameters
that are strongly correlated with the increased risk of WRF
for patients with acute decompensated heart failure (ADHF)
(28). The role of CVP in maintaining renal perfusion pressure
and trans-renal perfusion is decisive. For patients with systemic
congestion, CVP elevates dramatically. Renal interstitial pressure
can escalate along with increased CVP which may cause the
congestion of renal vasculature, thus congestive kidney failure is
developed. Analogous to mechanisms of liver failure caused by
hepatic congestion, the congestive kidney injuries, manifesting
as ischemic injury of renal parenchyma and hypoxia damage of
renal cortex, will emerge under the increased renal interstitial
pressure (12, 29). Raised IAP also contributes to the development
of WRF. Although distinct ascites can be only detected in
a small population of patients with acute CRS, symptoms of
visceral/tissue edema are prevalent for patients with systemic
congestion and the prevalence of raised IAP can reach up to 60%
in patients ADHF.On one hand, elevated IAP indirectly increases
CVP and may further induce congestive renal failure. On the
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TABLE 1 | Kidney Disease: Improving Global Outcomes (KDIGO), Acute Kidney Injury Network (AKIN), and Risk, Injury, Failure, Loss of kidney function, and End-stage

kidney disease (RIFLE) criteria of AKI/WRF.

Stage Serum creatinine criteria Urine output criteria Annotation

KDIGO

1 1.5–1.9 times baseline or ≥0.3 mg/dl (≥26.5 µmol/L)

increase

<0.5 ml/kg/h for 6–12 hours The definition of AKI requires the increase in

serum creatinine≥0.3 mg/dl within 48h or the

change of serum creatinine ≥1.5 times within 7

days

2 2.0–2.9 times baseline <0.5 ml/kg/h for ≥12 h

3 ≥3 times baseline or increase in serum creatinine to

≥4.0 mg/dl (≥353.6 µmol/L)

<0.3 ml/kg/h for ≥24 h or

anuria for ≥12 h

AKIN

1 Increase in serum creatinine of ≥0.3 mg/dl (≥26.5

µmol/L) or increase to ≥150–200% (1.5- to 2.0-fold)

from baseline

<0.5 ml/kg/h for 6–12 h The definition requires an abrupt (within 48 h)

decline in kidney function currently

2 Increase in serum creatinine to >200–300% (>2.0- to

3.0-fold) from baseline

<0.5 ml/kg/h for ≥12 h

3 Increase in serum creatinine to >300% (>3.0-fold) from

baseline or serum creatinine ≥4.0 mg/dl (≥353.6

µmol/L) with an acute rise of at least 0.5 mg/dl (44

µmol/L)

<0.3 ml/kg/h for ≥24 h or

anuria for ≥12 h

RIFLE

Risk Increase in serum creatinine × 1.5 times or GFR

decrease >25%

<0.5 ml/kg/h for 6–12 h Serum creatinine changes are abrupt (within

1–7 days), sustained for more than 24 h

Injury Increase in serum creatinine × 2.0 times or GFR

decrease >50%

<0.5 ml/kg/h for for 12–24 h

Failure Increase in serum creatinine × 3.0 times, GFR decrease

> 75% or increase in serum creatinine to ≥4.0 mg/dl

(≥353.6 µmol/L) with an acute rise >0.5 mg/dl (44

µmol/L)

<0.3 ml/kg/h for ≥24 h or

anuria for ≥12 h

Loss Persistent acute renal failure = complete loss of kidney

function >4 weeks

-

End-stage kidney

disease

End-stage kidney disease >3 months -

other hand, the kidney is compressed when exposed to raised IAP
and renal infusion displays a precipitous decline. Hence ischemic
injuries will develop due to the reduced renal blood flow.Mullens
et al. also illustrated that elevated IAP was associated with WRF
for patients with ADHF and reductions of IAP were associated
with improved renal function (30).

Neurohormonal Activation
The renin-angiotensin-aldosterone system (RAAS) is crucial
in maintaining the hemodynamic homeostasis and plays a
major role in the cardiorenal physiological/pathophysiologic
bidirectional interaction in CRS-1 (31). The persistent renal
hypoperfusion results in RAAS overactivation. Besides,
sympathetic nerve activity (SNA) and the secretion and
release of arginine vasopressin (AVP) will also be increased to
tackle systemic hypovolemia and to maintain kidney blood flow.

The activation of RAAS plays a vital role in maintaining
systemic and renal hemodynamic hemostasis and contributes to
cellular hypertrophy, apoptosis, and fibrosis in both the heart
and the kidney. At the cardiac level, it can reflect the degree
of cardiac remodeling, ventricular hypertrophy, and fibrosis.
What is more, it promotes sodium and water retention, mediates

the redistribution of intrarenal perfusion which refers to the
reduced medullary blood flow and increased cortical blood
flow, to compensate for the hemodynamic changes in CRS-1
(32). In detail, angiotensin II, renin, as well as numerous other
vasoactive agents, including vasodilators such as prostaglandin
I2 and nitric oxide, are subsequently generated in response
to the activation of RAAS. The former, vasoconstrictors, can
constrict efferent arterioles, and the latter, vasodilators, can dilate
afferent arterioles. Thus the glomerular hydrostatic pressure and
filtration are preserved (22). In this compensated stage, the
kidney function is approximately normal. With the progression
of WRF, both afferent and efferent arterioles are both constricted,
thus the vasoconstriction effect of angiotensin II dominates renal
hemodynamic physiopathologic changes. In the decompensated
phase, GFR falls dramatically (33, 34).

