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Abstract

The manuscript proposes and evaluates a real-time algorithm for estimating eye gaze angle

based solely on single-channel electrooculography (EOG), which can be obtained directly

from the ear canal using conductive ear moulds. In contrast to conventional high-pass filter-

ing, we used an algorithm that calculates absolute eye gaze angle via statistical analysis of

detected saccades. The estimated eye positions of the new algorithm were still noisy. How-

ever, the performance in terms of Pearson product-moment correlation coefficients was sig-

nificantly better than the conventional approach in some instances. The results suggest that

in-ear EOG signals captured with conductive ear moulds could serve as a basis for light-

weight and portable horizontal eye gaze angle estimation suitable for a broad range of appli-

cations. For instance, for hearing aids to steer the directivity of microphones in the direction

of the user’s eye gaze.

Introduction

Following a conversation in noisy environments can be challenging for hearing aid users

because hearing aids amplify noise together with the target signal. Thus, hearing aids are often

equipped with directional microphones, which attenuate background noise and amplify only

the signals originating in front of the listener. In a typical conversation, however, the conversa-

tional partners can be outside the amplification pattern and the hearing impaired people adopt

a strategy to follow a talker with the eyes [1–3]. The hearing devices do not take into account

the eye movements; and therefore, it would be desirable that hearing prostheses were able to

adapt according to the direction of eye gaze. Some authors have suggested that using eye gaze

angle to steer hearing aid directional microphones could be of benefit to a listener [4,5]. How

eye gaze is measured, however, remains an open question. The most reliable methods for

mobile eye tracking involve cameras mounted on glass frames, but the cameras obstruct the

field of view [6], and not every hearing aid user is willing to wear glasses.

A viable candidate for measuring eye gaze angle is electrooculography (EOG) which

measures an electrical signal that arises from the rotation of electrically charged eyeballs.
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Consequently, electrodes placed in the vicinity of the eyes can measure these potentials, and

the magnitude of these potentials depend on the eye gaze angle. EOG has many practical appli-

cations including wheelchair control [7,8], activity recognition [9,10], retinal function testing

[11,12], sleep stage classification [13], or as a general gaze control interface [14–16]. It is also

known as an artifact of electroencephalography (EEG) [17]. However, its full potential for

hearing aids (or indeed any mobile applications) has not been fully recognized, mainly because

the EOG is typically measured by using large obtrusive electrodes that are attached to the sides

of the head. Due to the electrical properties of the body, however, EOG can be measured any-

where on the head, although its magnitude varies with the electrode placement. When mea-

sured in peri-orbital positions it usually has values 8–33 μV/ 1˚ of visual angle, and around

3 μV /1˚ can be measured inside the ear canals [11,18]. This finding suggests that eye move-

ments can be analysed by hearing aids with nothing more than conductive ear-moulds.

Eye movements are seen in the EOG signal as a change of the potential across two elec-

trodes placed either horizontally or vertically around the eyeballs. The analysis of EOG is usu-

ally based on detection of saccades, fixations, and blinks [10,14–16,19–21]. Saccades are the

most common type of eye movement, and they are characterized by a rapid change of the eye

position between two relatively stable fixation points. They produce very distinct patterns in

the EOG voltage, which are relatively easy to detect because the deflections have magnitudes

which are above the usual high-frequency noise level, and they are short in duration. Microsac-

cades are tremor-like movements during fixation periods but they produce relatively small

EOG signals that are difficult to detect. Other types of eye movements such as smooth pursuit,

vestibulo-ocular reflex, vergence movement, nystagmus, or optokinetic reflex could be ana-

lysed by EOG, but they are not in the focus of this study.

Saccade detection algorithms often claim near perfect detection rates. However, the perfor-

mance of these algorithms vary with the quality of the EOG recording, which is influenced by

electrode types, the electrode placements, lighting conditions [11], and the degree of physical

activity. Most methods are based on the analysis of the derivative of the EOG signal and subse-

quent classification. The derivative function can be understood as a high-pass (HP) filter with

a cut-off frequency proportional to the sampling rate. The output of the derivative is usually

very noisy, and therefore various approaches proposed ways to increase the signal to noise

ratio. The method [14] used a rule-based algorithm to classify the derivative output as a sac-

cade if the derivative changed the sign. The methods [15,20] employed probabilistic feature-

based classification using Gaussian mixture models on the derivative output. The methods

[10] and [16], instead of the derivative, analysed parameters of continuous wavelet transforma-

tion. The transformation parameters are then used as an input into a neural network or nearest

neighbour classifier. Yet another method [19] analysed the second derivate (acceleration) of

the EOG signal. The saccades were then detected by thresholding the acceleration values, and

the threshold was adapted based on the previous measurements. Although these methods per-

form well, they have not considered the saccade magnitude as a predictor and using this pre-

dictor can possibly improve the performance of the detection algorithm.

Obtaining the saccade magnitude from EOG will, however, require a calibration of the

EOG signal to the eye gaze angle [16]. Under ideal conditions, the relationship is straightfor-

ward: EOG = constant � sin(eye angle) for all eccentricities, and this linear relationship holds

for small and intermediate eccentricities. However, the actual relationship depends on the

placement of electrodes, properties of body tissue, the shape of the head and other factors.

Various techniques detect saccades, blinks, and fixations, but only a few estimate the actual

eye gaze angle from EOG. For instance, the method [22] estimated eye gaze using a compari-

son of EOG signals from multiple electrodes in different locations around the eyes. The

method took into account the non-linear relationship of the signals from different

EOG eye tracking
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measurements sites, which enabled it to cancel out the errors. The method reported the accu-

racy of about 4˚. Such an approach, however, is inapplicable to a setting with only one EOG

channel. In another work [23], an external video was used to calibrate the system. The method

was based on a comparison of the saliency maps [24] and the EOG signal. This technique

achieved an estimation error of about 15˚. However, this method is also not suitable for appli-

cations without an external video source. In summary, the state-of-the-art technology [6] does

not provide a solution to estimate the actual gaze position from a single-channel recording.

The reason is that EOG has previously been considered for the detection of only relative—not

absolute—changes of eye position. In this paper, we aim to challenge this view by assuming

that eye position can be restored by integrating past saccades. Such an approach will lead to

noisy predictions, but we argue that the level of noise will be acceptable for some applications.

