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Why did IL-23p19 inhibition fail in AS: a 
tale of tissues, trials or translation?
Stefan Siebert, Neal L Millar, Iain B McInnes

Clinical trials investigating biologic 
immune targeting therapeutics should 
deliver insight regardless of direction of 
the primary clinical outcome. Given the 
remarkable specificity of the ‘molecular 
scalpels’ now consequent upon the phar-
macologic biologic revolution, it is imper-
ative to learn lessons, particularly from 
those studies whose outcomes challenge 
pathogenetic wisdom. In this context, 
progress in understanding and treatment 
of the spondyloarthritides (SpA) and 
related extra-articular manifestations, 
especially psoriasis and inflammatory 
bowel disease (IBD), has been remarkable 
in the last decade. This group of pheno-
typically related, but still rather heteroge-
neous conditions share common genetic 
and pathogenetic features, leading to the 
notion that common clinical responses 
across the SpA spectrum should arise from 
specific immune-targeted interventions. 
This notion may shortly be disabused.

Whereas initial therapeutic advances 
in SpA comprised adoption of tumour 
necrosis factor (TNF) inhibitors from rheu-
matoid arthritis, major recent therapeutic 
breakthroughs followed identification 
of a substantial role for the IL-23/IL-17 
pathway in pathogenesis. These studies 
integrated insights from a composite 
of genome-wide association studies 
(GWASs), postfunctional genomic studies, 
tissue analyses and a variety of preclinical 
models. Advances have been most marked 
in psoriasis with ‘PASI100’ response rates 
of around 50%–70% following IL-17A 
or IL-23p19 inhibition.1–5 Subsequently, 
IL-12/23p40, IL-23p19 and IL-17A inhib-
itors demonstrated efficacy in psoriatic 
arthritis (PsA), although this has been 
somewhat less penetrant in terms of 
high-hurdle responses.6–11 The IL-17A 
inhibitor, secukinumab, has recently also 
been shown to be efficacious in patients 
with active ankylosing spondylitis (AS).12 
Studies of IL-23 inhibition for the treat-
ment of AS were commenced based on 

this suggestive preclinical and human data 
resource.

In Annals of the Rheumatic Diseases, 
Baeten and colleagues present a phase II 
clinical trial evaluating risankizumab, a 
humanised monoclonal antibody targeting 
the p19 subunit of IL-23, in patients 
with active AS.13 The authors and editors 
should be congratulated for bringing these 
data into the public domain to advance 
our understanding of underlying disease 
pathogenesis. The trial evaluated three 
doses of risankizumab compared with 
placebo in biologic-naive patients with 
active AS. Risankizumab doses were 

selected based on data from a phase I study 
in psoriasis and were shown to have supe-
rior efficacy to the p40 IL-23 inhibitor 
ustekinumab in a subsequent phase II trial 
in psoriasis.5 However, the current study 
of risankizumab in patients with active 
AS failed to meet the primary endpoint 
(ASAS40 at week 12) and demonstrated 
no convincing improvements in clinical 
or MRI outcomes compared with placebo, 
despite a dose-dependent reduction in C 
reactive protein with risankizumab.