Overactivation of RAAS accounts for approximately 50% of
the over-production of aldosterone (35). The mineralocorticoid,
aldosterone, is of great importance in increasing sodium and
water retention and the regulation of blood pressure and
fluid homeostasis. Furthermore, Angiotensin II and aldosterone
are tightly associated with the hypertrophy, apoptosis, and
fibrosis of renal tubular cells (36). On one hand, Angiotensin
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FIGURE 1 | Pathogenesis mechanisms of worsening renal function (WRF) in type-1 cardiorenal syndrome (CRS-1). AHF, acute heart failure; RAAS,

renin-angiotensin-aldosterone system; SNA, sympathetic nervous system; AVP, arginine vasopressin; CVP, central venous pressure; GFR, glomerular filtration rate;

WRF, worsening renal function; CRS, cardiorenal syndrome.

II and aldosterone promotes the expression of numerous
profibrotic molecules, such as plasminogen activator inhibitor 1,
osteopontin, and galectin-3, which promote collagen and matrix
production. On the other hand, angiotensin II and aldosterone
also stimulates mitochondrial production of reactive oxygen
species (ROS) and thus exacerbates renal tubulointerstitial
fibrosis and endothelial dysfunction through the inflammatory
pathway (37).

The SNA will also be potentiated for hypovolemia and
decreased artery pressure (38, 39). Angiotensin is the stimulator
of the sympathetic nervous system (SNS) and can also contribute
to the activation of SNS via numerous biological effects, such as
the direct activation of critical sympathoexcitatory neurons in the
paraventricular nucleus of the hypothalamus (40). At the cardiac
level, it increases cardiac output while worsens cardiac fibrosis
and hypertrophy. For the kidney, over-activated SNS stimulates
not only α1-adrenergic receptors on vascular smoothmuscle cells
to enhance vasoconstriction but also β1-adrenergic receptors on
juxtaglomerular cells to increase the secretion of renin, which
can activate RAAS in reverse (41). Hence, enhanced SNA results
in vessel constriction, increased systemic vascular resistance, and
sodium retention.

Arginine vasopressin (AVP), the antidiuretic hormone
secreted by the posterior pituitary gland receiving the stimulation

of hypovolemia and increased osmolality, also takes on pivotal
importance in sustaining the renal filtration fraction (42). AVP
can activate V1 receptors on the vasculature, which results in
renal vessels constriction and elevated vascular resistance. V2
receptors on principal cells can also be activated thus water and
sodium reabsorption, as well as hyponatremia, is aggravated (43).
Both water and sodium-retaining neurohormones work together
to maintain hemodynamic homeostasis and sufficient kidney
perfusion pressure. Hypervolemia induced by water and sodium
retention also triggers congestive renal injuries.

Inflammation and Oxidative Stress
The increase of proinflammatory cytokines and oxidative stress
is the vital factor for the pathogenesis of WRF, which have been
validated by numerous in vivo and in vitro experimental studies
(44). The underlying mechanisms may incorporate oxidative
stress and inflammation leading to monocyte phenotype
transition, kidney interstitial fibrosis, and renal cellular apoptosis.
Inflammatory and apoptosis pathway plays a crucial role in
the pathogenesis of WRF in CRS-1. Inflammatory cytokines
can induce AKI via activating death signaling receptors and
other various signaling pathways. It can cause endothelial
function impairment, renal vasoconstriction, and capillary
obstruction (45, 46). The oxidative stress pathway is a classic
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pathway inducing cellular injury, interstitial fibrosis, and organ
dysfunction. An increase of oxidative stress leads to the over-
generation of ROS and reactive nitrogen species (RNS), which
facilitates the formation of proinflammatory and profibrotic
milieu. The over-activation of RAAS can also stimulate the over-
production of ROS and RNS in the kidney (47). Furthermore,
over-production of ROS and RNS exacerbates renal and
cardiovascular structural and functional abnormalities through
inactivating mitochondrial enzymes, accelerating DNA damage,
and promoting base hydroxylation (46). Both cardiac and renal
injuries are thus developed.

The inflammatory and oxidative stress activities are increased
in acute CRS. Vitro experiments conducted by Pastori et al.
revealed that when adding the plasm of patients with acute CRS,
the apoptosis of monocyte cell lines was obviously upregulated
vs. those incubated with plasm from patients with AHF or
healthy individuals. Besides, the expression levels of caspase-3
and-8 of monocytes were in line with apoptosis rates. Plasm
concentrations of inflammatory cytokines including Interleukin
(IL) −6 and −18 were also apparently higher in patients with
acute CRS than which in patients with AHF (48). A similar
phenomenon, which refers to the more obvious elevation of
plasm levels of inflammatory cytokine and markers of oxidative
stress including IL-6 and myeloperoxidase (MPO) in acute CRS
patients compared with patients with AHF, was also observed in
the study of Virzì et al. (46, 49). Vivo experiments also showed
significant elevation of serum concentration of cytokines and
MPO in patients with CRS-1 vs. patients with AHF without
renal insufficiency (50). An observational pilot study reflected
that the activation of peripheral blood monocytes may be the
stimulator of inflammatory pathway way in acute CRS patients.
Monocyte phenotype transition and apoptosis are crucial in the
pathogenesis of WRF (51).

MARKERS FOR WRF

Creatinine
Creatinine is the most widely used biomarker to evaluate
GFR. As the pioneer of biomarkers estimating renal function,
creatinine negatively correlates with GFR. Creatinine is a 113kDa
end-product of creatine phosphate metabolism. Creatine is a
nitrogenous organic acid that is predominantly generated in the
kidney and liver and is mainly transported to and metabolized in
skeletal and heart muscles tissues for energy generation. Serum
creatinine is generated during the spontaneous, non-enzymatic
anhydration of creatine in muscle cells (62, 63). Creatinine
is filtered by the glomerulus. The highlighted peculiarity of
creatinine is that it will not be reabsorbed by the renal tubules
(64). Since creatinine was discovered, it has been wildly used as
the “golden standard” to estimate GFR in clinical practice.