The EOG signal is often polluted by various sources of noise [12], which are usually difficult

to eliminate by simple filtering. The most dominant noise component in the EOG is the direct

current (DC) drift. The drift can be characterized as a low-frequency noise (less than 1 Hz)

with unstable spectral structure and with magnitudes up to several hundred mV. DC drift is

inherent to any process involving electrodes attached to the skin [25], and it arises from the

imbalance of the half-cell potentials of the two electrodes. When skin conductance changes

(e.g., when sweat is released), the salt concentrations of the electrode gels change, and any dif-

ferences between the two electrodes result in a slowly changing DC potential. The voltage

changes that correspond to the actual EOG are small, and they ride on top of this large DC

component (Fig 1). Although it is theoretically possible to decrease the drift in laboratory envi-

ronments [12], this is not expected in real settings. The second largest source of noise is muscle

activity [10]. These artifacts are stronger if the electrodes are placed closer to the muscles gen-

erating the electrical activity such as eye muscles, facial muscles, jaw muscles, neck muscles,

tongue, or limbs. For example, vertical EOG electrodes pick up eye blinks whereas horizontal

electrodes are less affected or not affected at all [21]. These artifacts are present in any type of

muscle activity, and they can be seen as a broadband noise with magnitudes similar or greater

than EOG. Electrical activity of the brain itself has virtually no impact on the EOG because of

its very low amplitudes in comparison to the EOG signal. The synchronized activity of specific

Fig 1. Raw in-ear EOG. (A,C) Two samples of 22-minute recordings of raw in-ear EOG. (B,D) Detailed view of the

EOG waveform on a scale of 20 seconds. Straight solid lines denote the position of the visual targets. Small rectangles

in the panels A and C indicate where the detailed views were taken from. The scale of y-axis in the zoomed in-panels B

and D was kept fixed to 2 mV, x-axis was fixed to 20 s, and it shows actual time during the experiment.

https://doi.org/10.1371/journal.pone.0190420.g001
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brain regions could potentially influence EOG, but again only at very low amplitudes and not

at the locations where EOG is recorded. Finally, noise may arise from external sources includ-

ing environmental and powerline noise which are picked up by the wires of the measurement

device. These are typically limited to a narrow spectral region (e.g., 50 Hz or 60 Hz) and can

easily be overcome by notch filters. Although the noise negatively impacts the quality of the

EOG signal, transient events, such as saccades, are less error-prone to external noise due to

their transitory nature. Saccade detection is therefore relatively reliable, even if the signal is

corrupted.

The primary aim of this manuscript is to determine whether eye gaze direction can be

estimated from the in-ear EOG recordings. Specifically, we aim to test a saccade integration

algorithm and compare it to the output of the high-pass filtering approach. The saccade inte-

gration algorithm is a novel approach to estimate the actual eye gaze angle. It relies on the

assumption that the variance of the eye gaze direction can be explained mainly by the saccadic

movement, and only to a small extent by other types of eye movements. In this work, the sac-

cade integration scheme has the following assumptions: 1) every eye movement can be charac-

terized as an instantaneous step-like change of location, and all other types of eye movements

can be ignored, 2) the eye is perfectly still during the fixation period, 3) there exists an approxi-

mately linear relationship on a short time scale between the change of the EOG signal and the

change of the eye position [16], 4) noise related to the estimation of saccade magnitude has a

normal distribution, 5) eye gaze is constrained by physical limitations, and 6) the head remains

still. In future, the sixth assumption could be omitted, and the information about head move-

ments could be used to enhance the estimation of eye gaze angle [26]. However, in this initial

work, we decided to keep the head fixed. The model prediction is that the performance of the

integration scheme will be better than working directly on the HP-filtered EOG.

For the remainder of the paper, we define these two approaches as:

• EOGHP, where the HP-filtered EOG is directly used for eye gaze angle estimation;

• SACCINT, where the HP-filtered EOG is fed into a saccade detector, and then the result is

integrated.

This manuscript describes the eye gaze estimation scheme using in-ear EOG recordings

and compares the output to the actual eye position monitored by a video-based eye tracker.

Methods

Participants

Seven normal- or corrected-to-normal-sighted human participants participated in the experi-

ment. One participant could not perform the task with the eye tracker, and one participant

was equipped with different type of electrodes. The data of the five remaining participants

were used in the subsequent analysis. This study was approved by the West of Scotland

Research Ethics Service. The participants were members of the Institute of Hearing Research,

and they provided written informed consent.

Setup and procedures

The experiment was conducted in a testing booth (4.6 m x 4.1 m x 2.5 m—l x w x h) with lights

turned off during the experiment. The acoustically treated room is one of the booths which are

commonly used for auditory experiments. The participants were seated directly in the front of

a 40” LCD screen (Samsung, UE40ES5500) at distance of 77 cm from the screen to the eyes

(Fig 2A). The participants’ heads were not restrained or supported, but the participants were

EOG eye tracking
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instructed to remain still and fixate on a small white dot (1˚ of visual angle) on a grey back-

ground at the height of their eyes. The position of the dot was drawn from a pseudorandom de

Bruijn sequence [27] of 11 possible target locations that spanned from the left to right margins

of the screen, covering approximately ± 30.5˚ of visual field. The dots changed their position

after a pseudorandom interval of 0.8–1.2 s. The sequence was constructed so that all positions

were equally represented and the transition between each possible pair of the positions

occurred exactly 11 times, which led to 113 (1331) total target presentations. The actual mea-

surement period lasted about 22 minutes (excluding preparation). In the offline analysis, the

measurement was split into a training period, in which the parameters of the model were esti-

mated, and a testing period, in which the performance of the system was assessed.

