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Abstract: Temporomandibular disorders (TMDs) may affect up to 25% of the population, with
almost 70% of these TMD cases developing malpositioning of the disc over time in what is known as
internal derangement (ID). Despite significant efforts, the molecular mechanism underlying disease
progression is not yet very well known. In this study, the role of COL12A1 rs970547 and rs240736
polymorphisms as potential genetic factors regulating ID was investigated. The study included
124 Caucasian patients of both sexes after disc displacement without reduction (DDwoR) in either
one or two temporomandibular joints (TMJs), either of which meet the criteria for this condition.
All patients underwent clinical examination and 3D digital imaging. The COL12A1 rs970547 and
rs240736 polymorphisms were evaluated. There were no statistically significant differences in the
chi-square test between the study group and healthy controls. The examined COL12A1 rs240736 and
rs970547 polymorphisms do not contribute to DDwoR in Polish Caucasians.

Keywords: TMJ; DDwoR; polymorphism; SNP; articular disc; TMD; disc displacement; COL12A1;
rs970547; rs240736

1. Introduction

The temporomandibular joint (TMJ) is a complex, bilateral structure that allows the
mandible to move in three different directions. It consists of the articular surfaces of the
temporal bone, the mandibular condyle, articular fibrocartilaginous disc, joint capsule, and
ligaments. Articular surfaces of the condyle and the mandibular fossa are covered with
fibrous (noncellular, nonvascular) cartilage, surrounded by synovial fluid, which ensures
smooth and unaffected mandible movement correlated with teeth morphology throughout
the chewing cycle. A fibrous capsule, covered externally by the periosteum, connects both
joint surfaces and closes the synovial fluid within the joint cavity. The articular disc in the
TMJ plays an inessential role in jaw kinematics and comprises the fibrocartilage, while the
extracellular matrix (ECM) of this disc mostly comprises a collagenous network of mainly
collagen type I and III, elastin fibers, glycosaminoglycans (GAGs), and proteoglycans [1].
So far, the expression of type I and III collagen markers in human fetal TMJ discs using
immunohistochemical (IMHC) methods was confirmed [2], as they showed type I collagen
presence in the posterior band of the articular disc, but type III collagen on the lower surface
of the articular disc. Connective tissues exhibit heterogeneous, anisotropic, and hyperelastic

Genes 2021, 12, 690. https://doi.org/10.3390/genes12050690 https://www.mdpi.com/journal/genes

https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-0652-664X
https://orcid.org/0000-0002-5650-0501
https://orcid.org/0000-0002-9716-6685
https://orcid.org/0000-0002-9365-7882
https://doi.org/10.3390/genes12050690
https://doi.org/10.3390/genes12050690
https://doi.org/10.3390/genes12050690
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/genes12050690
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes12050690?type=check_update&version=1


Genes 2021, 12, 690 2 of 12

activity in response to jaw movement and various occlusal loading, with collagen tissues
limiting tissue expansion [3]. The ligaments in the human temporomandibular joint are
partially elastic and restrict three-dimensional movement to some extent, while retrodiscal
tissues play a major role in proprioception, providing sensory information about the jaw
position and the force exerted by the masticatory muscles. That unique developmental
composition makes the TMJ more resilient to degenerative changes over time than hyaline
cartilage in other synovial joints [4]. Nevertheless, it is estimated that temporomandibular
disorders (TMDs) may affect up to 25% of the population, and almost 70% of these TMD
cases will develop misplacement/dystopia of the disc over time, which is called internal
derangement (ID). Despite significant efforts, the molecular mechanism underlying disease
progression is not yet very well known. It seems that ID strongly correlates with TMJ
osteoarthritis (OA) as a symptom or a contributing factor in a later stage of TMD, affecting
mostly older patients. It may occur in people of all ages, but a higher incidence was found
in women in their 20s [5]. The most common types of TMJ ID are anterior or antero-mesial
disc displacement (DD) with (DDwR) or without reduction (DDwoR) [6]. In DDwoR,
the disc moves forwards and usually also slightly medially to the lower rest position,
where it remains locked and painful upon mouth opening, as most MRI studies brought
up in recent years [7–9]. The need for thorough evaluation and multi-section analysis in
both TMJ sagittal and coronal planes has also been described [10]. The etiology is not
yet fully explained, but there are a few possible reasons causing IDs of TMJ structures.
According to most data, bruxism, anatomical factors, history of trauma, or generalized
joint hypermobility (GJH) are considered major contributing factors [11]. A displaced TMJ
disc can be reduced at an earlier stage; it is likely to transform into a non-reducing form
over a few weeks. As it happens, the TMJ disc does not return to its physiological position,
but becomes displaced and may prevent appropriate movement of the condyle, causing
pain in the preauricular area and limitation within the mandible range of motion, affecting
daily activities, as shown in Figures 1–3.
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Figure 1. ADDwoR sagittal view—closed. Figure 1. ADDwoR sagittal view—closed.
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Figure 2. ADDwoR sagittal view—open. Figure 2. ADDwoR sagittal view—open.