There are blemishes of creatinine in assessing renal function.
Above all, the synthesis and secretion of creatinine are
heterogeneous across individuals. The production of creatine
principally depends on muscle mass, physical activity, dietary
meat consumption, ethnic and age factors. Chronic illness,
including inflammatory disease and malignant tumors, can
also decrease creatinine generation. For another, the clearance

of creatinine is also influenced by diversified factors such as
pharmacotherapy including cimetidine and trimethoprim (65).
Moreover, the relationship between creatinine and GFR is non-
linear and exponential (66). On some occasions, creatinine
is impotent to detect a mild alternation in GFR and will
underestimate the degree of kidney impairment. Considerable
reduction of GFR may accompany the weeny elevation of serum
creatinine concentration, especially in patients with advanced
age and low muscle mass (8). In addition, the uplift of
serum creatinine is comparatively lagged behind AKI and is
insensitive to tubular impairment (67). These characteristics
impose restrictions on the utilization of creatinine.

Cystatin C
Cystatin C (CysC), a non-glycosylated 13kDa protein, is a
member of endogenous cysteine proteinase inhibitors (68).
Cystatin C is synthesized in all human nucleated cells and
is encoded by the CST3 gene, a housekeeping gene located
in chromosome 20 (69). For this reason, the generation rate
of CysC is relatively constant. Similar to creatinine, CysC is
freely filtered by glomeruli (70). CysC is completely reabsorbed
and metabolized by renal tubular epithelial cells. The changing
trend of serum concentration of CysC is in keeping with which
of GFR, thus CysC is considered as a novel and dependable
biomarker in identifying kidney disease (71). For that, CysC
is insensitive to various confound factors, numerous studies
have indicated that the performance of CysC in diagnosis
renal insufficiency is comparably superior to creatinine (68).
Rafouli-Stergiou et al. revealed that a rise in cystatin C during
the admission of patients with ADHF was an independent
predictor of short-term prognosis. Besides, the combination of
cystatin C and NT-proBNP could provide additional prognostic
information for WRF in CRS-1 (66). One multicenter clinical
study revealed that CysC could well predict AKI in the
admission patients with AHF and a rise in cystatin C >

>0.3 mg/L within 48h from admission positively correlated
with higher in-hospital mortality and longer hospital stay
(Table 2) (52).

Neutrophil Gelatinase-Associated
Lipocalin
As a member of the lipocalin family, neutrophil gelatinase-
associated lipocalin (NGAL) is a 25kDa protein, which is
filtered by the glomerulus and is immediately reabsorbed in
proximal tubule through a megalin-dependent pathway (72).
The serum concentration of NGAL is relatively low in healthy
individuals, whereas its plasm level significantly elevates (about
300-folds) in response to tubular epithelial damage (73). The
expression of NGAL is upregulated in kidney tissue when AKI
is developed, which may result in the increase of NGLA plasm
concentrations. Furthermore, impaired reabsorption function
of the proximal tubule may contribute to the increased levels
in urine (74). Previous studies have validated the efficiency
and accuracy of urinary NGAL in the diagnosis of AKI
and WRF in patients with AHF, while the sensitivity and
specificity of plasm NGAL are not so excellent (53). Interestingly,
the Acute Kidney Injury N-gal Evaluation of Symptomatic
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TABLE 2 | Summary of studies on biomarkers of WRF in CRS-1 in this review.

Study Study population Biomarker Timing of biomarker

evaluation

Conclusion Sensitivity/specificity

Lassus et al. (52) 292 patients with

AHF

Plasm cystatin C 48h after admission Cystatin C > 0.3 mg/L

could predict WRF in AHF.

AUC: 0.92

Specificity: 90% sensitivity: 77%

Chen et al. (53) 732 patients with

ADHF

Urinary NGAL Every 24 h for the first 7

days during hospitalization

Urinary NGAL facilitated the

identification of progressive

AKI for ADHF patients.

AUC: 0.74 (95% CI 0.67–0.82)

Specificity: 63% sensitivity: 76%

Murray et al. (54) 930 patients with

AHF who have

been treated or

with plan to treat

with IV diuretics

Urinary NGAL Day of enrollment within 2 h

of first IV diuretic dose; 2 to

6 h later; hospital days 1, 2

and 3; and day of discharge

or anticipated discharge

Diagnostic value of urinary

NGAL was limited. Urinary

NGAL was not superior to

creatinine for predicting

WRF for AHF patients.

AUC of the peak urinary

NGAL: 0.51

AUC of the first urinary NGAL: 0.61

Okubo et al. (55) 138 patients with

AHF

Urinary L-FABP First day of hospital

admission

An increased urinary

L-FABP level may predict

WRF for AHF patients.

Urinary L-FABP level ≥ 8.4µg/g

creatinine was independently

associated with WRF (HR 1.8,

p = 0.01)

Legrand et al. (56) 87 patients with

ADHF

Urinary KIM-1,

NAG

Unclear Urine biomarkers of renal

injury (including KIM-1 and

NAG) did not predict WRF.

AUC of KIM-1: 0.49 (95%

CI 0.37–0.62)

AUC of NAG: 0.46 (95%

CI 0.31–0.61)

Ahmad et al. (57) 283 patients with

ADHF and

pre-existing renal

dysfunction

Urinary KIM-1,

NGAL and NAG

Daily for the 72-h study

intervention period

Tubular injury biomarker

levels did not differ between

patients with and without

WRF defined by cystatin C.