A DC-coupled differential bio-amplifier (Attys, Glasgow Neuro LTD, UK) and a video-

based eye tracker (Pupil Labs, Berlin, Germany) [28] that served as ground truth were used for

the recording (Fig 2B). The bio-amplifier was equipped with a low-noise 24-bit sigma-delta

AD converter and a Bluetooth transmitter which transmitted the measurements to the experi-

mental computer at a sampling frequency (fs) of 83.34 Hz. When a measurement was unavail-

able, the previous value was used instead. Two disposable conductive ear moulds (Fig 2C)

were made of ER1-14A ear tips (Etymotic Research, Elk Grove Village, IL, USA) and conduc-

tive thread (Electro Fashion, Kitronic, Nottingham, UK). The electrodes were attached to the

bio-amplifier by 20 cm long non-shielded cables, and a small portion of electrode gel was put

on the tip of the electrodes before insertion into the ear canal. The ground electrode was con-

nected to the forehead with a regular medical grade Ag-Cl electrode. The bio-amplifier was

held near the head using an adjustable plastic headband sourced from the inside of a construc-

tion hard hat. The ground truth eye tracker was connected to a dedicated Linux computer run-

ning eye tracker software (Pupil Capture, v0.7.5). The data from the ground truth eye tracker

were collected for both eyes at 60 Hz with a resolution of 800 x 600 pixels. The eye tracker soft-

ware directly outputted the eye gaze angle using a 3D eye model. The eye tracker computer

transmitted the measurements via the local network to the experimental computer, where all

recordings were kept for offline analysis. The experimental computer executed custom Matlab

(v8.6.0, Natick, USA), Psychtoolbox [29–31] and Python (v3.5.1) scripts, which controlled the

pace of the experiment.

Ground truth

The eye data outputted by the eye tracker software were calibrated to the actual positions using

histograms of all measurements. Subsequently, a linear transformation was applied to match

Fig 2. Experimental apparatus. (A) Schematics of the experimental procedure. (B) The participant was equipped with the mobile

bio-amplifier (blue box) attached to the headband and the video-based eye tracker. (C) Detail of the in-ear electrodes.

https://doi.org/10.1371/journal.pone.0190420.g002
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the measurements with the positions of the targets. The resulting eye gaze angle was computed

as a mean of the angles from the left and right eyes. The eye tracker and the bio-amplifier data

were then temporally aligned using timestamps recorded by the eye tracker and the time-

stamps obtained by the experimental computer during the recording of the bio-amplifier data.

For the purpose of the analysis, saccades from the ground truth were detected using the

EyeMMV toolbox [32] with the following settings: minimum saccade duration was set to 50

ms, spatial parameters were set to x = 0.06 and y = 0.05 of the tracker units (normalized to

0–1) using the option ‘3s’ (i.e., the fixation cluster is defined as three standard deviations from

the centre). In order to evaluate the system, the saccades obtained from the eye tracker were

matched to the saccades estimated from the EOG data. Two saccades were matched if they

were temporally closest to each other (sooner or later) and if

jsaccEOGj < j1:5� saccGTj þ 10 ð1Þ

where |saccEOG| is the magnitude of the EOG saccade and |saccGT| is the magnitude of the sac-

cade obtained from the ground truth. That means that the computed magnitude of the saccade

had to be less than 1.5 times the magnitude of the ground truth saccade plus 10˚ (i.e., only the

saccades of approximately equal magnitudes could be matched). These corrections were used

to ensure correct matching when the EOG and the ground truth signals were not perfectly

aligned in time, which was a side effect of the wireless transmission. In order to minimize the

problems related to the delays and to make sure that the matching procedure worked as

expected, matching was visually checked. We concluded that the delays between the EOG and

the eye tracker had only a small impact and the delay could not influence the difference

between the methods which are compared in this manuscript.

Saccade integration scheme

The proposed EOG to eye gaze algorithm, SACCINT (Fig 3), used a single-channel EOG signal

as an input. Ground truth measurements served to calibrate the system before the actual test-

ing. The algorithm outputted eye gaze angle with a theoretical delay of up to 200 ms, which

corresponded to half of the temporal window (see below) and the delay due to the HP filter.

The analysis was run offline, though the algorithm can be run in real-time. In the first step of

the scheme, the HP-filtered signal of the length of the temporal window was used to estimate

three parameters of a non-linear model of a saccade, which was an s-shaped function: magni-

tude Sx, gain Sg, and temporal offset So. These parameters were evaluated to confirm the

saccade detection, and they were then used in subsequent integration. The saccades were iden-

tified when the time offset parameter So crossed the midline of the temporal window and

when the magnitude of the signal deflection Sx was in a range defined by a minimum (Nx,min)

and a maximum of 70˚. In the integration step, the saccades were represented as noisy mea-

surements using a Gaussian probability density function (PDF). Subsequently, they were inte-

grated over time. The integration had two steps. First, the mean of a new PDF was obtained as

a sum of the previous mean and the magnitude of the new saccade. The variance was increased

by a constant Nm which represented noise related to the measurement. In the second step, the

PDF was clipped at the fixed boundaries ±EAnax. The algorithm used one more parameter

Ci [˚/mV], which defined the linear relationship between the change of EOG and the change

of the horizontal eye gaze angle. Ci was estimated for each participant (index i). The parame-

ters Ci, Nm, and Nx,min were calibrated for the whole dataset during the training phase using

the ground truth measurements.

EOG eye tracking
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Fig 3. Model scheme.

https://doi.org/10.1371/journal.pone.0190420.g003
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High-pass filtering

The bio-amplifier readings were HP filtered with a second-order Butterworth filter with the

cut-off frequency fHP. The purpose of the filtering was to remove as much of the low-frequency

noise as possible but at the same time preserve information regarding eye position.

Fig 4 shows the step response of HP filters with cut-off frequencies between 0.01 and 0.06

Hz for up to 6 seconds (6 seconds is a reasonable time for a very long off-axis fixation). The

HP filter with cut-off frequency of 0.01 Hz reduces the step signal only by ~9% after 1 second

(which was the typical duration of the visual target in this experiment) and it does not cross 0

even after 6 seconds. On the other hand, the HP filter with 0.06 Hz cut-off reduces the signal

by ~47% after 1 second and crosses zero at less than 3 seconds. While the first example would

affect a typical eye movement to a small extent, the latter example would change the slope—

particularly for long fixations.

At this HP filtering stage of the algorithm, the traditional EOGHP algorithm took this signal

and calculated the eye angle directly. The SACCINT algorithm, however, further processed the

HP-filtered signal as described in the following section.

Non-linear fit

The next step of the SACCINT algorithm was to fit the non-linear function to the HP-filtered

signal. The signal was used to estimate the parameters of the simple saccadic model, which

consisted of the s-shaped function:

f ðuÞ ¼ Sx tanh Sgðuþ SoÞ
� �

� AVG Sx tanh Sgðuþ SoÞ
� �� �

ð2Þ

The fit was obtained using a standard non-linear fitting procedure with constraints [33]

with a limit of 20 iterations, and the objective function defined as the least square error.