Magnetic Resonance Imaging (MRI) scans showed that in cases where no treatment
has been administered, the displaced TMJ disc becomes deformed [12]. It was also found
that unilateral DDwoR in young people can lead to asymmetry of the mandible over
time [13]. Moreover, it has been proven that the severity of asymmetry increases with
time and may require orthognathic surgery later in life [14]. The TMJ disc is connected
in its dorsal part with an area of richly innervated and vascularized connective tissue.
This tissue is defined as the bilaminar zone (BLZ). The lower layer is mainly composed
of collagen fibers. In addition, the front part of the disc is connected from the top and
bottom by trailers to the joint capsule. Both front trailers are made of collagen blocks [15].
Collagen XII is a fiber-bound, single gene encoded by COL12A1, a member of the fibril-
associated collagens with interrupted triple helices collagens (FACIT) located on human
chromosome 6q12-q13. By providing unique molecular bridges between fibrils and other
ECM components, the FACIT collagens tend to act as regulators of fibrillar scaffolds
(Figure 1). Some partial correlation between COL12A1 Single Nucleotide Polymorphisms
(SNPs) [16] and joint disorders was previously reported; however, just one of the studies
brought up the relationship between rs970547 in COL12A1 with anterior cruciate ligament
(ACL) rupture [17]. Nevertheless, more research on this subject is required in terms of other
parts of the musculoskeletal system [1–4]. Furthermore, a connection between mutations
in COL12A1 and Ehlers–Danlos Syndrome (EDS) has also been demonstrated [18]; whereas
a major part of EDS symptomatology is strictly connected with GJH and hyper elastic skin,
TMJ posterior band ligaments, which are primarily composed of collagen fibers defined
by a certain length, have also been shown to play a significant role in preventing TMJ
disc displacement [19]. We hypothesized that some IDs in the TMJ might be caused by
impaired collagen quality and certain COL12A1 SNPs, yet a relationship to TMJ internal
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derangements might be assumed. There were some previous data published related to
COL12A1 [18] and COL2A1 [20], however no variants of these genes in terms of DDwoR
were assessed. In this study, we chose to investigate the role of COL12A1 rs970547 and
rs240736 polymorphisms as potential factors influencing genetic variability of DDwoR in
Polish Caucasians. Figure 4 presents possible gene–gene interactions related to COL12A1
according to the STRING database [21].
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2. Materials and Methods

In this case-control study, the examined group was recruited from among patients
who sought TMD treatment between 2014 and 2018 and presented to the Department of
Dental Prosthetics at the Pomeranian Medical University in Szczecin, Poland. It consisted
of 124 Caucasian patients, unrelated, of both sexes. Each patient had an episode of DDwoR
no more than 3 months prior and signed an informed consent form before study registra-
tion. DDwoR was diagnosed according to clinical examination, diagnostic criteria of the
temporomandibular disorder questionnaire (DC/TMD), and CBCT/MRI scan [22–25]. The
control group comprised 126 patients with no TMD problems according to DC/TMD—they
were selected from the rest of the patients treated at the outpatient dental clinic. Additional
exclusion criteria for both groups were as follows: pathological tooth mobility (grade 1 or
more on the Hall scale), previous experience with occlusal splint therapy, not all areas of
occlusal support present, coexisting pathology or inflammation within the jaws or head
and neck muscles, accompanying metabolic diseases or identified connective tissue defects.

2.1. SNPs Selection

In this study, we considered the genetic role of the COL12A1 gene rs970547 and
rs240736 expression as a potential cause of DDwoR expression.

DNA isolation: Genomic DNA was isolated from buccal epithelial cells using SWAB
Genomic Extraction GPB Mini Kit (Genoplast Biochemical, Gdansk, Poland) in compliance
with the producer’s manual.

2.2. Molecular Analyses

Genotyping of COL12A1 SNPs rs970547 and rs240736 was performed by real-time
PCR using TaqMan probes and analyzed using pre-designed Applied Biosystems TaqMan
real-time PCR assays (Applied Biosystems, Foster City, CA, USA).
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The reaction mix for each sample contained GoTaq® Probe qPCR Master Mix (Promega,
Madison, WI, USA), TaqMan real-time PCR assays (Applied Biosystems, Foster City, CA,
USA), and nuclease-free, deionized water, strictly adhering to the manufacturer’s protocol.