72-h changes in NGAL, KIM-1 and

NAG between patients with and

without WRF did not reach

statistically significance

(p-value was respectively 0.21, 0.22

and 0.46)

Sokolski et al. (58) 132 patients with

AHF

Urinary KIM-1 and

urinary NGAL

Every 24 h for the first 3

days during hospitalization

Urinary NGAL and urinary

KIM-1 may predicate the

development of WRF in

AHF.

AUC of baseline urinary NGAL: 0.76

(95% CI 0.63–0.90)

AUC of urinary NGAL at day 2: 0.83

(95% CI 0.73–0.93)

AUC of urinary NGAL at day 3: 0.77

(95% CI 0.60–0.94)

AUC of urinary KIM-1 at day 2: 0.74

(95% CI 0.59–0.90)

Funabashi et al.

(59)

708 patients with

AHF

Urinary NAG First day of hospital

admission

Urinary NAG did not

corelate with renal function.

In multivariable linear regression

analyses, β- coefficient = 0.005,

p = 0.93

Virzì et al. (49) 80 patients with

AHF

Plasm IL-18 Within 8 h of hospital

admission

IL-18 was higher in CRS

type 1 compared with AHF

patients.

Difference of plasm IL-18

concentration in AHF patients with

and without WRF was meaningful

(p < 0.001)

Atici et al. (60) 111 patients with

ADHF

Urinary KIM-1,

TIMP-2 and

IGFBP-7

Unclear Urinary [TIMP-2]·[IGFBP7]

could predict WRF, while the

diagnostic value of urinary

KIM-1 was mild.

AUC of urinary [TIMP-2]·[IGFBP7]:

0.75 (95% CI 0.61–0.88)

AUC of urinary KIM-1: 0.54 (95%

CI 0.37–0.70)

Schanz et al. (61) 40 patients with

ADHF

Urinary TIMP-2

and IGFBP-7

First day of enrollment and

daily thereafter

Urinary [TIMP-2]·[IGFBP7]

could discriminate for AKI

stage 2–3 in ADHF.

AUC of samples collected within 24 h

of enrollment: 0.84 (95%

CI: 0.72–0.93)

At the 0.3 cutoff for

[TIMP-2]·[IGFBP7], specificity: 73%

sensitivity: 86%

AUC of samples collected over 7

days: 0.77 (95% CI: 0.65–0.88)

AHF, acute heart failure; CRS, cardiorenal syndrome; AUC, area under the curve; ADHF, acute decompensated heart failure; NGAL, neutrophil gelatinase-associated lipocalin; 95%CI,

95% confidence interval; AKI, acute kidney injury; WRF, worsening renal function; L-FABP, liver-type fatty acid-binding protein; HR, hazard rate; KIM-1, kidney injury molecule-1; NAG,

N-acetyl-β-(D)-glucosaminidase; IL-18, Interleukin-18; CRS, cardiorenal syndrome; IGFBP-7, insulin-like growth factor-binding protein 7; TIMP2, tissue inhibitor of metalloproteinase-2.

heart failure Study (AKINESIS) study confirmed that the
diagnostic value and prognostic predicting value of plasm
NGAL for WRF in patients with AHF was limited and was

not superior to creatinine. Similarly, the performance of urine
NGAL in predicting WRF and prognosis did not overmatch
creatinine (54).
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Liver-Type Fatty Acid-Binding Protein
Fatty acid-binding protein (FABP) is a 14KDa molecule protein
and belongs to the superfamily of lipid-binding proteins. FABP
plays a significantly important role in the metabolism and
transportation of fatty acids (75). FABP consists of nine tissue-
specific subtypes, including liver (L), intestinal (I), muscle and
heart (H), adipocyte (A), epidermal (E), ileal (IL), brain (B),
myelin (M), and testis (T) (76). For liver-type fatty acid-binding
protein (L-FABP), it is expressed in both hepatocytes and tubular
epithelial cells. It participates in the transportation of fatty acids
and is essential to fatty acid β-oxidation and power supply
of tubular epithelial cells. For patients with AKI, increased
oxidative stress promotes the over-dosed production of ROS.
For the peroxidation of plasma membrane and cytoplasmic
membrane mediated by ROS, the cytotoxic lipid peroxidation
products, which are bound and cleared by L-FABP, are excessively
generated and accumulated in proximal tubules. Thus L-FABP
was excreted from the proximal tubules into urine together
with cytotoxic lipids. Urinary L-FABP has been proposed as an
emerging acute proximal tubules injury biomarker for WRF in
CRS-1 despites few related studies (77, 78). Yousaku Okubo et al.
revealed that urinary L-FABP can predict WRF in patients with
AHF and patients with higher L-FABP levels were more likely to
have rehospitalization (55).

Kidney Injury Molecule-1
Kidney injury molecule-1 (KIM-1) is a 38.7kDa transmembrane
glycoprotein, which is a member of type I transmembrane
glycoproteins (79). KIM-1 is principally expressed at the
apical membrane of proximal tubular epithelial cells and its
expression maintains a low state under normal circumstances.
The expression of KIM-1 is dramatically upregulated when the
renal tubule undergoes different injuries including ischemia-
reperfusion injury (80, 81). KIM-1 is regarded as a promising
biomarker for detecting renal tubular injuries, while its sensitivity
and accuracy in the diagnosis of AKI have not been validated
(82). Studies engaged in the association between KIM-1 and
WRF in patients with CRS-1 are rare. Legrand et al. revealed
a slight but non-statistically significant association between
KIM-1 and increased risk of WRF for AHF patients in the
Biomonitoring and Cardiorenal Syndrome in Heart Failure Trial
(BIONICS) trial population (56). A similar result was drawn
in the Renal Optimization Strategies Evaluation AHF (ROSE-
AHF) trial, which exhibited no relationship between the change
of plasm KIM-1 level and the occurrence of WRF in patients
with AHF (57). On the contrary, urinary KIM-1 is a meaningful
biomarker for predicting WRF. Sokolski et al. exhibited the
excellent diagnostic value of urinary KIM-1 for WRF (58).