The parameters were constrained with the following values: So = <-136 ms, 136 ms>,

Sg =<-150,150>, Sx = (0 mV, 1,05 x (max(xEOG)-min(xEOG))) /2 mV> where xEOG is the

Fig 4. Step response of the IIR HP Butterworth filters as a function of half-power frequency.

https://doi.org/10.1371/journal.pone.0190420.g004
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EOG signal in the temporal window. The initial estimates for the three parameters were

obtained as a weighted average of the previously estimated value and a pseudo randomly

selected value from the above intervals with weights 0.95 and 0.05, respectively. The fit was

repeated until the root mean square (RMS) error of the fit was below 4/Ci with a maximum of

three repetitions but with completely random initial starting points within the accepted range

of the constraints. The length of the temporal window was set 273 ms (23 measurements),

which covers the duration of a typical saccade.

Saccade detection

Fig 5A shows 12 seconds of EOG recording together with derived parameters (Fig 5B)

Sx x Ci (Fig 5C) So (Fig 5D) Sg on the left y-axis. The most important parameter for saccade

detection was So. As a deflection in the EOG appeared in the temporal window, So progres-

sively increased from negative values and changed its sign to positive when the deflection

was in the middle of the window [14]. The second identifier of a saccade was its magnitude

Sx due to physiological limits of eye. Thus the largest accepted saccade was Nx,max, which

was set to 70˚. The smallest accepted saccade (Nx,min) was a parameter likely to affect the

number of detected saccades. Therefore, the influence of this parameter was investigated as

a part of the study. The input for the detection algorithm were the parameters estimated at

the time t and t-1.

Fig 5. Detail of the saccade detection algorithm over 12 seconds of the experiment. An example of EOG recording

(A) and (B)-(D) estimated parameters Sx, So, and Sg. (B) Sx saccade magnitude parameter. (C) So—saccade time shift

parameter. (D) Sg—saccade gain parameter. Circles with lines show detected saccades and their magnitude (right y-

axis). The magnitude of a saccade was obtained by multiplying measured voltage Sx with Ci parameter obtained in the

training period.

https://doi.org/10.1371/journal.pone.0190420.g005
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Following a set of rules was used for saccade detection in each time t.

Sx;t � Ci 2 hNx;min;Nx;maxi ð3Þ

Sx;t� 1 � Ci 2 hNx;min;Nx;maxi ð4Þ

So;t 2 ð0; 4=fsi ð5Þ

So;t� 1 < h� 4=fs; 0i ð6Þ

The first and second conditions [(3) and (4)] define the boundaries for saccade magnitude

in the current estimate (at time t), and the estimate from the previous step (at time t-1). The

third and fourth conditions [(5) and (6)] define the zero-crossing time of parameter So

between t and t-1, and limit that time to be no farther than 4/fs from zero. Although it would

be possible to use more conditions and achieve better detection performance, or use a statisti-

cally based model; here we aimed to demonstrate that a simple rule-based model is capable of

saccade detection, and restoring actual eye gaze angle.

Saccade integration

Saccade integration is a novel method of estimating eye gaze angle. It is based on an assump-

tion that in many real situations eye gaze behaviour can be characterized solely in terms of sac-

cades and fixations. It relies on the fact that eye positions resemble a normal distribution with

the mean in the midline of the visual field [34], and that eye positions are naturally limited.

The scheme is based on the step-like saccades (i.e. step changes) and stable fixations (i.e., no

movement). A simple summation of the saccades would be unstable because (a) the estimation

of saccade magnitude is noisy, (b) very small saccades cannot be detected, (c) the eye is not sta-

ble during the fixation period, and (d) any detection algorithm on a noisy signal will always

have false alarms and misses. As a result, a simple summation of noisy estimates of saccades

would lead to integration errors (e.g., the estimates could depart from the natural boundaries).

One way of mitigating these problems is to represent the eye position as a Gaussian PDF

with the mean Xt,i and variance σ2
t,i. If a saccade is detected, the magnitude of the new saccade

in degrees is added to the mean of the previous estimate.

X0t;i ¼ Xt� 1;i þ saccEOG;t;i ð7Þ

where Xt-1,i is the previous estimate. The magnitude of saccade at time t is defined as

saccEOG;t;i ¼ signðSg;tÞ�Sx;t � Ci ð8Þ

and the variance of the PDF increases by the measurement noise Nm:

s
02

t;i ¼ s2

t� 1;i þN2

m ð9Þ

The new estimates of position (Xt,i) and variance (σ2
t,i) are computed by simulation of the

newly obtained PDF, which is a truncated Gaussian distribution with the mean X’t,i and vari-

ance σ’2t,i clipped at the constraints EAmax = ±35˚.

In order to characterize the saccade integration scheme, let us assume a perfectly perform-

ing saccade detector. In our case, this was obtained from the video-based eye tracker. Hence,

there are two parameters Nm and Nx,min which influence the performance of the saccade

integration.
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Fig 6 shows the effect of the Nm and Nx,min parameters on the performance of the saccade

integration scheme, with Nm on the x-axis and different line styles showing different values of

the Nx,min parameter. The performance (y-axis) was measured in the square of Person prod-

uct-moment correlation coefficients (r2) of the prediction versus the actual eye position. This

figure illustrates that in our dataset the maximum possible performance is r2 = 0.87 (Nx,min =

0˚, Nm = 0˚). This value decreases with increasing values of the investigated parameters. Fur-

ther, there is only a small difference between the lines Nx,min = 0˚, and Nx,min = 4˚. The line

representing Nx,min = 8˚ shows r2 values 0.71–0.76. The line representing Nx,min = 12˚ drops

even further to r2 values of approximately 0.64 with further decrease for small values of Nm.

The analysis determines the expected level of noise of the saccade integration scheme for

the perfect detector of saccades (without false alarms and misses). It also shows that if the

detector is capable of reliably estimating magnitudes and directions of saccades between 4–8˚,

then it can estimate the actual eye gaze angle with the r2 more than 0.8.