The reaction mix, DNA, and no-template control (NTC) were pipetted into 384-well
plates (Axygen Inc., Union City, CA, USA). Real-time PCR was performed on LightCycler®

480 (Real-Time PCR System, Roche Diagnostics, Basel, Switzerland). Genotyping data
were analyzed using LightCycler480 Basic Software (Version 1.5, Roche Diagnostics,
Basel, Switzerland).

2.3. Statistical Analysis

Further on in the analysis, COL12A1 rs970547 and rs240736 odds were calculated in
respect to the most frequent combination, with respective confidence intervals of 95%. The
significance of differences in the distribution of genotypes was analyzed using Pearson’s
chi-square test. Logistic regression modeling was performed to analyze the association of
selected SNPs with DDwoR. Data are presented as allele frequencies and odds ratio (OR)
with 95% confidence interval (CI). The Mann–Whitney U test was performed to determine
the age difference between the groups. p < 0.05 was considered to be statistically significant.
Calculations were completed with MATLAB R2018b (MathWorks, Natick, MA, US, 2018).

3. Results
Patient Characteristics, Odds Ratio, and Logistic Regression Analysis

The studied and acquired data were first analyzed using descriptive statistics in
relation to groups. Additionally, a chi-square test was performed in order to check for
independence. Table 1 describe the results of the preliminary analysis.

Table 1. Patient characteristics by group.

Total
n = 250

Case
n = 124

Control
n = 126 p-Value *

N % N % N %

Sex
F 200 80.00 104 83.87 96 76.19

0.129M 50 20.00 20 16.13 30 23.81

Age

<24 54 21.60 40 74.07 14 25.93

<0.01
24–33 70 28.00 37 52.86 33 47.14
34–50 65 26.00 33 50.77 32 49.23
≥50 61 24.40 14 22.95 47 77.05

Age Total Case Control p
Median (Q1–Q3) 34 (24–50) 29.5 (22–39) 39 (28–60) <0.01

* chi-square test.

There is no significance in the p-value of the test when comparing men and women in
this case-control study. The age of the case group was significantly lower than controls.

In further analyzing the polymorphisms, the odds were calculated in respect to the
most frequent combination, with respective confidence intervals of 95%. A chi-squared test
at 0.05 confidence level was performed in order to check for the association. The results of
the odds ratio analysis are shown in Table 2. In this study, COL12A1 markers rs970547 and
rs240736 had no significant p-values (chi-squared), implying that there is no difference in
terms of TMJ DDwoR frequency.
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Table 2. Odds ratio analysis.

Case Control OR 95% CI p-Value *

COL12A1 rs970547

Reference TT 75 76 1
0.71 **CC 4 2 0.4934 0.0877 2.77

CT 45 46 1.0088 0.5996 1.6972

COL12A1 rs240736

Reference AA 72 68 1
0.157 **AG 36 47 1.3824 0.8006 2.3868

GG 15 8 0.5647 0.2251 1.4168
* chi-square test. ** not significant.

A multivariable logistic regression model was applied as well, but no significant
model was found in the study in the case of rs970547 and rs240736. The lack of significance
in the chi-square statistic vs. constant model test is shown in Table 3.

Table 3. Multivariable, sex, and age-adjusted logistic regression modeling for COL12A1 SNPs
rs970547 and rs240736.

aOR 95% CI p-Value Power

Sex m 0.61 0.31 1.21 0.16 0.93

rs970547
TT 1.03 0.59 1.82 0.91 0.7
CC 1.97 0.32 12.25 0.47 0.99

rs240736
GG 2.40 0.86 6.75 0.10 0.98
AG 0.74 0.41 1.33 0.31 0.90

Age 0.96 0.94 0.97 <0.01 0.99

The results shown in Tables 2 and 3 indicate that both COL12A1 markers rs240736 and
rs970547 are not associated with the odds of TMJ DDwoR.

4. Discussion

This is the first study of its type defining the relationship between COL12A1 markers
rs970547 and rs240736 in TMJ DDwoR. It is a part of a larger project about molecular under-
lying conditions influencing this issue—whereas ESR1 rs1643821 is positively associated so
far [26]. The main finding of our present investigation is that COL12A1 markers rs240736
and rs970547 were not significant for TMJ DDwoR; therefore within our sample size, these
SNPs do not contribute to the risk of articular disc displacement (ADDwR).