N-Acetyl-β-(D)-Glucosaminidase
N-acetyl-β-(D)-glucosaminidase (NAG) is a brush-border
lysosomal enzyme found in several human cells including
proximal tubule cells (83). On the grounds that NAG is a large
molecular weight compound (>>130kDa), NAG obviates the
elimination through glomerular filtration and thus, the elevation
of urinary NAG levels can be considered as a tubular origin (84).
Urinary NAG is regarded as an outstanding predictor reflecting

the impairment of tubular injury. Funabashi et al. demonstrated
that for inpatients with AHF recruited from the National
Cerebral and Cardiovascular Center Acute Decompensated
Heart Failure (NaDEF) registry study, those with higher urinary
NAG tended to have lower eGFR than those with low urinary
NAG levels, while multivariable linear regression analyses
showed no significant relation between renal function and
urinary NAG concentrations. Besides, elevated urinary NAG
levels correlated with long-term adverse events (59). In contrast,
the ROSE-AHF trial indicated no relationship between the
development of WRF and the increase of urinary NAG (57).
Related clinical studies are relatively limited and further studies
should be conducted.

Interleukin-18
As a member of the IL-1 family, Interleukin-18 (IL-18), which
was first described as an “interferon (INF) γ-inducing factor,”
is an 18kDa biologically active proinflammatory cytokine (85).
IL-18 is involved in numerous renal pathogenic processes such
as apoptosis, ischemia-reperfusion injuries, allograft rejection,
and malignancy. IL-18 is generated by proximal tubules and is
excreted into the urine after acute ischemic injuries, which have
been verified by several in vivo studies (86, 87). As mentioned
above, inflammation and oxidative stress factors are crucial for
the pathogenesis process of WRF. Hence inflammation cytokines
(such as IL-18) may be potential candidates for the identification
of WRF in the early stages of acute renal insufficiency. Parikh et
al. revealed that urinary IL-18 could accurately predictWRF even
in the first 24 h of onset of deterioration of renal function, which
was obviously earlier than the elevation of serum creatinine (88).
The Systolic Blood Pressure Intervention Trial (SPRINT) trial
also indicated that IL-18 was an independent predictor of future
risk of AKI with high sensitivity and accuracy (89). Virzì et
al. indicated that plasma levels of proinflammatory cytokines
including IL-18 were higher in CRS-1 patients compared with
AHF patients, which hinted at the potential of IL-18 in the
diagnosis of WRF in CRS-1 (49).

Insulin-Like Growth Factor-Binding Protein
7 (IGFBP-7) and Tissue Inhibitors of
Metalloproteinase-2 (TIMP2)
Insulin-like growth factor-binding protein 7 (IGFBP-7) and
TIMP2 are both small molecular weight proteins (29 kDa and 24
kDa, respectively) and stimulators of G1 cell cycle arrest which
involves in the pathogenesis of AKI (90, 91). Both biomarkers
prevent the division of injured cells with damaged DNA. The
normal cell cycle will re-initiate until the repair is accomplished.
However, pathological changes such as senescence and fibrosis
will emerge if the arrested cell cycle lasts for a too long period
(92). These two biomarkers are both expressed, generated, and
secreted in renal tubular cells at the early phase of AKI/WRF.
Related studies have validated that the combination of these two
biomarkers, which refers to urinary [TIMP-2]·[IGFBP7], had a
significantly superior performance in the early identification and
diagnosis of AKI compared with classic renal injury biomarkers
such as KIM-1 (93, 94). When focused on its application in
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the diagnosis of WRF in CRS-1, associated studies are limited.
In Atici et al.’s study, the levels of urinary [TIMP-2]·[IGFBP7]
were significantly elevated in patients with acute CRS compared
with those with simple AHF (60). Schanz et al. also revealed
that urinary [TIMP-2]·[IGFBP7] was a promising biomarker in
the early discrimination of WRF in patients with ADHF with
considerable sensitivity and specificity. Furthermore, the urinary
[TIMP-2]·[IGFBP7] also well predicted all-cause mortality at 1
year after discharge (61).

B-Type Natriuretic Peptide (BNP)
B-type natriuretic peptide (BNP) and N-terminal proB-
type natriuretic peptide (NT-proBNP) are well-established
biomarkers for HF and have been universally manipulated in
estimating the presence, severity, and prognosis of HF (95).
The serum concentration of NT-proBNP can be influenced
by a variety of factors, such as renal function, advanced age,
blood pressure, severe infection, gender, and obesity (5). Hence
BNP and NT-proBNP are not regarded as eligible and reliable
biomarkers for the identification ofWRF. Based on that, the term
“the estimated mature BNP” (emBNP), which was calculated
by subtracting proBNP from total BNP, has been proposed. It
may contribute to the identification of WRF in CRS-1 patients
for its peculiar clearing mechanisms (96). The emBNP is cleared
through membrane-bound natriuretic peptide receptors A
and C rather than kidney, whereas NT-proBNP was mainly
cleared by renal excretion (97). Previous literature validated that
patients with AHF andWRF had lower emBNP levels and higher
NT-proBNP/emBNP ratios. Besides, NT-proBNP/emBNP ratios
were associated with composite clinical events, including all
causes of death and rehospitalization for HF (96).