Training

The algorithm required three input parameters that had to be calibrated using the ground

truth. The training period was defined as the first five minutes of the experiment after stabiliza-

tion of the HP filter with 0.01 Hz cut-off frequency; the training period lasted approximately

94 seconds. The current detection implementations had significant problems with rejecting

Fig 6. Limits of the saccade integration scheme. The figure shows the performance of the saccade integration scheme for

the current experiment assuming the perfect saccade detection. The r2 values of the estimated and actual eye gaze position (y-

axis) were computed for different values of Nm and Nx,min. The Nm is on the x-axis, Nx,min is represented by different types of

line. The lines show across-subject means; error bars show standard errors of the mean (SEM).

https://doi.org/10.1371/journal.pone.0190420.g006
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false alarms for steeply decreasing/increasing signals. Therefore the initial part of the signal

had to be discarded (see Sec. Results). The inputs for training were the EOG signal and the

ground truth. In the first step, the saccades were estimated from both the EOG and video-

based eye tracker. The EOG saccades were estimated with the current algorithm using a default

set of the parameters (fHP = 0.03 Hz, Nx,min = 6˚, Nm = 10˚, Ci = 700˚/mV). In the second step,

the ground truth saccades were matched to the EOG based saccades and the parameter Ci was

estimated using a simple linear regression with one linear parameter. In the third step, the

algorithm was run again (fHP = 0.03 Hz and Ci set to a new value) for different values of the

Nm, and Nx,min parameters in order to find the optimal combination in terms of across-subject

mean r2 values. The values Nm = 9˚ and Nx.min = 8˚ represent the global maximum for the cur-

rent dataset. Subsequently, the estimated parameters Ci, Nm, and Nx,min were used to run the

algorithm on the data in the testing period.

Results

The experiment was designed in order to characterize in-ear EOG measurements and to test

whether the saccade integration algorithm using only single-channel recordings could recon-

struct horizontal eye gaze angles.

Raw data

Fig 1A and 1C show two samples of raw in-ear EOG recordings over 22 minutes. Fig 1B and

1D show the details of the EOG waveforms together with the positions of the visual targets.

These data illustrate the magnitude of the DC drift in comparison to the magnitude of the

EOG signal. Fig 1B demonstrates that the EOG signal correlates with the eye gaze angle and

that this relationship can be influenced by DC drift (Fig 1D). Fig 1D shows the case of high DC

drift, where it is more difficult to see the relationship between the EOG signal and the ground

truth. Transient events that relate to the saccades, however, are still visible in the raw data.

In-ear EOG

In order to characterize in-ear EOG and its relationship to eye movements, Fig 7 shows the

magnitude of change in the EOG signal as a function of the change of position in the visual

Fig 7. The change in the in-ear EOG as a function of the change of target angle. The magnitude of the change in the

visual target is shown on the x-axis. The change was defined as the difference between the medians of the pre-

transition and post-transition periods. This was computed for each trial and each participant. Data of individual

participants are shown using thin grey lines, the across-subject mean value and SEM error bars are shown with the

dashed line.

https://doi.org/10.1371/journal.pone.0190420.g007
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target. Each thin grey line shows data from one participant, and the dashed line shows across-

subject means. For each transition of the target location, a 300 ms pre-transition to 600 ms

post-transition window was used, and the change in the EOG signal was defined as the median

value of the first 120 ms minus the median of the last 120 ms of the 900 ms period. The data

were pooled across initial target angles and repetitions, and medians were computed for each

magnitude of change. This method was preferred over using the linear regression, as in the

case of Ci computation, in order to avoid the assumptions of the current technique.

Fig 7 illustrates the linear relationship between the change of the target angle and the

change of EOG in the range of investigated eccentricities, confirming previous results [16]

when EOG was measured in the vicinity of eyes. The data also show that a change of 1˚ of

visual angle corresponded to 2.2 ± 0.5 μV (mean ± 95% CI). The across-subject variance could

be a consequence of various factors including the electrode contact, the shape of the head, and

the individual differences in the corneo-retinal potential (CRP). The CRP is the source of EOG

and it is known to vary with the luminance of the visual scene [11], but it can also be influ-

enced by individual differences in eye physiology.

Training performance

The performance of the whole algorithm was evaluated in terms of the parameters of a linear

model (standard deviation and gain) and the proportion of variance explained by the linear

model (r2). The saccade detection part of the algorithm was evaluated in terms of F-scores, a

measure which takes into account hits, misses, and false alarms [10,15]. The F-score is a mea-

sure based on true positive rates (TPR), the percentage of true positives with respect to all true

events, and positive predictive values (PPV), the percentage of true positive events with respect

to all detected events by this method. The events were saccades obtained from the ground

truth measurements greater than Nx,min. Greater F indicates better detection; an F equal to 1

indicates perfect performance.

F ¼ 2�
ðTRP� PPVÞ
ðTRPþ PPVÞ

ð10Þ

The F-score does not take into account the magnitude and direction of the saccade. In

terms of our algorithm, the magnitudes of the saccades were important, because we aimed to

reconstruct the actual eye gaze angle by integrating saccades. Therefore, this measure was

introduced only to allow comparison with the previous work.

During the training period, the performance was evaluated at different values of the Nx,min

and Nm parameters. Fig 8 shows a subset of the training dataset for (Fig 8A–8D) Nm = 9˚ and

(Fig 8E–8G) Nx,min = 8˚ while varying the other parameter (fHP was set to 0.03 Hz). Nx,min is

the parameter of the detection step, thus the panel D shows how the F ratio was influenced by

this parameter. Nm is the parameter of the integration step; the detection was not influenced

by this parameter.

The upper row of Fig 8 shows that r2 peaks for the intermediate values of Nx,min, and it has

a maximum of 0.64. The standard deviation of error shows a similar but opposite pattern as r2;

the smallest value was 10˚. The gain of the linear model is constant around a value of 1 for

Nx,min up to 10˚ and then decreases. On the other hand, the F-score increases monotonically

from ~0.49 at 0˚ to ~0.93 at 9˚ and then slowly increases further up to ~0.95 at 14˚. The bottom

row shows similar patterns for the r2 (Fig 8E) and the error statistics (Fig 8F); however, the

gain statistic increases monotonically with Nm.