Differences in protein expression comparing core matrisome of 9 fetal and 7 healthy
adult nucleus pulposus (NP) were previously identified with the use of proteomic and
bioinformatic methods; however, collagen 12a1 protein was upregulated in the fetal NPs
involved in ECM assembly pathways. By contrast, even though concentrations were low
and mostly limited in the degenerated state, proteins that were usually absent in adult discs
were re-expressed, with one of them showing substantially increased expression relative to
stable adult discs [27]. It may suggest the involvement of collagen XII in degenerated state
pathways, for instance, by acting as an inhibitor or regulator in regenerative processes. As
a compensatory mechanism, these proteins may be upregulated [28]. Interestingly, mature
collagen 12a1 and 14a1 are not found in the main fibrillar structure; however, the 12a1
form is thought to be involved in tail and spinal cord regeneration in certain species. It is
also plays a role in the regulation and organization of collagen fibril bundles, hydration,
and thickness.

Nevertheless, compelling data regarding these three types of collagen are limited and
more research on their role in intervertebral disc degeneration and regenerative pathways
is required [29]. Specific COL12A1 genotypes were also previously linked to Bethlem
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myopathy (BM). This slowly progressing muscle disease is characterized by proximal
weakness, muscle contractures, the rigidity of the spine, and skin abnormalities. One of the
well-known genetic causes of BM is a dominant, or, less frequently, a recessive mutation in
one of the collagen VI genes (COL6A1, COL6A2, and COL6A3). Hicks et al., in their studies
involving 24 BM-like patients, identified novel causal variants, sequencing other genes [30].
They hypothesized that these variants may be responsible for the non-collagen VI overlap-
ping BM phenotype in COL12A1 in 2 families, leading to the conclusion that the disease
might also be inherited in an autosomal dominant way. Similarly, Punetha et al. described
dominant missense mutations in the COL12A1 gene in mild Bethlem-like myopathy in
6 patients from 3 families. Their model patient, an 8-year old Polish girl, experienced pro-
found hypotonia and joint hyperlaxity. They used a targeted sequencing panel to identify a
potentially novel, pathogenic heterozygous missense COL12A1 c.8329G>C (p.Gly2777Arg)
variant. In addition, studies on fibroblasts revealed that the COL12a1 protein was retained
intracellularly, indicating a dominant-negative mutation. They concluded that COL12A1
disorders seem to additionally cover a considerable part of an Ehlers–Danlos/Bethlem-like
myopathy severity, and collagen XII-related conditions should become a part of a detailed
examination while diagnosing patients with an overlapping phenotype that is associated
with both muscle and connective tissue inherited defects [31].

Ligaments, capsules, and tendons insert into the underlying bone in a specific anatom-
ical zone called the enthesis, a multilayered structure transmitting mechanical stress caused
by movement from the tendons or ligaments onto the underlying bone. Despite the un-
calcified fibrocartilage layer through which the collagen fibers of tendon or ligaments are
passing, it is followed by a calcified fibrocartilage string, which subsequently inserts onto
the hard tissue [32]. The irregular transition between fibrocartilage and the underlying
bone increases the bond surface and adds tensile strength [33]. In chronic joint disorders,
such as rotator cuff pathology, this synovio–entheseal complex is thought to play a crucial
role. Type II collagen showed promising results in the Harada et al. study, indicating
that rotator-cuff-derived cell sheet could facilitate cartilage regeneration and angiogenesis
at the enthesis, while having superior mechanical strength to that found in the control
group. However, they speculated that in the case of a rotator cuff injury, collagen-rich
cell sheets might be a successful regenerative strategy for both enthesis and tendon in
potential tissue engineering techniques [34]. ACL injuries were also previously associated
with COL12A1 in a Chinese population—rs970547 and rs240736 had a correlation with
ACL injury frequency in Chinese men. Males with COL12A1 rs970547A allelic gene and
AA genotype were found to be more susceptible to ACL injury [35].

Collagen XII mutations have recently been linked with changes in connective tissue,
with phenotypic manifestations similar to collagen VI-related myopathies. Araújo and
Antunes reported a novel mutation identified in a 14-year old Caucasian girl suffering from
persistent clavicle dislocation, GJH, and a small decrease of the strength of the upper limbs.
Once mutations in collagen VI have been ruled out, a heterozygous missense mutation
in COL12A1-c.8336G > A- indicates a potential link to collagen XII-related disorders in
individuals with an overlapping phenotype with muscle and connective tissue defects
combined [36]. Another study showed that COL12A1 rs970547 should not be associated
with the analyzed range of motion. The interaction effects between age and genotype
found in the variants and range of motion measurements among studied groups were also
not significant [37].