TREATMENT

Diuretics
Congestion is the hallmark of AHF and decongestion therapy,
especially diuresis pharmacotherapy, is the cornerstone for
patients with AHF. However, controversies concerning the
utilization of diuretics in patients with CRS-1 have never been
eliminated for the reason that prior studies have identified
the association between aggressive diuresis (loop diuretics in
especial) and increased risk of WRF. The possibility that
administration of diuretics may induce or aggravateWRF in AHF
patients astricts the appropriate use of diuretics. The optimal
diuretics therapeutic regimen in CRS-1 patients is still unclear.

It is a conundrum whether aggressive fluid removal via
escalating doses of diuretics can be safely and effectively
applied in the setting of AHF. It deserves the deliberateness
to weigh up the pros and cons. From pathogenesis, diuretics
therapy will rapidly mitigate congestion and reduce increased
CVP, which may ameliorate the kidney dysfunction caused by
congestive kidney damages. While hypovolemia and impaired
renal preload will induce hypo-infusion renal injuries. Hence
different viewpoints of rational diuretics use have been concluded
in different clinical researches. The Description de la Filière
de Soins dans les Syndromes d’Insuffisance Cardiaque Aigue
(DeFSSICA) study indicated no limitation of loop diuretics in

patients with AHF with renal insufficiency for the reason that
the prognosis of patients with acute CRS on diuretics therapy
was indiscriminate compared with that of patients with AHF
(98). Conversely, the Randomized Evaluation of Heart Failure
with Preserved Ejection Fraction Patients with Acute Heart
Failure and Dopamine (ROPA-DOP) study and the DOSE-AHF
study clarified the association between the utilization of diuretics
and WRF in patients with AHF (99, 100). The DOSE-AHF
study illustrated that patients with AHF receiving high-dose
furosemide treatment were more vulnerable to transient WRF
than those accepting low-dose furosemide (99). The ROPA-DOP
study also revealed that a continuous infusion diuretic strategy
was associated with a higher incidence of WRF in patients
with heart failure with preserved ejection fraction (HFpEF)
hospitalized for AHF treatment (100).

Given this evidence, how to suitably and optimally use
diuretics is still a predicament. The dosage and mode of
administration of diuretics are relatively crucial to balance the
therapeutic effect of decongestion and the possibility of WRF.
For the issue of administration mode, in Palazzuoli et al.’s study,
patients receiving continuous furosemide infusion therapy were
more vulnerable to WRF than those receiving bolus injections
of furosemide, while the efficiency of diuresis was better in the
former (101, 102). For the question of diuretics dosage, the
DOSE-AHF study demonstrated that AHF patients on high-
dose furosemide therapy had an increased risk of transient WRF
vs. those on low-dose furosemide, and the primary endpoints
(the patient’s global assessment of symptoms) of two groups
had non-significant difference (99). Carbohydrate antigen 125
(CA-125) diuretic-guided treatment proposed by Núñez et al.
perhaps can solve the dilemma for that CA-125 is an excellent
marker reflecting congestion. In this study, during the diuretic
therapy process, serum CA-125 was detected and the dosage
of diuretics would be determined and adjusted according to
the plasm CA-125 concentration stratification. Individualized
decongestion treatment may be realized when CA-125 diuretic-
guided treatment is utilized.

Vasopressin Antagonists
In the pathogenetic process of WRF in CRS-1, as described
above, AVP is over-generated and over-secreted in response to
neurohormonal activation. AVP can activate both V1 receptors
on the vasculature and V2 receptors on principal cells resulting
in renal vasculature vasoconstriction and the enhancement of
water and sodium reabsorption (103). Tolvaptan, a selective V2
receptor antagonist of AVP, can act on the distal portion of the
nephron and competitively blocks the bond of AVP and V2
receptors, which facilitates the activation of the aquaporin system
and the prevention of water and sodium reabsorption (104).

The Efficacy of Vasopressin Antagonism in Heart Failure
Outcome StudyWith Tolvaptan (EVEREST) trial has ascertained
the efficacy and safety of tolvaptan in AHF treatment while
the renal function was not included as observation criteria
or endpoint criteria in this trial (105). Subsequent studies
supplemented related evidence. The Clinical Effectiveness of
Tolvaptan in Patients with Acute Heart Failure and Renal
Dysfunction (AQUAMARINE) study validated that for patients
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with CRS-1, tolvaptan had better diuresis effectiveness compared
with conventional diuretic therapy while the incidence of
WRF was comparable (106). A secondary analysis of the
AQUAMARINE study also revealed that patients with CRS-
1 were well-tolerated to tolvaptan and tolvaptan can improve
diuretic response (107). Another study conducted by Matsue et
al. illustrated that for patients with AHF with renal dysfunction,
tolvaptan could improve the prognosis and reduce the risk
of all-cause death and HF readmission in specific individuals
whose eGFR was 30mL/min/1.73m2 or above (108). All in all,
vasopressin antagonist is an effective decongestion therapy with
less influence on renal function.

Vasodilators
Vasodilators are another fundamental therapeutic regimen and
are the second most commonly used drugs for AHF treatment,
which has been validated by current clinical practice guidelines.
Vasodilators can rapidly reduce ventricular filling pressure and
central venous tone, thus reducing both cardiac preload and
afterload, and decreasing the myocardial oxygen consumption
(109). In hypertensive AHF, vasodilators are widely used and
their efficacy is considerable, while for patients with low systolic
pressure and/or systemic hypotension, vasodilators should be
avoided. For hemodynamic influences of vasodilators, whichmay
induce WRF, the utilization of vasodilators in patients with AHF
with renal dysfunction should be cautious.