The upper row illustrates that it is beneficial to restrict the detection algorithm to saccades

of certain magnitude by setting the Nx,min parameter. The analysis also shows that the Nx,min
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parameter mostly affects the error of the linear model. The bottom row shows that Nm influ-

ences the slope of the estimated values. For example, the monotonic increase of the gain (Fig

8G) illustrates how the estimated eye positions become more ‘compressed’ with greater Nm.

Gain< 1 indicates that the output values systematically undershoot the true values; gain > 1

indicates overshooting.

Testing performance

In this section, we compare the SACCINT algorithm against the traditional EOGHP approach

during the testing period for various cut-off frequencies. In order to obtain the output values

of eye positions, the HP filtered data were multiplied by Ci/2 and clipped at ±EAmax (±35˚).

Fig 9 shows the performance of SACCINT for each participant (‘x’ symbol) versus the per-

formance of EOGHP as a function of fHP. The figure shows that ‘x’ symbols lie above the

dashed lines in the most cases. One participant is below the dashed lines for certain fHP, and

one other participant is below the dashed line for fHP = 0.03 Hz. This suggests that our novel

algorithm SACCINT performs better than a simple HP filter (EOGHP) in most cases. The per-

formance of SACCINT improves with increasing performance of the HP filtering approach.

The results also demonstrate that the SACCINT approach is almost independent of the

value of fHP. The performance of some participants nearly approached the theoretical limit of

saccade integration. The difference between ideal performance (dotted horizontal line) and

the performance of the participants (‘x’ symbols) can be attributed only to the quality of the

detection step. Fig 9B also shows that the overall performance is limited by the measurements

Fig 8. Performance of SACCINT during the training period. The figure shows across-subject mean (±SEM)

performance as a function of Nx,min parameter (top row) and Nm parameter (bottom row). (A, E) The r2 values of the

actual and predicted eye angles, greater r2 indicates better performance. (B, F) the standard deviation of error of the

linear model. (C, G) The gain of the linear model. (D) Detection performance in F values (fHP = 0.03 Hz).

https://doi.org/10.1371/journal.pone.0190420.g008
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of one particular participant. It is possible that the electrodes had poor contact during this

measurement which decreased the quality of the signal (see Sec. Errors in saccade detection).

The above observations can be summarized in the across-subject analysis of r2 (Fig 10A)

values and the analysis of RMS errors (Fig 10B). These data show that the saccade integration

Fig 9. SACCINT vs. EOGHP. Data of individual participants are shown by ‘x’ symbols. The x-axis shows the performance of the

EOGHP. Y-axis shows the performance of the SACCINT. Each panel shows data for single cut-off frequency of the HP filter. Solid lines

show predictions of the performance of SACCINT obtained from fitting a linear function on the individual data. The dotted line shows

the theoretical maximum of the saccade integration for the current set of parameters. The saccades were obtained from the video based

eye tracker were delayed by the time of half of the length of the temporal window for the purpose of this comparison and they were

integrated with the same parameters as the EOG based data; Nm = 9˚ and Nx,min = 8˚.

https://doi.org/10.1371/journal.pone.0190420.g009

Fig 10. Across-subject performance of SACCINT and EOGHP. (A) The left panel shows across-subject r2 values, separately for SACCINT (circles), EOGHP (squares),

and the “ideal” performance for the current set of parameters obtained from the ground truth (triangle) using the same parameters. The second and third columns show

the data without HP filtering. (B) The right panel shows across-subject RMS error using the same symbols.

https://doi.org/10.1371/journal.pone.0190420.g010
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scheme achieved maximum performance of r2 = 0.54 ± 0.14 (95% CI) for fHP = 0.01 Hz, and

the performance changed slightly with varying HP cut-off frequency. The across-subject per-

formance of the EOGHP was poor (r2 = 0) when no HP filter was applied. The performance

improved with increasing cut-off frequency and peaked at r2 = 0.46 for fHP = 0.03 Hz. It then

decreased for greater cut-off frequencies. The SACCINT performed better than the EOGHP

for some fHP but not all. SACCINT performed significantly better than EOGHP without the

HP filter (two-tailed paired t-test, t4 = 3.6244; p< 0.05, controlled for false discovery rate [35])

and with fHP = 0.01 Hz (t4 = 2.8886; p < 0.05).

The RMS error of the SACCINT had minimum 12˚ ± 2˚ (95% CI) for fHP = 0.01 Hz. The

performance was approximately constant for the set of investigated frequencies. The RMS

error of the EOGHP was 15˚ for fHP = 0.03 Hz and above, and this value was elevated for

decreasing the cut-off frequency. The only statistically significant difference between SAC-

CINCT and EOGHP was without HP filtering (t4 = 8.8034; p < 0.05).

These data illustrate that even EOGHP could predict eye gaze angle from in-ear EOG mea-

surements. The SACCINT algorithm is a more robust way of estimating the eye gaze angle

than the standard HP filtering. The performance of the EOGHP approach is strongly influ-

enced by the fHP value. The fact that EOGHP was not significantly different from SACCINT

for most fHP values partly relates to the design of the experiment. For example, fixation

periods > 1 s would deteriorate the EOGHP approach, but would not affect the new saccade

integration scheme SACCINT.

Errors in saccade detection

In order to analyse the detection algorithm of SACCINT, Fig 11 shows the patterns of errors of

a representative participant during the testing phase (fHP = 0.03 Hz). Panel Fig 11A shows that

computed saccades only slightly underestimated the magnitude of the actual saccades. When

the slope was fitted to the data of all participants, it had a value of 0.95 ± 0.05 (mean ± 95%

CI). This deviation from 1 relates to the selection of Nm = 9˚ in the training phase and the cut-

off frequency of the HP filter. The standard deviation of the error between the fit and the

matched saccades was 4.67˚± 0.9 (across-subject mean ± 95% CI), which characterizes high-

frequency noise inherently present in the EOG signal and the precision of the saccade magni-

tude estimation. Panel Fig 11B shows the relatively small number of misses and relatively large

Fig 11. Saccade detection evaluation for one participant. (A) Scatter plot of the computed versus the actual saccade magnitudes.

The solid line with open triangles shows the linear regression with the constant term fixed to zero. (B) Histogram of missed saccades,

the white bars show misses smaller than Nx,min (8˚), the black bars show misses larger than Nx,min. (C) Histogram of false alarms.