This finding is partially consistent with our research, as the COL12A1 rs970547 group
did not correlate with symptoms and their occurrence. A similar association of COL12A
with GJH phenotypes and their phenotypic variability was emphasized and described by
Jezela-Stanek et al. [38]. The COL12A1 was associated with ACL ruptures among female
participants in the study by Posthumus et al. Despite the fact that the AA genotype of
the COL12A1 AluI RFLP was substantially over-represented in female ACL patients, but
not in male, it was concluded that these preliminary genetic association studies should
be further investigated and, if replicated, integrated into screening models developed to
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identify genetically predisposed patients [39]. The COL12A1 A9285G polymorphism was
also assessed by Ficek et al. in Polish male football players. While the frequency of the G
allele was lower in the cases, it was not statistically significant [40]. In a following study
by Ficek et al., no association between the A9285G COL12A1 polymorphism and ACL
ruptures was found in the group of male athletes [41]. Subsequently, O’Connell et al., in a
joint Polish-South African study performed on patients with surgically diagnosed ACL
ruptures, scrutinized COL12A1 rs97054, among a few other collagen SNPs. They confirmed
COL12A1 rs970547 (A/G) variants and the risk of ACL injury in females. Interestingly,
COL12A1 rs970547 was not associated with the risk of ACL injury in a larger female South
African cohort. What is more, the COL12A1 rs970547 AA genotype was significantly
associated with a reduced risk of ACL ruptures in Polish female patients, consistently
with earlier results [38]. These data collectively emphasize the need for investigating
gene–gene interactions in the etiology of ACL ruptures and other joint–tendon pathology
in multiple independent cohorts, including varying ethnicity [38–41]. Bell et al. raised the
issue of different collagen genes and joint laxity, finding that the COL12A1 AA genotype
improved anterior knee laxity in comparison to the AG + GG genotypes. These findings
are plausible because the rs970547 amino acid location (glycine to serine at position 3058 in
the protein sequence; G3058S) is found within the NC1 functional binding domain [42],
which is needed for collagen matrix organization. This NC1 domain protrudes from the
main structure and serves as an interaction platform for ECMs and possibly other collagen
fibers [43]. If this amino acid change alters the binding domain significantly, the altered
collagen structure may be presented clinically through joint laxity and ultimately in ACL
rupture [44].

The initial hypothesis of Novaretti et al. was that mRNA expression of ligament
healing factors in the ACL would be higher in acute tears less than 3 months from injury
than it would be in intermediate (3 to 12 months) and chronic (more than 12-month-old
injuries). As it turned out, among the other genes studied, COL12A1 expression in the ACL
remnant is greater in the acute phase of healing (<3 months from injury) in comparison
to chronic (>12 months old) injuries [45]. In the formed tendon, cellular structure and
fibril packing were essential determinants of its biomechanical properties. Collagen XII
deficiency affected the structure, relationships, and intercellular collagen communication
of tenocytes. Tenocyte interaction and organization were disrupted when regulatory do-
mains were impaired. They concluded that patients with altered COL12A1 expression
may be affected by abnormal tendon extracellular matrix composition, specifically fiber
assembly [46].

5. Conclusions

The data gathered in this study suggest that there is no association between the
COL12A1 rs970547, rs240736 and DDwoR in Polish Caucasians. However, the lack of
statistical significance in genotype and allele distribution does not rule out the possibility
that the investigated polymorphisms do influence DDwoR. Pathologies associated with
ligaments, joints, and tendons are complex phenomena and may be caused by a variety
of proteins expressed on different chromosomes (gene–gene interactions, as shown in
Figure 4). It is also plausible that interactions between these genetic factors and a number
of environmental aspects (gene–environment interactions) might be crucial. Our findings
may contribute to the understanding of the genetic mechanism underlying DDwoR, but
further experimental studies on COL12A1 polymorphisms, including their interaction
with other genes, are needed to fully understand these processes. Furthermore, a larger
sample of participants, perhaps from different ethnic backgrounds, is required to confirm
our results.
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Abbreviations

ACL anterior cruciate ligament
ADD anterior disc displacement
DDwoR disc displacement without reduction
DDwR disc displacement with reduction
CBCT cone beam computed tomography
cEDS classical type of Ehlers–Danlos syndrome
CI confidence interval
CL confidence level
COL12A1 collagen, Type XII, α 1
CTS carpal tunnel syndrome
DC/TMD diagnostic criteria of temporomandibular disorders
ICR idiopathic condylar resorption
MRI magnetic resonance imaging
n sample size
NT no template control
OI osteogenesis imperfecta
OR odds ratio
p-value level of probability
PCR polymerase chain reaction
SNP single nucleotide polymorphism
TMD temporomandibular disorder
TMJ temporomandibular joint
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