While these results may initially appear 
surprising in light of the efficacy of IL-17A 
inhibition in AS, the study by Baeten et al 
should be more wisely considered in the 
wider context of increasingly tissue-dis-
crete results for IL-23/IL-17 inhibition 
across the SpA spectrum (figure  1). In 
cutaneous psoriasis, the dominant role of 
the IL-23/IL-17 pathway is firmly estab-
lished and has led to impressive results 
with an increasing array of inhibitors of 
these cytokines reaching the clinic. In PsA, 
while IL-17A and IL-23 (both p40 and 
p19) inhibition has demonstrated effi-
cacy for synovial and entheseal disease, 
the results are more modest and have not 
met the high hurdles seen in cutaneous 
psoriasis. A study using paired biopsies of 
skin and synovium in patients with PsA 
reported a dominant IL-17 gene signature 
in lesional skin compared with a stronger 
TNF signature in synovium14 perhaps 
suggesting that the clinical trial data may 
have pathogenetic correlates. In Crohn’s 
disease, IL-23 inhibition with p40 (usteki-
numab) and p19 (risankizumab) inhibitors 
has demonstrated efficacy in phase II/III 
studies.15 16 In contrast, a phase II study 
of IL-17A inhibition with secukinumab 
did not meet its primary outcome and a 
phase II study of brodalumab, an IL-17RA 
inhibitor, was prematurely stopped, with 
numerical worsening of Crohn’s disease in 
the treatment groups for both studies.17 18 
Therefore, while preclinical data suggested 
a role for both IL-23 and IL-17A in the 
pathogenesis of Crohn’s disease, inhibi-
tion of these cytokines led to divergent 
results in clinical trials. Indeed, it has 
been suggested subsequently that IL-17A 
may have pathogenic and protective 
roles in the gut, with IL-23-independent 
IL-17A production required for regula-
tion of intestinal epithelial permeability 
via the tight junction protein occludin.19 
More recently, the IL-17F pathway has 
also emerged as having distinct mucosal 
biologic features.20 Interestingly, AS has 
a strong association with IBD, with 15% 
of patients developing overt IBD and up 
to 60% exhibiting evidence of underlying 
subclinical microscopic colitis, which has 
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Figure 1  Proposed notional emerging tissue 
cytokine hierarchy based on current clinical 
trial data. There is now increasing evidence 
suggesting that different cytokines may enjoy 
distinct hierarchical roles in tissues across 
the spondyloarthritis spectrum. This figure 
highlights those pathways with demonstrable 
effects in each discrete tissues against those 
in which clinical responses were not observed. 
In the absence of formal head-to-head studies, 
these comparators should be taken as potential 
rather than proven. Future analyses are now 
required to ascribe formal within-tissue 
hierarchies.
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been proposed to contribute to the patho-
genesis of AS.21 22 In light of the data from 
the Crohn’s disease trial programme, one 
might even have anticipated that IL-23 
inhibition would be more effective than 
IL-17 inhibition in AS due to underlying 
IBD or subclinical colitis.

Taken together, clinical trial data have 
fundamentally challenged the notion that 
the pathogenic pathways driving disease in 
the tissues impacted in the SpA spectrum 
are truly common. We propose that each 
component tissue will comprise a specific 
immunologic pathology programme that 
reflects its evolutionary imperative for 
host defence, and as such therapeutic 
interventions must embrace such teleo-
logic immunologic reality.

Could this be a trial design artefact? 
Several factors suggest that Baeten et al 
accurately describe the biological role of 

IL-23 in AS rather than eliciting issues 
concerning study design or outcome selec-
tion. Baseline characteristics of this study 
population do not differ significantly from 
those in previous studies of TNF or IL-17A 
inhibitors in active AS. While the primary 
efficacy outcome includes a significant 
subjective component, lack of efficacy 
was also observed for most secondary 
endpoints, including MRI imaging and 
biomarkers of bone remodelling. The 
authors eloquently consider issues relating 
to risankizumab dose and pharmacoki-
netics, suggesting that these are unlikely to 
account for the lack of observed efficacy. It 
does, however, remain possible that there 
is a fundamental problem with the tissue 
bioavailability of this molecule—however, 
more considered explanations are merited 
since the cutaneous benefits accrued on 
similar monoclonal approaches should 

not be readily ignored. The phase III 
trials in AS and non-radiographic axSpA 
of the IL-12/IL-23 inhibitor ustekinumab 
were recently terminated for not meeting 
key efficacy endpoints (​ClinicalTrials.​gov 
NCT02438787 and NCT02407223), 
despite a small open-label study suggesting 
efficacy in 20 patients with AS.23 Taken 
together, these data suggest that, in 
contrast to IL-17A blockade, IL-23 inhi-
bition is not an effective strategy for the 
treatment of AS, which raises the critical 
question—why?