White bars in the histogram show the data of saccades with magnitude smaller than Nx,min (8˚), black bars show the rest of the

dataset. The numbers inside panels indicate a total number of points in each histogram. Subscript 1 refers to the black bars, and

subscript 2 refers to the white bars.

https://doi.org/10.1371/journal.pone.0190420.g011
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number of undetectable saccades, which suggests that the improvements in the saccade detec-

tion algorithm may improve the performance. Fig 11C shows that the majority of the correct

rejections were of small magnitudes and they were filtered out at the detection step. Notably,

the algorithm still reports a substantial number of false alarms (276) which is 22% of all real

saccades.

Fig 12 provides further insight into the patterns of errors of the saccade detection algo-

rithm. The figure shows the temporal distributions of the misses and false alarms of the two

example participants whose raw EOG traces are shown in Fig 1. When Fig 12 is compared

with Fig 1 (Fig 12A corresponds to Fig 1A and 1B and Fig 12B corresponds to Fig 1C and 1D),

three characteristics of the algorithm’s errors are shown. First, the number of false alarms dra-

matically increased if the signal had a very strong DC component (Fig 1C) and contained

more high-frequency noise (Fig 1D). That is, the areas of densely distributed false alarms

being in one direction indicate that they had a common origin from the DC component; the

false alarms in both directions were present due to high-frequency noise. Second, the number

of misses was approximately constant. Third, many false alarms were due to the sloping signal

before the DC filter stabilised.

Taken all together, this indicates that the high false alarm rate was the most prominent con-

straint of the current implementation. A proper statistical model of the eye movements (e.g.,

[36]) should eliminate the majority of the observed errors.

Discussion

The experiment and analysis demonstrated that it is possible to estimate horizontal eye gaze

angle using a single-channel EOG measurement with a pair of ear moulds positioned inside

the ear canal. However, the estimates are still noisy. SACCINT achieved the across-subject per-

formance of r2 = 0.54, which was better than a simple EOGHP approach for some values of

fHP. The performance of the EOGHP depends on the fixation period and the fHP, while SAC-

CINT is independent of the fixation period and much less dependent on fHP. Therefore, it is

likely that SACCINT would outperform the EOGHP in scenarios involving movements and

real visual targets once the saccade detection step is improved. However, only five participants

were tested in this study in a very controlled environment (e.g., with heads fixed), and with

custom-made electrodes. Therefore, the current results have to be understood in the context of

these and other limitations.

Firstly, the quality of the EOG measurements is critical for any EOG-based technology,

and it was observed that the quality varied across participants. This can be related to the quality

of our custom made electrodes, and it is very likely that better electrodes can substantially

improve this system.

Secondly, the analysis of errors showed that most of the errors were introduced by the

detection algorithm. Many of the errors could be eliminated by more advanced methods of

detection; for example, by probabilistic classification [15]. If the detection was ideal, the perfor-

mance could achieve an r2 of 0.8. One of the problems was that the current model could not

properly describe the drifting EOG signal (e.g., when the EOG was dominated by the DC drift,

or when the HP filter was introduced), because this type of signal was always incorrectly inter-

preted as a series of saccades in one direction. This resulted in a large number of false alarms.

This particular problem limits the effectiveness of the algorithm. The number of false alarms

can be reduced in the future by modifying the model such that it captures the drift more

closely. The detection can be further improved by employing a more advanced model of eye

physiology [36] that, for example, assumes refectory periods between saccades and natural

rates of saccade occurrence, which can reduce the rate of false alarms. The statistics of eye
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movements [37] and statistics of eye movements in relation to the eye position [38,39] could

also be implemented to improve the detection step. However, EOG does not contain any infor-

mation about the environment or the intention of the participant (e.g., whether the saccade is

voluntary or involuntary). Therefore any statistical model would have to take into account

only eye physiology, natural tendencies of the eye movements, or factors which are not depen-

dent on environment or task.

Fig 12. Temporal distribution of missed and falsely alarmed saccades of two example participants.

https://doi.org/10.1371/journal.pone.0190420.g012
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Thirdly, the integration step was a simplistic model of the eye physiology assuming a per-

fectly constant eye position during the fixation and a step-like change of eye position during a

saccade. This introduced noise into the estimation process because the eye is never perfectly

still. Further, the additional noise was introduced because the estimated saccades were delayed

by approximately half of the duration of the window length. Implementing a statistical predic-

tor of the eye position, however, could improve the integration step. A possible future predic-

tor of the eye position is the head angle. The contributions of head movements to the eye gaze

directions have been previously demonstrated, for instance, in a visual search task experiment

[34] with stimuli distributed over 360˚ around the participant with unconstrained head move-

ments. That experiment showed that the distributions of the eye gaze directions followed the

distributions of the head vs. body orientation (e.g., when the head turns to left, the eye gaze is

likely to be to the left). That means that if the saccade integration model had access to the

actual head vs. body orientation, then it has an independent predictor of eye position. How-

ever, the head was fixed in the current experiment, and the positions of the visual targets were

strictly controlled. Future experiments should, therefore, test the method in more realistic

environments that include head movements.

Relation to previous work

In-ear EOG. The magnitude of the in-ear EOG signal was estimated to be 2.2 μV per 1˚

of visual angle, which is less than the measurements in the standard position and slightly less

than the previously reported in-ear measurement of 3 μV /1˚ [18]. One of the five partici-

pants had an in-ear EOG magnitude of 2.8 μV/1˚ which is closer to the previous study. The

relationship of the change in EOG to the change in target angle was linear for the observed

transition magnitudes up to 61˚. In our experiment, the saccade transitions were not uni-

formly distributed, and the eye positions with eccentricities larger than 30.5˚ were not tested.

Therefore, further testing is necessary to establish whether linearity is preserved for extreme

eye positions.