Nesiritide, or recombinant human BNP, is a type of vasodilator
with both natriuretic and diuretic effects. Nesiritide has the same
amino acid sequence and pharmacological effect on endogenous
BNP. It can interact with natriuretic peptide receptor A on
vascular smooth muscle cells and endothelial cells and can
activate the guanylyl cyclase pathway, resulting in an increase of
intracellular cyclic guanosine monophosphate (110). Besides, it
can antagonize the effect of RAAS. Nesiritide has been approved
for the treatment of AHF and previous literature indicated that
nesiritide can mitigate congestion with no influence on renal
function. The Acute Study of Clinical Effectiveness of Nesiritide
in Decompensated Heart Failure (ASCEND-HF) study revealed
that compared with placebo, nesiritide did not improve clinical
outcomes and did not worsen renal function (111, 112). The
ROSE-AHF study also showed similar results. These randomized
clinical trials validated the renal safety of nesiritide despite its
feeblish effects on decongestion and improvement of clinical
outcomes and prognosis.

Relaxin, a 6kDa hormone of pregnancy mainly secreted
by the corpus luteum of the ovary, plays an important
role in maintaining the homeostasis of cardiovascular and
hemodynamic during pregnancy. Relaxin can cause systemic
and renal vasodilation via stimulating the relaxin family
peptide receptors (RXFP), which are widely distributed in
the heart, skeletal muscle, kidney, arteries, veins, and various
tissues and organs. The activation of RXFP will increase the
generation of second messengers, thus activating the nitric oxide
pathway and cyclic adenosine monophosphate (cAMP) pathway,
promoting the production of vasodilator substances, resulting in
decreased systemic and renal vascular tone (113, 114). Serelaxin,
the recombinant human relaxin-2, has similar pharmacologic

action to relaxin and is considered as a potential therapeutic
agent for AHF (115). The RELAX-AHF study recruited AHF
participants with mild-to-moderate renal dysfunction (with
eGFR of 30–75 mL/min/1·73 m²) who would be randomly
assigned to the serelaxin treatment group and placebo treatment
group. The study revealed that serelaxin was associated with
greater dyspnoea relief, reduced worsening HF events, reduced
cardiovascular and all-cause mortality compared to placebo,
while lower proportions of patients on serelaxin therapy had
development ofWRF and adverse events related to renal function
impairment compared with the placebo group (116). Additional
studies concerning relaxin/ serelaxin have been ongoing. In the
Pre-relaxin for the treatment of patients with acute heart failure
(RELAX-AHF) study, patients with AHF receiving intravenous
relaxin therapy tended to have a similar risk of WRF vs. those on
placebo therapy (117, 118). The RELAX-AHF-EU study explored
the effect of serelaxin when standard-of-care (SoC) therapy was
added in AHF patients with mild-to-moderate renal dysfunction
(119). Patients receiving serelaxin+SoC therapy were less likely
to suffer renal deterioration compared to those with SoC therapy
alone. The RELAX-AHF-2 study also affirmed the renal safety of
serelaxin (120). To sum up, serelaxin is beneficial to ameliorate
congestion symptoms and signs and improve the prognosis of
CRS-1 patients with potential kidney protective effects.

Inotropes
For patients with AHF with low cardiac output and hypotension,
especially for those with low systolic blood pressure, inadequate
peripheral infusion, and poor response to strand therapy,
inotropes are still effective remedies to maintain vital organs
(including kidney) perfusion and function (121). Various studies
have reported the renal protective effect of inotropes for
AHF patients.

Dopamine, the most commonly used inotropes, can increase
cardiac output by reducing cardiac afterload and may improve
renal perfusion and GFR through dilating both afferent and
efferent arterioles. However, only small-scale studies have
validated the potential mechanism (122). TheDopamine in Acute
Decompensated Heart Failure (DAD-HF) trial confirmed for
AHF patients on high dose furosemide (20mg/h continuous
for 8 h), the incidence of WRF was obviously higher than
those on low dose furosemide combined with low dose
dopamine (furosemide 5 mg/h plus dopamine 5 mg·kg−1·min−1

continuous infusion for 8 h). while there was no obvious
difference in the 60-day mortality and/or rehospitalization rates
between the two groups (123). In the DAD-HFIItrail, compared
with the DAD-HFItrail, an isolated low dose furosemide
(furosemide 5 mg/h continuous for 8 h) treatment group was
added. Similar to the DAD-HFItrail, the incidence of WRF
was higher in the high-dose furosemide group than the low-
dose furosemide plus low-dose dopamine group and low-dose
furosemide group at 24 h after initiation of treatment, no better
prognosis was detected in latter groups during 1-year follow up
period (124). Besides, controversial outcomes were concluded
in other clinical trials including the ROSE-AHF study, the
adrenergic inotropes exhibited more adverse events and no
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renoprotective effect compared with other types of inotropes
such as levosimendan.

Levosimendan exerts its inotropic action through increasing
sensitivity of troponin C to calcium in cardiomyocytes via c-
AMP independent effect. Besides, it owns vasodilation effect
through acting on adenosine triphosphate-sensitive potassium
channels (KATP channels) in the smooth muscle cell. Based
on these properties, levosimendan can dilate afferent arterioles
of the kidney and ameliorate renal perfusion, thus increasing
GFR. Some studies also indicated can selectively dilate afferent
arterioles and own organ-specific effects (125). Fedele et al.
showed that based on standard HF therapy, levosimendan
could significantly increase GFR compared with placebo for
CRS-1 patients with moderate renal impairment (126). Similar
favorable results were also observed in Yilmaz et al.’s study.
For CRS-1 patients requiring inotropic therapy, levosimendan
could provide additional renal protective effects compared with
dobutamine (127).