The preclinical evidence supporting 
IL-23p19 blockade in AS was robust per 
current standards of ‘a priori’ proof-of-
concept (POC). As noted above, GWASs 
clearly implicate the IL-23R pathway in 
disease risk and progression. The use of 
minicircle DNA technology to express 
IL-23 in the hepatocytes of B10.RIII mice 
resulted in a destructive polyarthritis that 
was found to be independent of CD4+ T 
cells24 while a further animal study25 using 
similar technology revealed that systemic 
expression of IL‐23 in normal mice was 
sufficient to induce the major features 
of SpA (enthesitis, sacroiliitis and aortic 
root inflammation), putatively through 
activation of a novel population of innate 
CD3+, CD4−CD8− and retinoic acid 
receptor–related orphan nuclear receptor 
γt (RORγt)–positive T cells located in 
the entheses of these mice. While the 
precise source of IL-23 was not identi-
fied, a further study suggested that these 
cells were tissue-resident Vγ6+γδ T cells26 
promoting bone growth through IL-1727 
and were therefore a putative patho-
genic cell population linking IL-23-in-
duced inflammation to bone growth in 
the enthesis. Follow-on human studies 
revealed the number of γδ T cells that 
produce IL-17 and express IL-23R was 
elevated in peripheral blood in people 
with AS.28 Interestingly, only one study29 
has confirmed the presence of CD4−CD8− 
T cells in human entheseal digests. Further 
examination of T-cell subsets indicated 
that a high proportion of these cells were 
likely γ/δ T cells, but no functional anal-
ysis of these human subsets was under-
taken. Human tissue analysis30 revealed 
a significantly higher incidence of IL-23+ 
cells in patients with AS with the majority 
of IL-17-producing cells comprising 
myeloperoxidase-positive and CD15-posi-
tive neutrophils rather than CD3+ T cells, 
suggesting that IL-17-producing cells 
other than Th17 cells are relevant in local 
inflammation in this population. There is 
evidence to support IL-23-independent 
induction of IL-17 from γδT cells and 
innate lymphoid cells.31 Thus, given this 

Figure 2  Potential cytokine pathways driving IL-17 responses in spondyloarthritis.
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disparate cell expression profile between 
mouse and human studies, it is plausible 
(but not yet proven) that IL-23-inde-
pendent sources of IL-17 (eg, via ILCs, 
CD15+ neutrophils) are of pathogenetic 
importance in driving disease chronicity 
in AS. Furthermore, given the presumed 
central role of RORγt as a ‘master’ tran-
scription factor of the type 17 response in 
entheseal disease and recent evidence that 
it acts in an IL-23 independent fashion,19 
we contend that there could be a molec-
ular argument that p19 inhibition alone 
will prove insufficient to effectively target 
the type 17 immune response evident in 
the axial component of the SpA spectrum.