Saccade detection and saccade identification. Previously, the saccades were detected by

analysing parameters of the continuous wavelet transformation [10]; the detector performed

with small number of errors (F = 0.94). In that study, they detected the magnitudes of the sac-

cades, but these were only classified as either small or large, and the actual eye angle was not

estimated. Barea et al. [16] reported that their system was able to identify saccades with magni-

tudes greater than 10˚ and an error of 2˚. A method of Iáñez et al. [14] was based on an analysis

of the derivative of EOG. Detection performance was the same as [11] (F = 0.94). Another

method based on continuous wavelet transformation and auto-calibration [21] claimed almost

perfect detection of horizontal saccades, but the analysis was based on an offline artifact and

drift removal step. When the output was compared to the eye tracker data, the performance

diminished. Vidal et al. [20] based their method on feature extraction (velocity, acceleration,

slope, parameters of polynomial fit) and also claimed almost perfect detection. The study did

not report the length of the window that was used for the data analysis. Therefore, it was not

clear whether the data were processed offline or online. These various methods usually

achieved similar or better performance than our algorithm, but in all these studies, the EOG

signal was measured at the peri-orbital positions which offer a substantially higher signal to

noise ratio. The studies also tended to use signals from two or more channels (e.g., horizontal

and vertical channels), and they disregarded the magnitudes of the saccades when evaluating

the performance of the detection algorithm (e.g., a small saccade could be assigned as a large

saccade). Thus, it is not possible to directly compare the current results with the performance

of the mentioned methods.

EOG eye tracking

PLOS ONE | https://doi.org/10.1371/journal.pone.0190420 January 5, 2018 19 / 24

https://doi.org/10.1371/journal.pone.0190420


Eye angle estimation. Several previous studies [18,22,23,40,41] have suggested the possi-

bility of estimating eye gaze angle from EOG. These methods either relied on readings from

multiple electrodes, or they used a camera for calibration. One approach [22] analysed the

EOG signal from multiple electrodes, which allowed to decorrelate the noise components in

different electrodes while preserving the EOG signal, thus allowing direct estimation of gaze

angle. In another approach [23], gaze angle estimation was based on the EOG signal that was

calibrated by saliency maps obtained from an external camera. The estimation RMS error of

the current method was 12˚ which is greater than the multiple-electrode method [22] error of

4˚, but less than the externally calibrated method [23] error of 15˚. However, the current and

the previous methods cannot be compared directly because neither of the previous experi-

ments measured the EOG signal inside the ear canals with just two electrodes.

Hearing aids and other applications

The motivation for the current investigation was the development of a portable and unobtru-

sive eye gaze angle estimation technique for hearing aids. This could be used to steer direc-

tional microphones toward attended sounds [4]. This technology could engage the hearing-

impaired listeners into dynamic conversations in noisy environments, and make such situa-

tions less challenging because the listener usually consciously looks at the attended talker(s).

However, eye movements (as well as head movements) reflect exogenous attention which

might have a detrimental effect on listening, if the acoustic beam of the directional micro-

phone system was too narrow [42]. Therefore, future research is needed to estimate the effect

of the parameters of such technology on their benefit in real listening scenarios.

Potentially, eye-movement information could provide information about the health, mood,

or environment where the user currently is. For instance, previous research studied eye move-

ments in connection with various types of neurodegenerative disease [43]. Further, this type of

eye tracking could be incorporated in consumer headphones, virtual reality systems, or sys-

tems that monitor fatigue. Portable eye tracking techniques have been previously used in mar-

keting [44], sport [45], sleep [13], and car driving [46] research. Less intrusive methods of eye

tracking could ease the data collection in realistic environments.

Limitations

The most notable limitation of all EOG applications is the signal to noise ratio, which relates

mainly to measurement artifacts: DC drift and muscular activity. The application is further

constrained by the assumptions of the current model, specifically its saccade detection and

integration. The algorithm is only capable of detecting (with relative reliability) saccades of

large magnitude (> 8˚). The magnitude estimation, though, is accurate; mean estimation error

was 4.67˚. The algorithm cannot detect smooth pursuit nor any other smooth eye movement.

Smooth pursuit and DC drift appear identical in the EOG signal, which means that they are

impossible to distinguish in an online analysis. Other limitations are the parameters of the sac-

cade integration model. In this work, these were estimated in the training period but in real

environments, they may change over time, and they need to be calibrated. The parameter Ci

may change with external lighting conditions. One possible solution is to implement a light

sensor and define the relationship between the change of lighting and in-ear EOG. However,

that would require an investigation of whether lighting is the only factor that affects the EOG

magnitude. A second way to calibrate Ci is to use the vestibulo-ocular reflex in connection

with head movements. When the head moves, eyes often remain fixed during head move-

ments, thus if the device was equipped with a gyroscope, then the strongly correlated outputs

of the EOG and gyroscope can instantaneously calibrate the system. Two other parameters Nm
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and Nx,min are specific for this particular implementation, which means that they might need

to be replaced in the future. Moreover, Nm and Nx,min are not likely to change over time.

Another limitation of the current approach is that our tests were conducted only in one

controlled environment, with a small sample of participants, without deliberate body move-

ments, and with targets uniformly spaced across the visual field. Nevertheless, several previ-

ous studies have demonstrated that EOG can be measured even in a mobile environment

[9,10,23], and showed that specialized algorithms can diminish the effects of commonly

occurring artifacts (e.g., the walking artifact). Certain artifacts cannot be filtered easily. For

example, the artifacts related to the jaw or tongue movements would be difficult to filter,

because they do not have any regular shape or frequency, and any EOG-to-gaze algorithm is

vulnerable to them.

The current algorithm can be used online, but this analysis was run offline on a PC with

high computational power. In this implementation, the most computationally demanding step

is the non-linear fitting procedure, but a different fitting procedure may be more computation-

ally efficient. One further limitation is that the current approach analysed the signal in a tem-

poral window, which in practice would lead to a delay up to 200 ms, and this delay cannot be

avoided.

Conclusion

The current work showed that it is possible to estimate the eye gaze angle with a single-channel

in-ear EOG recording using EOGHP (r2 = 0.46) and a novel SACCINT (r2 = 0.54) method.

The estimates were still noisy, but in theory the SACCINT could attain much better perfor-

mance (r2 > 0.8). This difference between the theory and the actual performance of the SAC-

CINT can be attributed mostly to the quality of the in-ear EOG signal, which lead to errors in

the detection and integration steps. Therefore, further improvements of this method are neces-

sary. A number of improvements have been proposed, including improving the design of the

electrodes, improving the non-linear fitting procedure, modelling of eye physiology, incorpo-

rating gyroscope signals, or incorporating statistical models. Overall, our investigation suggests

that in-ear EOG signals captured with conductive ear moulds could serve as a basis for light-

weight, portable horizontal eye gaze angle estimation suitable for broad range of applications

not limited to hearing aids.
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