Adenosine Antagonists
Adenosine is a nucleoside that is generated by phosphohydrolase
of precursor molecules, including adenosine triphosphate
and adenosine monophosphate. Adenosine is an important
compound in renal hemodynamic regulation and can induce
renal vasoconstriction and reduce GFR via activating adenosine
A1 receptors expressed on afferent arteriole. The secretion of
adenosine will dramatically increase in response to renal hypoxic
and ischemic injuries (128, 129). Besides, it can also enhance
water and sodium reabsorption by stimulating adenosine A1
receptors on the proximal tubules. Based on this evidence,
for patients with AHF with renal dysfunction, adenosine A1
receptor antagonists are thought to be novel pharmacologic
agents for their antagonistic effects of renal vasoconstriction and
favorable effects of diuresis, natriuresis, and amelioration of renal
infusion (130).

In Pilot Effects of Rolofylline, a New Adenosine A1 Receptor
Antagonist on Symptoms, Renal Function, and Outcomes in
Patients with Acute Heart Failure (PROTECT) study, a total of
301 patients with AHF with impaired kidney function (estimated
creatinine clearance between 20 and 80 ml/min) were enrolled
and were randomized to the rolofylline (a type of adenosine
A1 receptor antagonists) therapy group with different dosage
administration and the placebo group. The serum creatinine
concentration increased in patients on placebo therapy and
remained stable or tended to decrease in those receiving
rolofylline therapy. Besides, treatment with 30mg rolofylline was
associated with reduced 60-day mortality or readmission for
cardiovascular or renal causes. The kidney protective effects of
rolofylline were validated in this trial (131).

Based on the phenomenon that rolofylline has a renal
protective effect, the Placebo-Controlled Randomized Study of
the Selective A1 Adenosine Receptor Antagonist Rolofylline for
Patients Hospitalized With Acute Decompensated Heart Failure
and Volume Overload to Assess Treatment Effect on Congestion
and Renal Function (PROTECT) trial, which recruited more
participants (amount to 2,033 patients), was designed and
conducted to provide additional details about the adenosine A1
receptor antagonist therapy. Interestingly, inconsistent with the

prior results, there were no statistically significant differences in
short-term renal function changes and persistent WRF incidence
between the two groups, which indicated no renal protective
effect of rolofylline in patients with CRS-1 (132). No clear renal
protective effect of rolofylline was also found in a multicenter,
randomized, double-blind, Placebo-Controlled Study of the
Effects of KW-3902 Injectable Emulsion on Heart Failure Signs
and Symptoms, Diuresis, Renal Function, and Clinical Outcomes
in Subjects Hospitalized With Worsening Renal Function and
Heart Failure Requiring Intravenous Therapy (REACH UP)
study (133). Until now, for rolofylline, the beneficial effect of
preservation of renal function is imprecise.

Ultrafiltration
Ultrafiltration is a mechanically therapeutic method to remove
excess fluid through a semipermeable membrane by the
actuation of transmembrane pressure gradient (134). Current
studies and clinical practice guidelines have not recommended
ultrafiltration as a routine strategy to tackle over-congestion
in CRS-1, even in those who have a poor response to
diuretics. However, for patients with refractory volume overload,
obstinate DR, renal deficiency, severe hyperkalemia, and acidosis,
ultrafiltration is recommended and can serve as an effective
therapeutic regimen (122).

In the Aquapheresis vs. Intravenous Diuretics and
Hospitalization for Heart Failure (AVOID-HF) trial, compared
with patients with AHF on adjustable intravenous loop diuretics
therapy, those receiving adjustable ultrafiltration therapy had a
better decongestive effect and reduced risk of recurrent HF and
cardiovascular events within 90 days of discharge from the index
hospitalization. It is remarkable that adjustable ultrafiltration
therapy would not worsen renal function (135). In previous
randomized controlled trials, including the Early ultrafiltration in
patients with decompensated heart failure and diuretic resistance
(EUPHORIA) trial and the Ultrafiltration vs. Intravenous
Diuretics for Patients Hospitalized for Acute Decompensated
Congestive Heart Failure (UNLOAD) trial, noWRF was detected
in patients with AHF receiving ultrafiltration therapy (136, 137).
Suspicion of renal safety of ultrafiltration is proposed in the
Cardiorenal Rescue Study in Acute Decompensated Heart
Failure (CARRESS-HF) trial which indicated the correlation of
ultrafiltration therapy and increased risk of WRF in patients
with acute CRS (138). The opposite results of the CARRESS-
HF trial were further evaluated. Although the deterioration
of renal function in the ultrafiltration group was statistically
significant but may not be clinically significant. Besides, the
serum creatinine concentration (0.23 ± 0.70 mg/dL) did not
reach the acknowledged criteria of WRF (0.30–0.50 mg/dL or
greater), which has been described above (134).

CONCLUSION

CRS-1 is a major clinical problem and WRF predicts a poor
prognosis. Despite no fully explicit mechanism, multiple
factors, including hemodynamic imbalance, neurohormonal
activation, sympathetic activity, pharmacological interventions,
inflammation along with oxidative stress, are involved in
pathogenesis. Numerous biomarkers have a good performance
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in the early identification of WRF in CRS-1 while some
are not so excellent. Effective treatment strategies with
good renal safety have been explored and further studies
should be conducted.
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