While the IL-12 family cytokines have 
pleiotropic functions with parallel unique 
characteristics, much attention initially 
focused on the p19 subunit combi-
nation with the p40 subunit forming 
IL-23(p19/40). Subsequent signalling was 
considered pivotal through the IL-23R/
IL-12Rβ1 receptors with downstream 
STAT3 proposed in autoimmune diseases, 
including AS.32 Although four bona fide 
members have thus far been described, 
promiscuous chain-pairing between alpha 
(IL-23p19, IL-27p28, IL-12/IL-35p35) 
and beta (IL-12/IL-23p40, IL-27/
IL-35Ebi3) subunits predicts six possible 
heterodimeric IL-12 family cytokines.33 
Indeed, emerging evidence has highlighted 
that the p19 and EBi3 form, a novel p19/
Ebi3 heterodimer termed IL-39, medi-
ates inflammation in lupus-like MRL/lpr 
mice34 and importantly anti-mouse IL-39 
polyclonal antibodies ameliorate autoim-
mune symptoms in lupus-like mice.35 A 
similar association between p19 and EBI3 
was suggested in damaged keratinocytes, 
possibly contributing to wound healing 
by dampening inflammatory responses36 
linking stromal and immune responses of 
the p19 subunit. Thus, given increasing 
evidence that local damage may provide a 
trigger for SpA,37 the intriguing heterod-
imerisation of the p19 subunit towards 
IL-39 provides a plausible, potential 
alternate mechanism driving pathology . 
More studies around the role of p19 in 
this context, and indeed how p19 inhib-
iting antibodies modify such biology, will 
be important in axSpA. Moreover, it is 
becoming apparent that TH17 cells are 
not homogeneous, with a large body of 
work indicating an inherent instability of 
TH17 cell populations.38 Data concerning 
the role of IL-23 in the generation of 
non-TH17 Treg cells are conflicting. Some 
studies suggest that IL-23 promotes the 
accumulation of Treg cells in the gut,39 
which are probably non-TH17 Treg cells.40 
Conversely, IL-23 promotes the stability 

of pathogenic TH17 cells through the tran-
scription factor PR domain zinc finger 
protein 1 (PRDM1).41 These findings 
suggest that increased numbers of TH17 
cells in patients with AS might not result 
from preferential differentiation of naive 
T cells with particular reference to early 
IL-23p19 expression, but rather through 
a reduced plasticity of mature TH17 cells. 
Thus more information as to the biology 
of IL-23 in the joint and GI mucosa is 
required. Having previously been rela-
tively underinvestigated, the involvement 
of IL-17-producing CD8+ T cells (TC cells) 
and innate lymphoid cells in autoimmune 
inflammation has now been documented 
in both humans and mice.42 In particular, 
recent data suggest enrichment of articular 
TC cells across multiple SpA subtypes43 
and identify a phenotypic signature for 
IL-17+CD8+ T cells, consisting of type 
17 and tissue-associated markers44 impli-
cating such cells as important contributors 
to the pathogenesis of axSpA. How such 
cells relate to IL-23 biology is now also 
requires further investigation.

Taken together, established AS may have 
‘transitioned pathogenetically’ to a mature 
type 17 phenotype, which is unresponsive 
to IL-23p19 blockade and other upstream 
treatment strategies (eg, IL-6 inhibition45) 
that might otherwise modulate type 17 
cell differentiation. As a consequence, at 
a molecular level, the IL-23p19 subunit 
appears not the only regulatory agent 
for targeting the type 17 response in 
AS, and, by corollary, neutralising this 
upstream molecule seems to be less effec-
tive than specifically targeting IL-17A in 
AS (figure  2). The identity of additional 
drivers to the IL-17 response and indeed 
other effector pathologic pathways should 
now be sought.

The apparent failure of IL-23p19 inhi-
bition in AS serves further as salutary 
reminder of the complexity of chronic 
polygenic human inflammatory diseases 
but, paradoxically, helps advance our 
understanding of these diseases by rede-
fining our understanding of the impor-
tance of a pathway within the pathogenetic 
hierarchy. Preclinical modelling, even 
supported by state-of-the-art genetic and 
postgenomic functional studies, remain 
imperfect in their predictive use. With 
the expansion of therapeutic novel modes 
of action, the next decade will offer 
unparalleled opportunities to build ‘new 
knowledge on old’ as clinical trial datasets 
accrue; as such, we can build pathoge-
netic understanding based on truly human 
disease models. Thus, the importance of 
confirming apparently persuasivepreclin-
ical results in humans remains key, while 

there remain lessons to be learnt about 
applying animal data to humans. Consid-
ering tissue-specific and time-specific 
cytokine responses and hierarchies when 
developing novel therapies would seem 
wise.
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